连续梁桥三种抗震设计方法对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通运输特别是高等级公路的迅速发展,要求行车平顺舒适,多伸缩缝的悬臂梁桥和T形刚构桥就不能满足这个要求,这使得超静定结构连续梁桥以其结构刚度大、变形小、伸缩缝少和行车平稳舒适等突出优点而得到了迅速的发展。混凝土连续箱梁是成熟、普遍的桥梁主梁形式,在许多工程特别是国内已建或在建的跨海大桥中得到广泛运用。
     鉴于当前我国面临着十分严峻的地震形势和连续梁桥越来越广泛应用在工程实践中,对桥梁工程进行正确的抗震设计对于我国基础设施建设有着越来越重要的作用。
     本文以大连市普湾新区十六号路跨海桥梁工程为背景,采用Midas/Civil有限元软件,通过反应谱分析和时程分析对其引桥部分的一联连续梁桥(3×50m)进行E1、E2两级设防水准下的地震响应计算。
     E2地震作用下,允许结构进入塑性状态,本文采用如下三种方案对结构进行抗震设计:
     (1)通过固定墩墩底塑性铰机制的形成,降低结构刚度并延长周期,同时利用塑性铰的滞回特性提供耗能能力,对结构进行延性分析;
     (2)利用铅芯橡胶支座代替普通钢支座,使地震能量转移到减隔震装置上,避免了设置固定桥墩承担较大的地震力作用,使地震力较均匀地分配在各墩,减小固定墩所受地震力;
     (3)通过在活动墩设置Lock-up瞬间锁定装置,使桥墩在罕遇地震下共同承担结构所受的地震力。
     通过对三种方案在连续梁桥中的应用研究表明:三种抗震设计方案都能够有效地减小结构所受地震力的影响。延性分析通过塑性铰机制的形成,使固定墩墩底截面进入塑性,避免了结构的倒塌。利用铅芯橡胶支座对结构进行减隔震设计,可以地震能量转移到减隔震装置上,大大减小传递到结构重要构件上的地震力,且铅芯橡胶支座在地震力作用下的最大剪切位移小于其允许剪切位移,避免了结构构件受到损伤。通过Lock-up装置在强震下对活动墩的锁定,使活动墩同固定墩一起承担地震力,有效的减小了固定墩上的位移及内力响应。
With the rapid development of transportation,especially high-grade highways, cantilever bridge with mult-expansion joints and T-shaped rigid frame bridge will not be able to meet the requirement of driving smoothly and comfortable,which makes the statically indeterminate continuous girder bridge with its outstanding merits of structural stiffhesslarge,small deformation,expansion joints and driving smoothly and comfortable to get a rapid development. Concrete continuous box girder is mature and general in the form of bridges,has been widely used in many cross-sea projects which have been built or under construction.
     Currentlly,China is facing a severe earthquake situation and the continuous beam bridge is more and more widely used in engineering practice, to correct the seismic design of bridge engineering for the infrastructure construction in China has been leading an increasingly important role.
     This article make the16th Road cross-sea bridge engineering which located in Dalian puwan new area as the background, using the Midas/Civil finite element software to calculate a span of an associated continuous beam bridge (3x50m) dynamic response under the two seismic fortification criterions with response spectrum analysis and time history analysis approach.
     The structure will enter the plastic state under the earthquake action E2,the paper will use the following programs for seismic design:
     (1) The formation mechanism of the plastic hinge in the length of plastic hinge at the base of the fixed pier is used for the ductility analysis of the structure;
     (2) Lead rubber bearing is used for the seismic isolation design of the structure;
     (3) The Lock-up instantly locking device is used to make the piers to shared seismic forces excited by earthquake action E2.
     The results of three programs of seismic design in continuous girder bridge show that:any of the program can be effective enough to reduce the structural seismic forces excited by earthquake. Ductility analysis use the formation mechanism of the plastic hinge at the base sections of the fixed pier to get into the plastic states, to avoid the collapse of the structure. Lead rubber bearings for seismic isolation design of the structure can change the seismic energy to seismic isolation devices, greatly reduce the seismic forces to the important components on the structure, and the maximum shear displacement of the lead rubber bearing is less than the shear displacement allowed, to avoid damage of structural components. Lock-up devices can effectively reduce the seismic force exerted on fixed pier,but the seismic effect is less obvious than the other two programs.
引文
[1]叶爱君,管仲国.桥梁抗震[M].北京:人民交通出版社,2011.
    [2]王克海.桥梁抗震研究[M].北京:中国铁道出版社,2007.
    [3]NZNSEE. The Hyogo-Ken Nanbu Earthquake (The Great Hanshin Earthquake) of 17 January 1995. Report of the NZNSEE Reconnaissance Team. Bull. New Zealand Nat. Soc. Earthquake Eng.,1995, Vol.28 (1):1-98
    [4]Anderson, D. L., Mitchell, D. and Tinawi, R. G. Performance Of Concrete Bridges During The Hyogo-Ken Nanbu (Kobe) Earthquake On January 17,1995. Can. J. CivilEng.,1996, 23:741-726
    [5]Rourke, T. D.O. Lessons Learned for Lifeline Engineering from Major Urban Earthquake. In:Proc.11th World Conf. Earthquake Eng. Acapulco, Mexico:Elsevier Sience Ltd, 19996, Paper No.2172
    [6]贾志明.连续刚构桥抗震分析[D].西安建筑科技大学,2010.
    [7]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [8]纪厚强.钢筋混凝土桥墩抗震性能研究[D].长安大学,2010.
    [9]薛宪政.斜拉桥地震响应分析及抗震研究[D].大连理工大学,2010.
    [10]李黎,陈元坤,杨金虎,等.工程抗震与加固改造[J],2010,32(1),50-56.
    [11]陈清军,姜文辉,李哲明.桩-土接触效应及对桥梁结构地震反应[J],2005,26(4),609-613.
    [12]陈丽丽.不对称连续刚构桥地震响应分析[D].大连理工大学,2010.
    [13]李宇.大跨度连续梁桥地震反应分析[D].西南交通大学,2008.
    [14]戎华钦.星海湾大桥地震响应分析及减震措施要求[D].大连理工大学,2011.
    [15]王强.大跨长联连续梁桥地震反应分析及减隔震研究[D].西南交通大学,2010.
    [16]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [17]楚志坚.钢筋混凝土矩形桥墩延性抗震计算研究[D].北京交通大学,2010.
    [18]徐国锋.高烈度区连续梁桥延性抗震设计初步研究[D].重庆交通大学,2009.
    [19]AASHTO, Standard Specifications for Highway Bridges[S],16th ed., American Association of State Highway and Transportation Officials, Washington, D.C., 1996
    [20]陈惠发,段炼.桥梁工程抗震设计[M].北京:机械工业出版社,2008.
    [21]张国镇,刘光晏.断面分析-弯矩曲率计算简介
    [22]周基岳,刘南科.钢硅框架非线性分析的截面弯矩-曲率关系.重庆建筑工程学院学报.1984.
    [23]刘庆华.钢筋混凝土桥墩的延性分析.同济大学学报,1998,26(3):245-249
    [24]Eurocode 8. Design provisions for earthquake resistance of structures. London: European Committee for Standardization,1994.
    [25]中华人民共和国行业标准.JTG/T B02-01—2008公路桥梁抗震设计细则.北京:人民交通出版社,2008
    [26]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [27]范立础,王志强.桥梁减隔震设计[M].北京:人民交通出版社,2001.
    [28]李勇刚,桥梁减震隔震技术[J].山西建筑.2007,33(30):115-116.
    [29]黄艳,阎贵平,鞠彦忠.采用减隔震支座提高桥梁结构的安全性[J].中国科学学报200212(5):71-75
    [30]中华人民共和国行业标准.JT/T 822-2011公路桥梁铅芯隔震橡胶支座.北京:人民交通出版社.
    [31]臧晓秋,庄军生,张士臣.铅芯橡胶支座在桥梁减震中的应用[J].铁道建筑.2000,(2):24-26.
    [32]刘享,钟铁毅,杨风利,等.铅芯橡胶支座隔震铁路简支梁桥参数影响研究[J].铁道建筑.2007,(5):1-3.
    [33]王丽,闰维明,阎贵平.铅芯橡胶支座参数对隔震桥梁动力响应的影响[J].北京工业大学学报.2004,30(3):304-308.
    [34]江海波,廖蜀樵.铅芯橡胶支座隔震效果分析[J].城市轨道交通研究.2005,(3):35-38.
    [35]王志强,葛继平.粘滞阻尼器和Lock-p装置在连续梁桥抗震中应用[J].石家庄铁道学院学报.2006,19(1):5-9.
    [36]周高瞻,三种减隔震装置在连续梁桥中应用的研究[D].北京工业大学,2007.
    [37]周高瞻,闫维明,李素梅.LUD在连续梁桥中的应用[J].山西建筑.2007.33(27):319-320.
    [38]李伟慈.大跨超长连续梁桥纵向抗震设计研究[J].北方交通.2000.(12):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700