转体桥施工监控及安全性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着桥梁结构越来越多地用于跨越铁路、公路、河流等,转体施工法凭借着其明显的优势在桥梁建设中也得到越来越广泛的应用。转体桥的优势在于它可以适应桥位处的地形搭设支架现场浇筑,然后通过球铰和滑道组成的转盘结构转体就位,不影响通航,不中断过往车辆,施工安全方便,免去复杂的高空作业,具有明显的社会和经济效益。
     桥梁施工监控不仅是桥梁施工技术的重要组成部分,而且也是确保桥梁施工宏观质量的关键。本文依托秦皇岛城市西部快速路跨京哈铁路转体桥,对该T形刚构桥进行施工监控。参照有限元软件Midas计算值,对箱梁和转体墩控制截面的应力以及拆架后的梁体变形进行监测和结果分析。同时,对梁体位于转体墩根部的截面进行水化热监测并利用有限元软件进行温度场和应力场模拟计算,提出控制混凝土内外最大温差,尽可能防止裂缝发生的合理建议。
     由于施工过程中不可避免的误差,拆架后转动体的实际中心往往与理论中心不重合,而且偏心距的大小将直接影响转体能否平稳安全的进行。因此在转体前需进行称重试验,并且根据称重结果进行配重,以保证转体的顺利进行。
     转体梁脱架后由多点弹性支承变成悬臂状态,在转体前靠球铰独立支撑一段时间,过往列车和风对该桥安全稳定性的影响不可忽视。本文通过现场测试列车经过时产生的振动时程,采用时程分析法对大悬臂状态转体梁的振动响应进行了计算,分析了列车通过对转体梁稳定性的影响。此外,还研究了风对大悬臂转体梁稳定性的影响,研究结果为转体梁的施工控制提供参考。
Bridges are increasingly utilized to cross over other traffic lines such as railways, highways and rivers, and the swing method of bridge construction is becoming more and more widely used on account of its obvious advantages. Supporting frames, on which concrete will be poured during construction, are built on both sides of the terrain. The beam of the bridge will be swiveled to the correct position by the rotatable structures consisting of ball bearing and slides, without interrupting naval navigation and road traffic. Due to safe and convenient construction and the elimination of the complex high-altitude operations, the swing method has significant socio-economic benefits.
     Bridge construction monitoring is not only an important part of the bridge construction technology, but also the key to ensuring the macro quality of construction. This paper focuses on the construction of a swing bridge on Qinhuangdao's West Highway over the Beijing-Harbin Railway. The stress from a cross section of the box girder and swivel pier, and beam deformation after the removal of stents were closely monitored and analyzed based on the calculated values of finite element analysis. Meanwhile, heat of hydration in the cross-section of the swivel pier base was also monitored and calculations of temperature and stress field were simulated by using the finite element software. Reasonable recommendations for controlling the maximum temperature difference between the concrete inside and outside to prevent cracks were given.
     Due to the inevitable errors in the construction process, the actual center of the rotating body after the removal of stents often does not coincide with the theoretical one. The size of the eccentricity will directly affect whether the rotation could be carried out safely and smoothly. Therefore, it is necessary to have a weighing test and to balance the weight based on the test results before rotation, in order to ensure that the rotating bridge will swivel smoothly.
     The rotating body gets into a cantilever state after the removal of stents, and needs to stand alone for a short period only relying on the ball hinge before rotation. For that reason, the influence imposed on the bridge by passing trains and wind could not be ignored. Vibration generated by the passing trains was acquired through a field test. When time history analysis method was applied to compute the long cantilever's vibration response, the influence imposed on the rotating body by passing trains was analyzed. Meanwhile, the influence imposed on the rotating body by wind was also analyzed. The result can provide a reference for the on-site construction control.
引文
[1]杨耀福.T型刚构桥水平转体施工技术研究[D].石家庄:石家庄铁道学院硕士学位论文.2007
    [2]范立础.桥梁工程[M].北京:人民交通出版社.2001
    [3]顾安邦.桥梁工程[M].北京:人民交通出版社.2000
    [4]陈宝春,孙潮,陈友杰.桥梁转体施工方法在我国的应用与发展[J].公路交通科技.2001.(2):24-28
    [5]杜越.预应力钢筋混凝土连续箱梁平面转体施工技术[J].建筑技术与应用.2006.(6):28-30
    [6]陈英杰.桥梁转体施工技术研究与应用[J].中国市政工程.2006.120(2):28-29
    [7]张联燕等.桥梁转体施工[M].北京:人民交通出版社.2001
    [8]刘碧萍.浅析“平面转体法”桥梁施工的特点和应用[J].中国高新技术企业.2009.(7):172-173
    [9]M. Virlogeux. Recent evolution of cable-stayed bridges. Engineering Structures.1999. (21): 737-755
    [10]J. Zhang and T.E.El-Diraby. constructability analysis of the bridge superstructure rotation construction method in china. Journal of Construction Engineering and Management. ASCE/April 2006
    [11]杨亮,刘文江.天津集疏港一期工程桥梁结构设计及关键技术问题[J].城市道桥与防洪.2010.(1):86
    [12]张磊.列车诱发地震对大悬臂平转梁稳定性的影响[D].北京:北京交通大学硕士学位论文.2011
    [13]高日,姜兰潮.秦皇岛城市西部快速路跨京哈铁路桥转体施工监控试验报告[R].北京:北京交通大学.2012
    [14]丁毅.佛山东平大桥转体施工监控的关键技术研究[D].长沙:长沙理工大学硕士学位论文.2006
    [15]向中富.桥梁工程控制[M].北京:人民交通出版社.2011
    [16]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社.2000
    [17]P. Curran, G. Tilly. Design and Monitoring of the Flintshire Bridge, UK, Structural Engineering International[C]. Vol.3.1999:225-228
    [18]秦皇岛城市西部快速路工程施工图设计.北京:北京市政工程设计研究总院.2010
    [19]刘海潮.廊沧高速公路沧州段跨京沪铁路转体参数测试方法浅析[J].黑龙江交通科技. 2011.(4):48-49
    [20]庄军生.桥梁支座.中国铁道出版社[M].北京:2008
    [21]徐德彪,惠斌.北京某铁路转体桥的设计[J].特种结构.2009.26(1):92-93
    [22]翟鹏程.转体梁施工中的不平衡问题及风致振动研究[D].北京:北京交通大学硕士学位论文.2008
    [23]鲁建生,杨永宏,刘继龙.保阜高速公路跨京广铁路转体桥称重试验研究[J].铁道建筑技术.2009.(5):106-109
    [24]梁锦华.转体桥转体结构平衡配重设计[J].广东水利水电.2004.(10):10-11
    [25]王立中.转体施工的公路T型刚构桥梁转动结构设计[J].铁道工程学报.2006.(9):43
    [26]孙聪,高日.特殊支撑体系的转体桥施工牵引力计算方法分析[J].铁道建筑.2011.(2):45-47
    [27]魏峰,陈强,马林.北京市五环路斜拉桥转动体不平衡重称重试验分析[J].铁道建筑.2005.(4):4-6
    [28]向中富.桥梁施工控制技术[M].北京:人民交通出版社.2001
    [29]邱顺冬.桥梁工程软件Midas civil常见问题解答[M].北京:人民交通出版社.2009
    [30]丁海平,李亚娥,韩淼.工程结构抗震[M].北京:人民交通出版社.2006
    [31]裴星洙,张立,任正权.高层建筑结构地震响应的时程分析法[M].北京:水利水电出版社.2006
    [32]李爱群,丁幼亮.工程机构抗震分析[M].北京:高等教育出版社.2010
    [33]刘碧萍.浅析“平面转体法”桥梁施工的特点和应用[J].中国高新技术企业.2009.(7):172-173
    [34]M. Virlogeux. Recent evolution of cable-stayed bridges. Engineering Structures.1999. (21): 737-755
    [35]Chopra A K, Goel R K, (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics.2002.31(3):561-582
    [36]唐清华,曹言.大跨径桥梁的静风稳定性计算[J].桥梁建设增刊.2007
    [37]公路桥涵设计通用规范(JTJ D60—2004).北京:人民交通出版社.2004
    [38]公路桥梁抗风设计指南[M].北京:人民交通出版社.1996
    [39]张光周.大跨径混凝土箱梁实时温度场数值模与裂缝控制研究[D].济南:山东大学硕士学位论文.2009
    [40]范奎.大体积混凝土水化温度场仿真计算与实测技术研究[D].杭州:浙江大学硕士学位论文.2005
    [41]朱伯芳.考虑温度影响的混凝土绝热温升表达式[J].水力发电学报.2003.(2):69-73
    [42]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社.1999
    [43]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[A].河海大学学报.2002.30(3):2-3
    [44]张亮亮,赵亮,袁政强,陈天地.桥墩混凝土水化热温度有限元分析[J].重庆大学学报.2007.30(10):74
    [45]罗晓峰.高墩多跨连续刚构桥温度效应分析及稳定性研究[D].北京:北京交通大学硕士学位论文.2011
    [46]卢文良,季文玉,杜进生.铁路混凝土箱梁温度场及温度效应[J].中国铁道科学.2006.27(6):49-53
    [47]宋国华.基于统计分析的连续弯箱梁实用设计方法研究[D].北京:北京工业大学硕士学位论文.2005
    [48]Bamforth B. Early-Age Thermal Crack Control in Concrete. Construction Industry Research and Information Association. UK.2007
    [49]Jena-Paul Lebet. Measurements during construction and launching of a 130 m span length composite bridge [J]. Composite Construction in Steel and Concrete, ASCE 2006:25-34
    [50]Bofang Zhu and Ping Xu, Thermal Stress in Roller Compacted Gravity Dams[J]. Dam Engineering, Vol.6(3).1995:46-51
    [51]王振波.混凝土温度损伤模型研究[D].南京:河海大学博士学位论文.2001
    [52]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社.2002
    [53]白俊岭.戈兰滩碾压混凝土重力坝仿真分析[D].天津:天津大学硕士学位论文.2005
    [54]吴瑾,夏逸鸣,张丽芳.土木工程结构抗风设计[M].北京:科学出版社.2007
    [55]Li.FM, Meng. SP. Study on Design Methods of Crack Control for Large Concrete Structures With Over-long and Over-wide Size. PROCEEDINGS OF SHANGHAI INTERNATIONAL CONFERENCE ON TECHNOLOGY OF ARCHITECTURE AND STRUCTURE.2009. 296-306
    [56]夏禾,季文玉,韩冰,张楠.桥梁工程[M].北京:高等教育出版社.2011
    [57]谭雷平.大吨位转体桥称重方法及结果分析[J].铁道建筑技术.2011.(8):17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700