小粒径纳米胶束的构建及其在转移性乳腺癌和胰腺癌治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转移性乳腺癌和胰腺癌是致死率很高的两种癌症。传统的手术和放化疗手段对于这两种肿瘤的治疗效果十分有限,目前进步也不大。尽管纳米给药系统在治疗大多数肿瘤方面取得了很多成果,但对于转移性乳腺癌和胰腺癌患者的治疗效果却不显著,这与其无法在乳腺癌继发转移灶和胰腺癌原发灶部位富集有关。乳腺癌继发转移灶与胰腺癌原发灶都存在新生血管发育较少、肿瘤组织血液低灌注的特点,而传统纳米给药系统往往粒径较大,无法在这两类癌灶发挥其EPR效应优势。因此,必须寻求新的方法来治疗这两类肿瘤。
     文献报道,小粒径纳米粒在像胰腺癌这样的血液低灌注肿瘤中具有较高的肿瘤组织渗透性,能够发挥较好的肿瘤治疗效果,提示我们设计小粒径纳米粒可能是治疗转移性乳腺癌和胰腺癌的突破口。在本文中,我们以两亲性聚合物mPEG2000-b-PDLLA1300为载体材料、以多西紫杉醇为模型药物、通过薄膜分散法制备得到了粒径约为16nm的胶束(DTX-PM),大大小于以往报道的多西紫杉醇载药胶束:DTX-PM还具有极高的载药量和良好的复溶稳定性,极具_工业和临床应用价值。我们进而使用TAT肽、RGD肽和NGR肽修饰DTX-PM的表面,得到了TAT-PM、RGD-PM和NGR-PM,以增强其渗透性和主动靶向性,它们的粒径大小也在16nm左右。
     我们使用4T1小鼠转移性乳腺癌细胞系、能够稳定表达荧光素酶的4T1luc小鼠转移性乳腺癌细胞系以及Capan-2luc人胰腺癌细胞系作为药理测试模型,同时构建了更加贴近临床治疗实际情况的4T1&4T1luc乳腺癌原位自发转移动物模型、4T1&4T1luc乳腺癌术后化疗动物模型和Capan-2luc原位移植胰腺癌动物模型,考察了小粒径纳米胶束对转移性乳腺癌和胰腺癌的体内治疗效果。转移性乳腺癌体内实验结果表明,DTX-PM的抗转移作用显著优于现有市售药物多帕菲(?),达到了我们的实验预期;但DTX-PM也优于肿瘤组织渗透性更强的TAT-PM和具备主动靶向作用NGR-PM、RGD-PM,这提示我们,小粒径胶束对于转移性乳腺癌的治疗作用可能缘于阻断了乳腺癌肿瘤的淋巴播撒途径,这个推测需要进一步的机制研究来汪明。胰腺癌体内实验结果表明,4种小粒径胶束的治疗效果无差别,但均远优于市售多帕菲(?),表明小粒径胶束在血液低灌注的胰腺癌肿瘤组织中有较高的渗透水平,增加了药物的蓄积量,与我们当初的实验设想一致。
     鉴于TAT-PM、RGD-PM和NGR-PM对于转移性乳腺癌和胰腺癌的治疗效果并不优于DTX-PM,这可能与3种胶束表面修饰短肽序列后降低了它们的体内稳定性有关,因此,我们认为小粒径胶束的体内稳定性问题应该引起重视。因此,我们又进一步设计了两类小粒径胶束,试图进一步增加DTX-PM的稳定性,进一步阐明稳定性对于小粒径胶束在血液低灌注肿瘤治疗中的作用,但并未获得成功。设计在体内比DTX-PM更稳定的小粒径纳米给药系统将是我们下一步的工作重点。
     综上所述,本文明确了小粒径DTX-PM在转移性乳腺癌和胰腺癌治疗方面的作用,揭示了小粒径胶束在治疗转移性乳腺癌和胰腺癌方面的巨大潜力,同时探讨了其抗恶性乳腺癌转移的潜在机制,为纳米药物在临床治疗肿瘤转移的应用提供依据。
Metastatic breast cancer and Pancreatic cancer are the major leading cause of cancer mortality. The benefit of traditional surgery, chemmotherapy and raidotherapy is small, and little progress has been made on the treatment. Although advances in nanomedicine have provided a promising strategy for the drug delivery to most primary solid tumor, the traditional nano-carrier drug delivery systems (NDDS) have provided only modest survival benefits for the patients suffering these two kinds of tumors. Importantly, these drugs have little therapeutic effect on cancer metastasis because of their low accumulation in breast cancer metastasis foci and pancreatic tumor. Small metastases and pancreatic tumor are poorly vascularized and hypoperfused, therefore they are not well accessed by big-sized nanoparticles via the EPR effect. Therefore, alternative methods against these two tumors are necessary.
     Discribed by some literatures, decreasing the size of nanoparticle statistically significantly increased its tumor vascular permeability, especially in the poorly vascularized and hypoperfused pancreatic tumor, which provides us a new reference to design NDDS against metastatic breast cancer and pancreatic cancer. Here, a small-sized docetaxel-loaded PM DDS (DTX-PM) has been constructed using amphilic copolymer mPEG2000-b-PDLLA1300, whose size is determined as16nm by Dynamic light scattering method and smaller than the NDDS ever reported. Moreover, DTX-PM with a high loading capacity for DTX is very stable and can be easily lyophilized, which is vital for the clinical use. TAT, RGD and NGR peptides were respectively attached to the distal tips of PEG moieties of DTX-PM, which provided us TAT-PM, RGD-PM and NGR-PM with different PM surface characteristics.
     4T1cell line,4T1luc cell line and Capan-2luc cell line that stably expressed luciferase were used as tumor cell model. Furthermore, we established4T1&4T1luc spontaneous metastasis breast cancer model,4T1luc post-surgery breast cancer therapy model and Capan-2luc orthotopic transplantation model of huaman pancreatic cancer model, which are deemed as patient-like model, was used in the in vivo study. Compared to free-DTX (commercialized product Duopafei(?)), the small-sized DTX-PM was found to be very effective against metastasis in vivo on4T1spontaneous metastatic model and4T1luc post-surgery therapy model, which complied with our hypothesis; however, TAT-PM, RGD-PM and NGR-PM had the poorer performance in4T1metastasis therapy compared to DTX-PM, which reminded us that DTX-PM may block the lymphatic metastasis way rather than attack the small metastases foci. More experiments are needed to prove this underlying mechanism. In the in vivo study for Capan-2luc pancreatic cancer, Duopafei(?) almost failed, while DTX-PM had much better therapeutic effect attributed to its hyperpermeability in the hypoperfused tumor. However, TAT-PM, RGD-PM and NGR-PM all had an equal therapeutic effect with DTX-PM.
     Accordin to our initial hypothesis, TAT-PM, RGD-PM and NGR-PM shall deserve better therapeutic effects against malignant breast cancer and pancreatic cancer. The unexpected negative result may attribute to the in vivo stability problem of the three small-sized PM. To verify this speculation, we designed two more new NDDSs, whose stablity were further strengthened compared to DTX-PM, but failed us. How to design the new small-sized NDDS with higher in vivo stability will be our focus in the future.
     As a whole, this study designed a series of small-sized PM loaded with DTX, one of which, DTX-PM show much better therapeutic effect against malignant breast cancer metastasis and pancreatic cancer. Moreover, this study revealed the great potential of small-sized PM in the treatment of malignant breast cancer metastasis as well as pancreatic cancer, which may provide new strategy in the development of nanomedicine for diagnosis and therapy for cancer.
引文
[1]. Davis, M.E. Nanoparticle therapeutics:an emerging treatment modality for cancer[J]. Nature Reviews Drug Discovery,2008,7(9):771-782.
    [2]. Zhang, L., F. Gu, J. Chan, A. Wang, R. Langer, and O. Farokhzad. Nanoparticles in medicine:therapeutic applications and developments[J]. Clinical Pharmacology & Therapeutics,2007,83(5):761-769.
    [3]. Park, J., P.M. Fong, J. Lu, K.S. Russell, C.J. Booth, W.M. Saltzman, and T.M. Fahmy. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2009,5(4):410-418.
    [4]. Wang, X., J. Li, Y. Wang, K.J. Cho, G. Kim, A. Gjyrezi, L. Koenig, P. Giannakakou, H.J.C. Shin, and M. Tighiouart. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors[J]. ACS nano,2009,3(10):3165-3174.
    [5]. Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers[J]. Nature Reviews Drug Discovery,2005,4(2):145-160.
    [6]. Duncan, R. Polymer conjugates as anticancer nanomedicines[J]. Nature Reviews Cancer,2006,6(9): 688-701.
    [7]. Peer, D., J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer. Nanocarriers as an emerging platform for cancer therapy[J]. Nat Nano,2007,2(12):751-760.
    [8]. Duncan, R. and R. Gaspar. Nanomedicine(s) under the Microscope[J]. Molecular Pharmaceutics,2011,8(6): 2101-2141.
    [9]. Kim, D.-W., S.-Y. Kim, H.-K. Kim, S.-W. Kim, S.W. Shin, J.S. Kim, K. Park, M.Y. Lee, and D.S. Heo. Multicenter phase Ⅱ trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer[J]. Annals of Oncology,2007, 18(12):2009-2014.
    [10]. Kim, S.C., D.W. Kim, Y.H. Shim, J.S. Bang, H.S. Oh, S. Wan Kim, and M.H. Seo. In vivo evaluation of polymeric micellar paclitaxel formulation:toxicity and efficacy [J]. Journal of controlled release:official journal of the Controlled Release Society,2001,72(1-3):191-202.
    [11]. Kim, T.-Y., D.-W. Kim, J.-Y. Chung, S.G. Shin, S.-C. Kim, D.S. Heo, N.K. Kim, and Y.-J. Bang. Phase Ⅰ and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies[J]. Clinical Cancer Research,2004,10(11):3708-3716.
    [12]. Lee, K., H. Chung, S. Im, Y. Park, C. Kim, S.-B. Kim, S. Rha, M. Lee, and J. Ro. Multicenter phase Ⅱ trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer[J]. Breast Cancer Research and Treatment,2008,108(2):241-250.
    [13]. Hamaguchi, T., K. Kato, H. Yasui, C. Morizane, M. Ikeda, H. Ueno, K. Muro, Y. Yamada, T. Okusaka, K. Shirao, Y. Shimada, H. Nakahama, and Y. Matsumura. A phase Ⅰ and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation[J]. Br J Cancer,2007,97(2):170-176.
    [14]. Danson, S., D. Ferry, V. Alakhov, J. Margison, D. Kerr, D. Jowle, M. Brampton, G. Halbert, and M. Ranson. Phase Ⅰ dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer[J]. Br J Cancer,2004,90(11):2085-2091.
    [15]. Alakhov, V, E. Klinski, S. Li, G. Pietrzynski, A. Venne, E. Batrakova, T. Bronitch, and A. Kabanov. Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials[J]. Colloids and Surfaces B: Biointerfaces,1999,16(1-4):113-134.
    [16]. Hrkach, J., D. Von Hoff, M.M. Ali, E. Andrianova, J. Auer, T. Campbell, D. De Witt, M. Figa, M. Figueiredo, A. Horhota, S. Low, K. McDonnell, E. Peeke, B. Retnarajan, A. Sabnis, E. Schnipper, J.J. Song, Y.H. Song, J. Summa, D. Tompsett, G. Troiano, T. Van Geen Hoven, J. Wright, P. LoRusso, P.W. Kantoff, N.H. Bander, C. Sweeney, O.C. Farokhzad, R. Langer, and S. Zale. Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile[J]. Science Translational Medicine,2012,4(128):128ra39.
    [17]. Uchino, H., Y. Matsumura, T. Negishi, F. Koizumi, T. Hayashi, T. Honda, N. Nishiyama, K. Kataoka, S. Naito, and T. Kakizoe. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats[J]. Br J Cancer,0000,93(6):678-687.
    [18]. Nishiyama, N., S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, and K. Kataoka. Novel Cisplatin-Incorporated Polymeric Micelles Can Eradicate Solid Tumors in Mice[J]. Cancer Research,2003,63(24):8977-8983.
    [19]. Plummer, R., R.H. Wilson, H. Calvert, A.V. Boddy, M. Griffin, J. Sludden, M.J. Tilby, M. Eatock, D.G. Pearson, C.J. Ottley, Y. Matsumura, K. Kataoka, and T. Nishiya. A Phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours[J]. Br J Cancer,2011, 104(4):593-598.
    [20]. Koizumi, F., M. Kitagawa, T. Negishi, T. Onda, S.-i. Matsumoto, T. Hamaguchi, and Y. Matsumura. Novel SN-38-Incorporating Polymeric Micelles, NK012, Eradicate Vascular Endothelial Growth Factor-Secreting Bulky Tumors[J]. Cancer Research,2006,66(20):10048-10056.
    [21]. Hamaguchi, T., T. Doi, T. Eguchi-Nakajima, K. Kato, Y. Yamada, Y. Shimada, N. Fuse, A. Ohtsu, S.-i. Matsumoto, M. Takanashi, and Y. Matsumura. Phase I Study of NK012, a Novel SN-38-Incorporating Micellar Nanoparticle, in Adult Patients with Solid Tumors[J]. Clinical Cancer Research,2010,16(20): 5058-5066.
    [22]. Matsumura, Y, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, and N. Watanabe. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin[J].Br J Cancer,2004,91(10):1775-1781.
    [23]. Nakanishi, T., S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. Development of the polymer micelle carrier system for doxorubicin[J]. Journal of Controlled Release,2001,74(1-3):295-302.
    [24]. Dobrovolskaia, MA. and S.E. McNeil. Immunological properties of engineered nanomaterials[J]. Nature Nanotechnology,2007,2(8):469-478.
    [25]. Thevenot, P., W. Hu, and L. Tang. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY[J]. Current topics in medicinal chemistry,2008,8(4):270.
    [26]. Wang, Y.-X., J.L. Robertson, W.B. Spillman, and R.O. Claus. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility[J]. Pharmaceutical research,2004, 21(8):1362-1373.
    [27]. Salazar, M.D.A. and M. Ratnam. The folate receptor:what does it promise in tissue-targeted therapeutics?[J]. Cancer and Metastasis Reviews,2007,26(1):141-152.
    [28]. Low, P.S., WA. Henne, and D.D. Doorneweerd. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases[J]. Accounts of chemical research, 2007,41(1):120-129.
    [29]. Gabizon, A., H. Shmeeda, A.T. Horowitz, and S. Zalipsky. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates[J]. Advanced drug delivery reviews,2004,56(8): 1177-1192.
    [30]. Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle:from concept to clinic[J].2009.
    [31]. Patri, A.K., A. Myc, J. Beals, T.P. Thomas, N.H. Bander, and J.R. Baker Jr. Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy[J]. Bioconjugate chemistry,2004, 15(6):1174-1181.
    [32]. Maeda, H. and Y. Matsumura. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy [J]. Advanced drug delivery reviews,2011,63(3):129.
    [33]. Schroeder, A., D.A. Heller, M.M. Winslow, J.E. Dahlman, G.W. Pratt, R. Langer, T. Jacks, and D.G. Anderson. Treating metastatic cancer with nanotechnology[J]. Nature Reviews Cancer,2011,12(1):39-50.
    [34]. Jemal, A., R. Siegel, J. Xu, and E. Ward. Cancer statistics,2010[J]. CA:a cancer journal for clinicians,2010, 60(5):277-300.
    [35]. DeSantis, C., R. Siegel, P. Bandi, and A. Jemal. Breast cancer statistics,2011[J]. CA:A Cancer Journal for Clinicians,2011,61(6):408-418.
    [36]. Mohamed, A., C. Quyen, B. Gary, A. Fred, M. Jason, and B.D. Li. Neoadjuvant Chemotherapy in Stage Ⅲ Breast Cancer[J]. The American Surgeon,2005,71(6):487-492.
    [37]. Rossi, D., A.M. Baldelli, V. Casadei, S.L. Fedeli, P. Alessandroni, V. Catalano, P. Giordani, M. Ceccolini, F. Graziano, and G. Catalano. Neoadjuvant chemotherapy with low dose of pegylated liposomal doxorubicin plus weekly paclitaxel in operable and locally advanced breast cancer[J]. Anti-Cancer Drugs,2008,19(7): 733-73710.1097/CAD.0b013e3283043585.
    [38]. Gupta, G.P. and J. Massague. Cancer metastasis:building a framework[J]. Cell,2006,127(4):679-695.
    [39]. Howlader, N., A. Noone, M. Krapcho, N. Neyman, R. Aminou, W. Waldron, S. Altekruse, C. Kosary, J. Ruhl, and Z. Tatalovich. SEER cancer statistics review,1975-2008[J]. Bethesda, MD:National Cancer Institute, 2011,19.
    [40]. Udagawa, T. and M. Wood Tumor-stromal cell interactions and opportunities for therapeutic intervention[J]. Current opinion in pharmacology,2010,10(4):369-374.
    [41]. Weinberg, R.A., The biology of cancer[M]. Vol.1.2007:Garland Science New York.
    [42]. Skarin, A.T., K. Shaffer, T. Wieczorek, and G.P. Canellos, Atlas of diagnostic oncology[M].2003:Mosby.
    [43]. Braun, S., K. Pantel, P. Muller, W. Janni, F. Hepp, C.R.M. Kentenich, S. Gastroph, A. Wischnik, T. Dimpfl, G. Kindermann, G. Riethmuller, and G. Schlimok. Cytokeratin-Positive Cells in the Bone Marrow and Survival of Patients with Stage Ⅰ, Ⅱ, or Ⅲ Breast Cancer[J]. New England Journal of Medicine,2000,342(8): 525-533.
    [44]. Cianfrocca, M. What Are the Most Important New Targets in Breast Cancer?[J]. Current Breast Cancer Reports,2012,4(1):83-88.
    [45]. Wang, Z., Y Yu, W. Dai, J. Cui, H. Wu, L. Yuan, H. Zhang, X. Wang, J. Wang, and X. Zhang. A specific peptide ligand-modified lipid nanoparticle carrier for the inhibition of tumor metastasis growth[J]. Biomaterials,2012.
    [46]. Volk, L.D., MJ. Flister, D. Chihade, N. Desai, V. Trieu, and S. Ran. Synergy of nab-paclitaxel and bevacizumab in eradicating large orthotopic breast tumors and preexisting metastases[J]. Neoplasia (New York, NY),2011,13(4):327.
    [47]. Ikeda, N., M. Adachi, T. Taki, C. Huang, H. Hashida, A. Takabayashi, M. Sho, Y. Nakajima, H. Kanehiro, and M. Hisanaga. Prognostic significance of angiogenesis in human pancreatic cancer[J]. British journal of cancer,1999,79(9/10):1553.
    [48]. Kyriazis, A.A., A.P. Kyriazis, C.N. Sternberg, N.H. Sloane, and J.D. Loveless. Morphological, biological, biochemical, and karyotypic characteristics of human pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse[J]. Cancer research,1986,46(11):5810-5815.
    [49]. Kindler, H.L. Front-line therapy of advanced pancreatic cancer, in Seminars in oncology.2005. Elsevier.
    [50]. Olive, K.P., M.A. Jacobetz, C.J. Davidson, A. Gopinathan, D. McIntyre, D. Honess, B. Madhu, M.A. Goldgraben, M.E. Caldwell, and D. Allard. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science Signaling,2009,324(5933):1457.
    [51]. Uster, P.S., P.K. Working, and J. Vaage. Pegylated liposomal doxorubicin (DOXIL(?), CAELYX(?)) distribution in tumour models observed with confocal laser scanning microscopy [J]. International journal of pharmaceutics,1998,162(1):77-86.
    [52]. Unezaki, S., K. Maruyama, J.-I. Hosoda, I. Nagae, Y. Koyanagi, M. Nakata, O. Ishida, M. Iwatsuru, and S. Tsuchiya. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy [J]. International journal of pharmaceutics,1996,144(1):11-17.
    [53]. Kano, M.R., Y. Bae, C. Iwata, Y. Morishita, M. Yashiro, M. Oka, T. Fujii, A. Komuro, K. Kiyono, and M. Kaminishi. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling[J]. Proceedings of the National Academy of Sciences,2007,104(9): 3460-3465.
    [54]. Moghimi, S.M., A.C. Hunter, and J.C. Murray. Long-circulating and target-specific nanoparticles:theory to practice[J], Pharmacological reviews,2001,53(2):283-318.
    [55]. Torchilin, V.P. and V.S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating?[J]. Advanced Drug Delivery Reviews,1995,16(2):141-155.
    [56]. Foster, K.A., M. Yazdanian, and K.L. Audus. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium[J]. Journal of pharmacy and pharmacology,2001,53(1):57-66.
    [57]. Choi, H.S., W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, and J.V. Frangioni. Renal clearance of quantum dots[J]. Nature biotechnology,2007,25(10):1165-1170.
    [58]. Dreher, M.R., W. Liu, C.R. Michelich, M.W. Dewhirst, F. Yuan, and A. Chilkoti. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers[J]. Journal of the National Cancer Institute,2006,98(5):335-344.
    [59]. Alexis, F., E.M. Pridgen, R. Langer, and O.C. Farokhzad, Nanoparticle technologies for cancer therapy, in Drug Delivery.2010, Springer, p.55-86.
    [60]. Fox, M.E., F.C. Szoka, and J.M. Frechet. Soluble polymer carriers for the treatment of cancer. the importance of molecular architecture[J]. Accounts of chemical research,2009,42(8):1141-1151.
    [61]. Hori, K., M. Nishihara, and M. Yokoyama. Vital microscopic analysis of polymeric micelle extravasation from tumor vessels:macromolecular delivery according to tumor vascular growth stage[J]. Journal of pharmaceutical sciences,2009,99(1):549-562.
    [62]. Gradishar, W J., S. Tjulandin, N. Davidson, H. Shaw, N. Desai, P. Bhar, M. Hawkins, and J. O'Shaughnessy. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer[J]. Journal of clinical oncology,2005,23(31):7794-7803.
    [63]. Wong, C., T. Stylianopoulos, J. Cui, J. Martin, V.P. Chauhan, W. Jiang, Z. Popovic, R.K. Jain, M.G. Bawendi, and D. Fukumura. Multistage nanoparticle delivery system for deep penetration into tumor tissue[J]. Proceedings of the National Academy of Sciences,2011,108(6):2426-2431.
    [64]. O'brien, M., N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. Kieback, P. Tomczak, and S. Ackland. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HC1 (CAELYXTM/Doxil(?)) versus conventional doxorubicin for first-line treatment of metastatic breast cancer[J]. Annals of oncology,2004,15(3):440-449.
    [65]. Karnoub, A.E., A.B. Dash, A.P. Vo, A. Sullivan, M.W. Brooks, G.W. Bell, A.L. Richardson, K. Polyak, R. Tubo, and R.A. Weinberg. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature,2007,449(7162):557-563.
    [66]. Cabral, H., Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M. Kano, K. Miyazono, and M. Uesaka. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nature nanotechnology,2011,6(12):815-823.
    [67]. Baker, J., J. Ajani, F. Scotte, D. Winther, M. Martin, M.S. Aapro, and G. von Minckwitz. Docetaxel-related side effects and their management[J]. European Journal of Oncology Nursing,2009,13(1):49-59.
    [68]. Persohn, E., A. Canta, S. Schoepfer, M. Traebert, L. Mueller, A. Gilardini, S. Galbiati, G. Nicolini, A. Scuteri, F. Lanzani, G. Giussani, and G. Cavaletti. Morphological and morphometric analysis of paclitaxel and docetaxel-induced peripheral neuropathy in rats[J]. European Journal of Cancer,2005,41(10):1460-1466.
    [69]. Burt, H.M., X. Zhang, P. Toleikis, L. Embree, and W.L. Hunter. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel[J]. Colloids and Surfaces B:Biointerfaces,1999,16(1-4):161-171.
    [70]. Zhang, X., J.K. Jackson, and H.M. Burt. Development of amphiphilic diblock copolymers as micellar carriers of taxol[J]. International Journal of Pharmaceutics,1996,132(1-2):195-206.
    [71]. Tong, R. and J. Cheng. Anticancer Polymeric Nanomedicines[J]. Polymer Reviews,2007,47(3):345-381.
    [72]. Gref, R., Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres[J]. Science (New York, N.Y),1994,263(5153):1600-1603.
    [73], Bazile, D., C. Prud'homme, M.-T. Bassoullet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system[J]. Journal of Pharmaceutical Sciences,1995,84(4):493-498.
    [74]. Lee, S.-W., M.-H. Yun, S.W. Jeong, C.-H. In, J.-Y. Kim, M.-H. Seo, C.-M. Pai, and S.-O. Kim. Development of docetaxel-loaded intravenous formulation, Nanoxel-PMTM using polymer-based delivery system[J]. Journal of Controlled Release,2011,155(2):262-271.
    [75]. Zhan, C., B. Gu, C Xie, J. Li, Y. Liu, and W. Lu. Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect[J]. Journal of Controlled Release,2010, 143(1):136-142.
    [76]. Xiong, X.-B., A. Mahmud, H. Uludag, and A. Lavasanifar. Conjugation of arginine-glycine-aspartic acid peptides to poly (ethylene oxide)b-poly (ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells[J]. Biomacromolecules,2007,8(3):874-884.
    [77]. Tian, II., L. Lin, J. Chen, X. Chen, T.G. Park, and A. Maruyama. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers[J]. Journal of Controlled Release,2011,155(1):47-53.
    [78]. Desgrosellier, J.S. and D.A. Cheresh. Integrins in cancer:biological implications and therapeutic opportunities[J], Nature Reviews Cancer,2010,10(1):9-22.
    [79]. Harms, J.F., D.R. Welch, R.S. Sarnant, L.A. Shevde, M.E. Miele, G.R. Babu, S.F. Goldberg, V.R. Gilman, D.M. Sosnowski, and D.A. Campo. A small molecule antagonist of the α v β3 integrin suppresses MDA-MB-435 skeletal metastasis[J], Clinical & experimental metastasis,2004,21(2):119-128.
    [80]. Vellon, L., J.A. Menendez, C. Barry, and R. Lupu. A bidirectional"αv β3 Integrin-ERK1/ERK2 MAPK" connection regulates the proliferation of heregulin (HRG)-overexpressing breast cancer cells[J]. Proceedings of the American Association for Cancer Research,2005,2005(1):865.
    [81]. Hall, P.A., P. Coates, N.R. Lemoine, and M.A. Horton. Characterization of integrin chains in normal and neoplastic human pancreas[J]. The Journal of Pathology,1991,165(1):33-41.
    [82]. Hosotani, R., M. Kawaguchi, T. Masui, T. Koshiba, J. Ida, K. Fujimoto, M. Wada, R. Doi, and M. Imamura. Expression of Integrin [alpha]V[beta]3 in Pancreatic Carcinoma:Relation to MMP-2 Activation and Lymph Node Metastasis[J]. Pancreas,2002,25(2):e30-e35.
    [83]. Grzesiak, J.J., J.C. Ho, A.R. Moossa, and M. Bouvet. The Integrin-Extracellular Matrix Axis in Pancreatic Cancer[J]. Pancreas,2007,35(4):293-30110.1097/mpa.0b013e31811f4526.
    [84]. Saiki, I., J. Yoneda, I. Azuma, H. Fujii, F. Abe, M. Nakajima, and T. Tsuruo. Role of aminopeptidase N (CD13) in tumor-cell invasion and extracellular matrix degradation[J]. International journal of cancer,1993,54(1): 137-143.
    [85]. Ikeda, N., Y. Nakajima, T. Tokuhara, N. Hattori, M. Sho, H. Kanehiro, and M. Miyake. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma[J]. Clinical cancer research,2003,9(4): 1503-1508.
    [86]. Yi, Y, H.J. Yoon, B.O. Kim, M. Shim, S.-O. Kim, S.-J. Hwang, and M.H. Seo. A mixed polymeric micellar formulation of itraconazole:Characteristics, toxicity and pharmacokinetics[J]. Journal of Controlled Release, 2007,117(1):59-67.
    [87]. Gaucher, G., M.-H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, and J.-C. Leroux. Block copolymer micelles: preparation, characterization and application in drug delivery [J]. Journal of Controlled Release,2005,109(1-3):169-188.
    [88]. Lavasanifar, A., J. Samuel, and G.S. Kwon. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly (ethylene oxide)- block-poly (N-hexyl stearate-l-aspartamide)[J]. Journal of controlled release,2002,79(1):165-172.
    [89]. Araki, T., Y. Kono, K.-i. Ogawara, T. Watanabe, T. Ono, T. Kimura, and K. Higaki. Formulation and Evaluation of Paclitaxel-Loaded Polymeric Nanoparticles Composed of Polyethylene Glycol and Poly lactic Acid Block Copolymer[J]. Biological and Pharmaceutical Bulletin,2012,35(8):1306-1313.
    [90]. Liggins, R.T. and H.M. Burt. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations[J]. Advanced Drug Delivery Reviews,2002,54(2):191-202.
    [91]. Tang, N., G. Du, N. Wang, C. Liu, H. Hang, and W. Liang. Improving Penetration in Tumors With Nanoassemblies of Phospholipids and Doxonibicin[J], Journal of the National Cancer Institute,2007,99(13): 1004-1015.
    [92]. Wang, Y., R. Wang, X. Lu, W. Lu, C. Zhang, and W. Liang. Pegylated phospholipids-based self-assembly with water-soluble drugs[J]. Pharmaceutical research,2010,27(2):361-370.
    [93], Mu, C.-F., P. Balakrishnan, F.-D. Cui, Y.-M. Yin, Y.-B. Lee, H.-G. Choi, C.S. Yong, S.-J. Chung, C.-K. Shim, and D.-D. Kim. The effects of mixed MPEG-PLA/Pluronic(?) copolymer micelles on the bioavailability and multidrug resistance of docetaxel[J]. Biomaterials,2010,31(8):2371-2379.
    [94]. Pratten, M.K. and J.B. Lloyd. Pinocytosis and phagocytosis:the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1986,881(3):307-313.
    [95]. Senior, J., J.C.W. Crawley, and G. Gregoriadis. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1985, 839(1):1-8.
    [96]. Senior, J. and G. Gregoriadis. Stability of small unilamellar liposomes in serum and clearance from the circulation:The effect of the phospholipid and cholesterol components[J]. Life Sciences,1982,30(24): 2123-2136.
    [97]. Abra, R.M. and C.A. Hunt. Liposome disposition in vivo:Ⅲ. Dose and vesicle-size effects[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1981,666(3):493-503.
    [98]. Musumeci, T., L. Vicari, C.A. Ventura, M. Gulisano, R. Pignatello, and G. Puglisi. Lyoprotected Nanosphere Formulations for Paclitaxel Controlled Delivery[J]. Journal of Nanoscience and Nanotechnology,2006, 6(9-10):3118-3125.
    [99]. Shin, H.-C., A.W. Alani, D.A. Rao, N.C. Rockich, and G.S. Kwon. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs[J]. Journal of controlled release:official journal of the Controlled Release Society,2009,140(3):294.
    [100]. Hamblett, K.J., P.D. Senter, D.F. Chace, M.M.C. Sun, J. Lenox, C.G. Cerveny, K.M. Kissler, S.X. Bernhardt, A.K. Kopcha, R.F. Zabinski, D.L. Meyer, and J.A. Francisco. Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate[J]. Clinical Cancer Research,2004,10(20):7063-7070.
    [101]. Konan, Y.N., R. Gurny, and E. Allemann. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles[J]. International Journal of Pharmaceutics,2002,233(1-2):239-252.
    [102]. Li, Y., F. Yang, W. Chen, J. Liu, W. Huang, M. Jin, and Z. Gao. A novel monomethoxy polyethylene glycol-polylactic acid polymeric micelles with higher loading capacity for docetaxel and well-reconstitution characteristics and its anti-metastasis study[J]. Chem Pharm Bull (Tokyo),2012,60(9):1146-54.
    [103]. Peinado, H., S. Lavotshkin, and D. Lyden. The secreted factors responsible for pre-metastatic niche formation:Old sayings and new thoughts[J]. Seminars in Cancer Biology,2011,21(2):139-146.
    [104]. Sahay, G., D.Y. Alakhova, and A.V. Kabanov. Endocytosis of nanomedicines[J]. Journal of controlled release, 2010,145(3):182-195.
    [105]. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004,4(1):71-78.
    [106]. Pollard, J.W. Macrophages define the invasive microenvironment in breast cancer[J]. Journal of Leukocyte Biology,2008,84(3):623-630.
    [107]. Joyce, J.A. and J.W. Pollard. Microenvironmental regulation of metastasis[J]. Nat Rev Cancer,2009,9(4): 239-252.
    [108]. Zhang, X., H.M. Burt, D.V. Hoff, D. Dexter, G. Mangold, D. Degen, A.M Oktaba, and W.L. Hunter. An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel[J]. Cancer Chemotherapy and Pharmacology,1997,40(1):81-86.
    [109]. Al-Sahaf, O., J.H. Wang, T.J. Browne, T.G. Cotter, and H.P. Redmond. Surgical injury enhances the expression of genes that mediate breast cancer metastasis to the lung[J]. Annals of surgery,2010,252(6): 1037-1043.
    [110]. Folkman, J. New perspectives in clinical oncology from angiogenesis research[J]. European journal of cancer (Oxford, England:1990),1996,32(14):2534.
    [111]. Fisher, B. and E.R. Fisher. Experimental studies of factors influencing hepatic metastases:Ⅲ. Effect of surgical trauma with special reference to liver injury[J]. Annals of surgery,1959,150(4):731.
    [112]. O'Reilly, M.S., T. Boehm, Y. Shing,N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J.R. Birkhead, B.R. Olsen, and J. Folkman. Endostatin:an endogenous inhibitor of angiogenesis and tumor growth[J]. cell,1997,88(2): 277-285.
    [113]. Chen, L., T.-G. Huang, M. Meseck, J. Mandeli, J. Fallon, and S.L. Woo. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation[J]. Molecular Therapy,2007, 15(12):2194-2202.
    [114]. Pulaski, B.A. and S. Ostrand-Rosenberg. Mouse 4T1 breast tumor model[A]. In:Current protocols in immunology[M],2001:20.2.1-20.2.16.
    [115]. Basu, G.D., L.B. Pathangey, T.L. Tinder, M. LaGioia, S.J. Gendler, and P. Mukherjee. Cyclooxygenase-2 Inhibitor Induces Apoptosis in Breast Cancer Cells in an In vivo Model of Spontaneous Metastatic Breast Cancer11 Susan G. Komen Breast Cancer Foundation.Note:G.D. Basu and L.B. Pathangey contributed equally to this work[J]. Molecular Cancer Research,2004,2(11):632-642.
    [116]. Morris, M.C., J. Depollier, J. Mery, F. Heitz, and G. Divita. A peptide carrier for the delivery of biologically active proteins into mammalian cells[J]. Nature biotechnology,2001,19(12):1173-1176.
    [117]. Morris, M., P. Vidal, L. Chaloin, F. Heitz, and G. Divita. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells[J]. Nucleic acids research,1997,25(14):2730-2736.
    [118]. Vives, E., P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus[J]. Journal of Biological Chemistry,1997,272(25): 16010-16017.
    [119]. Torchilin, V.P. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery[J]. Peptide Science,2008,90(5):604-610.
    [120]. Moen, I., C. Jevne, J. Wang, K.-H. Kalland, M. Chekenya, L.A. Akslen, L. Sleire, P.(?). Enger, R.K. Reed, and A.M.0yan. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation[J]. BMC cancer,2012,12(1):21.
    [121]. Debabrata, S., D. Henry, Z. Heling, H. Hiroshi, H. Masahiro, M. Ralph P, and Z. Dawen. In vivo Bioluminescence Imaging of Tumor Hypoxia Dynamics of Breast Cancer Brain Metastasis in a Mouse Model[J]. Journal of Visualized Experiments,2011, (56).
    [122]. duPre, S.A., D. Redelman, and K.W. Hunter. Microenvironment of the murine mammary carcinoma 4T1: Endogenous IFN-y affects tumor phenotype, growth, and metastasis[J]. Experimental and molecular pathology,2008,85(3):174-188.
    [123]. Rashid, O.M., M. Nagahashi, S. Ramachandran, L. Graham, A. Yamada, S. Spiegel, H.D. Bear, and K. Takabe. Resection of the primary tumor improves survival in metastatic breast cancer by reducing overall tumor burden[J]. Surgery,153(6):771-778.
    [124]. Prewett, M., J. Huber, Y. Li, A. Santiago, W. O'Connor, K. King, J. Overholser, A. Hooper, B. Pytowski, and L. Witte. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors[J]. Cancer research,1999,59(20): 5209-5218.
    [125]. Pierschbacher, M.D. and E. Ruoslahti. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature,1984,309(5963):30.
    [126]. Peer, D., J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer. Nanocarriers as an emerging platform for cancer therapy [J]. Nature nanotechnology,2007,2(12):751-760.
    [127]. Lee, Y.J., I.S. Kim, S.-A. Park, Y. Kim, J.E. Lee, D.-Y. Noh, K.-T. Kim, S.H. Ryu, and P.-G. Suh. Periostin-binding DNA Aptamer Inhibits Breast Cancer Growth and Metastasis[J]. Mol Ther,2013.
    [128]. Arap, W., R. Pasqualini, and E. Ruoslahti. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J|. Science,1998,279(5349):377-380.
    [129]. Wang, X., Y. Wang, X. Chen, J. Wang, X. Zhang, and Q. Zhang. NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells[J]. Journal of Controlled Release,2009, 139(1):56-62.
    [130]. Zhao, B.-J., X.-Y. Ke, Y. Huang, X.-M. Chen, X. Zhao, B.-X. Zhao, W.-I. Lu, J.-N. Lou, X. Zhang, and Q. Zhang. The antiangiogenic efficacy of NGR-modified PEG-DSPE micelles containing paclitaxel (NGR-M-PTX) for the treatment of glioma in rats[J]. Journal of Drug Targeting,2011,19(5):382-390.
    [131]. Alberici, L., L. Roth, K.N. Sugahara, L. Agemy, V.R. Kotamraju, T. Teesalu, C. Bordignon, C. Traversari, G.-P. Rizzardi, and E. Ruoslahti. De Novo Design of a Tumor-Penetrating Peptide[J]. Cancer Research,2013, 73(2):804-812.
    [132]. Gao, Y, L. Chen, W. Gu, Y. Xi, L. Lin, and Y. Li. Targeted Nanoassembly Loaded with Docetaxel Improves Intracellular Drug Delivery and Efficacy in Murine Breast Cancer Model[J]. Molecular Pharmaceutics,2008, 5(6):1044-1054.
    [133]. Baluk, P., J. Fuxe, H. Hashizume, T. Romano, E. Lashnits, S. Butz, D. Vestweber, M. Corada, C. Molendini, and E. Dejana. Functionally specialized junctions between endothelial cells of lymphatic vessels[J]. The Journal of experimental medicine,2007,204(10):2349-2362.
    [134]. Mumprecht, V. and M. Detmar. Lymphangiogenesis and cancer metastasis[J]. Journal of cellular and molecular medicine,2009,13(8a):1405-1416.
    [135]. Swartz, M.A. The physiology of the lymphatic system[J]. Advanced drug delivery reviews,2001,50(1): 3-20.
    [136]. Porter, C. Drug delivery to the lymphatic system[J], Critical reviews in therapeutic drug carrier systems, 1997, 14(4): 333.
    [137]. Reddy, S.T., A.J. van der Vlies, E. Simeoni, V Angeli, G.J. Randolph, C.P. O'Neil, L.K. Lee, M.A. Swartz, and J.A. Hubbell. Exploiting lymphatic transport and complement activation in nanoparticle vaccines[J]. Nature biotechnology, 2007,25( 10): 1159-1164.
    [138]. Qiao, J., T. Kottke, C. Willmon, F. Galivo, P. Wongthida, R.M. Diaz, J. Thompson, P. Ryno, G.N. Barber, and J. Chester. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy[J]. Nature medicine, 2007,14(1): 37-44.
    [139]. Skobe, M., T. Hawighorst, D.G. Jackson, R. Prevo, L. Janes, P. Velasco, L. Riccardi, K. Alitalo, K. Claffey, and M. Detmar. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis[J]. Nature medicine, 2001,7(2): 192-198.
    [140]. Saharinen, P., T. Tammela, M.J. Karkkainen, and K. Alitalo. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation[J]. Trends in immunology, 2004,25(7): 387-395.
    [141]. Champion, J.A., Y.K. Katare, and S. Mitragotri. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers[J]. Journal of Controlled Release, 2007,121(1): 3-9.
    [142]. Serda, R.E., S. Ferrati, B. Godin, E. Tasciotti, X. Liu, and M Ferrari. Mitotic trafficking of silicon microparticles[J]. Nanoscale, 2009,1(2): 250-259.
    [143]. Perrault, S.D., C. Walkey, T. Jennings, H.C. Fischer, and W.C. Chan. Mediating tumor targeting efficiency of nanoparticles through design[J]. Nano Letters, 2009, 9(5): 1909-1915.
    [144].Alexis, F., E. Pridgen, L.K. Molnar, and O.C. Farokhzad. Factors affecting the clearance and biodistribution of polymeric nanoparticles[JJ. Molecular pharmaceutics, 2008, 5(4): 505-515.
    [145]. Verma, A., O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D.J. Irvine, and F. Stellacci. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles[J]. Nature materials, 2008, 7(7): 588-595.
    [146]. Wei, X., Y. Wang, W. Zeng, F. Huang, L. Qin, C. Zhang, and W. Liang. Stability Influences the Biodistribution, Toxicity, and Anti-tumor Activity of Doxorubicin Encapsulated in PEG-PL: Micelles in Mice[J]. Pharmaceutical Research, 2012,29(7): 1977-1989.
    [147]. Reynolds, C.P., B.-C. Sun, Y.A. DeClerck, and R.A. Moats, Assessing growth and response to therapy in murine tumor models, in Chemosensitivity: Volume Ⅱ. 2005, Springer, p. 335-350.
    [148]. Killion, J.J., R. Radinsky, and I J. Fidler. Orthotopic models are necessary to predict therapy of transplantable tumors in mice[J]. Cancer and Metastasis Reviews, 1998, 17(3): 279-284.
    [149]. Furukawa, T., T. Kubota, M. Watanabe, M. Kitajima, and R.M. Hoffman. A novel "patient-like" treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice[J]. Cancer research, 1993, 53(13): 3070-3072.
    [150]. Zhang, S.-h., H. Zhang, H.-w. He, Y. Li, X.-y. Li, L.-f. Zhang, and R.-g. Shao. In vivo real-time imaging of gemcitabine-leaded growth inhibition in the orthotopic transplantation model of human pancreatic tumor[J]. Acta Pharmaceutica Sinica B, 2011,1(4): 220-225.
    [151]. Kano, M.R., Y. Komuta, C. Iwata, M. Oka, Y.t. Shirai, Y. Morishita, Y. Ouchi, K. Kataoka, and K. Miyazono. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-P receptor in hibitor on extravasation of nanoparticles from neovasculature [J]. Cancer science, 2009, 100(1): 173-180.
    [152]. Nishiyama, N., M. Yokoyama, T. Aoyagi, T. Okano, Y. Sakurai, and K. Kataoka. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum (Ⅱ) and poly (ethylene glycol)-poly (a, P-aspartic acid) block copolymer in an aqueous medium[J]. Langmuir, 1999,15(2):377-383.
    [153]. Yuan, X., A. Harada, Y. Yamasaki, and K. Kataoka. Stabilization of lysozyme-incorporated polyion complex micelles by the ω-end derivatization of poly (ethylene glycol)-poly (α, β-aspartic acid) block copolymers with hydrophobic groups[J]. Langmuir,2005,21(7):2668-2674.
    [154]. Lee, J., E.C. Cho, and K. Cho. Incorporation and release behavior of hydrophobic drug in functionalized poly (D, L-lactide)-block-poly (ethylene oxide) micelles[J]. Journal of controlled release,2004,94(2):323-335.
    [155]. Prasad, K.N., B. Kumar, X.-D. Yan, A.J. Hanson, and W.C. Cole. a-Tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment:a review[J]. Journal of the American College of Nutrition, 2003,22(2):108-117.
    [156]. Mu, L. and S. Feng. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol(?))[J]. Journal of controlled release,2002,80(1):129-144.
    [157]. Lee, I.-H., Y.T. Park, K. Roh, H. Chung, I.C. Kwon, and S.Y. Jeong. Stable paclitaxel formulations in oily contrast medium[J]. Journal of Controlled Release,2005,102(2):415-425.
    [158]. Yoo, H.S. and T.G. Park. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer[J]. Journal of controlled release,2001,70(1):63-70.
    [159]. Chan, J.M., L. Zhang, R. Tong, D. Ghosh, W. Gao, G. Liao, K.P. Yuet, D. Gray, J.-W. Rhee, and J. Cheng. Spatiotemporal controlled delivery of nanoparticles to injured vasculature[J]. Proceedings of the National Academy of Sciences,2010,107(5):2213-2218.
    [160]. Tong, R. and J. Cheng. Paclitaxel-Initiated, Controlled Polymerization of Lactide for the Formulation of Polymeric Nanoparticulate Delivery Vehicles[J]. Angewandte Chemie,2008,120(26):4908-4912.
    [161]. Tong, R. and J. Cheng. Controlled Synthesis of Camptothecin-Polylactide Conjugates and Nanoconjugates[J]. Bioconjugate chemistry,2009,21(1):111-121.
    [162]. Tong, R. and J. Cheng. Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles[J]. Journal of the American Chemical Society,2009,131(13):4744.
    [163]. Stender, M., R.J. Wright, B.E. Eichler, J. Prust, M.M. Olmstead, H.W. Roesky, and P.P. Power. The synthesis and structure of lithium derivatives of the sterically encumbered β-diketiminate ligand [{(2,6-Pri2H3C6) N (CH3)C}2CH]-, and a modified synthesis of the aminoimine precursor[J]. J. Chem. Soc., Dalton Trans.,2001, (23):3465-3469.
    [164]. Ernsting, M.J., M. Murakami, E. Undzys, A. Aman, B. Press, and S.-D. Li. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases[J]. Journal of Controlled Release,2012.
    [165]. Carmeliet, P. and R.K. Jain. Angiogenesis in cancer and other diseases[J]. Nature,2000,407(6801):249-257.
    [166]. Pillay, C.S., E. Elliott, and C. Dennison. Endolysosomal proteolysis and its regulation[J]. Biochemical journal,2002,363(Pt 3):417.
    [167]. Saito, G., J.A. Swanson, and K.-D. Lee. Drug delivery strategy utilizing conjugation via reversible disulfide linkages:role and site of cellular reducing activities[J]. Advanced drug delivery reviews,2003,55(2): 199-215.
    [168]. Bae, Y., S. Fukushima, A. Harada, and K. Kataoka. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change[J]. Angewandte Chemie International Edition,2003,42(38):4640-4643.
    [169]. Bae, Y. and K. Kataoka. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers[J]. Advanced drug delivery reviews,2009,61(10):768-784.
    [170]. Cabral, H., M. Nakanishi, M. Kumagai, W.-D. Jang, N. Nishiyama, and K. Kataoka. A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles[J]. Pharmaceutical research,2009,26(1):82-92.
    [171]. Xie, Y., T.R. Bagby, M. Cohen, and M.L. Forrest. Drug delivery to the lymphatic system:importance in future cancer diagnosis and therapies[M].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700