青少年肥胖中枢机制及针灸治疗的神经影像学及动物模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分食物与食欲相关fMRI研究的Meta分析
     目的确认大脑功能区对食物刺激反应的一致性,借以探讨中枢对饥饿状态及含不同热量食物反应的调节机制。方法应用SDM体素Meta分析法对正常体重受试者fMRI数据进行分析,分析内容包括:食物与非食物刺激下脑区兴奋性的差异;饥饿状态下的中枢调节;不同热量食物刺激对中枢的影响。结果1.与非食物图片相比,食物图片刺激时具有较强激活的脑区包括:双侧后梭状回,左外侧眶额回及左侧中间岛叶;2.饥饿状态下,影响中枢调节的脑区包括:右侧杏仁核,左外侧眶额回;3.不同热量食物刺激影响的脑区包括:下丘脑及腹侧纹状体。局限性综合上述的结果,脑区激活的一致性仅在中等水平,这意味着实验方法对结果仍存在诸多的影响;此外,其它的脑区仍可能参与食欲及食物刺激的中枢调节。结论降低梭状回,眶额回,杏仁核,下丘脑及腹侧纹状体的兴奋水平可能抑制食欲。
     第二部分针灸减肥治疗对肥胖青少年中枢神经系统的影响
     目的应用fMRI及DARTEL-VBM分析方法探讨针灸减肥对肥胖青少年中枢神经系统的影响。方法10名单纯性肥胖青少年(男7,女3,14~18岁,右利手,体重指数:29.03±4.81kg/m2)行阶段性针灸减肥治疗,在治疗前、后分别行颅脑高分辨三维T1加权成像及fMRI扫描;同时招募10名年龄和性别相匹配的健康自愿者(右利手,体重指数:25.05±5.02kg/m2)作为对照组。fMRI方案:观察受试者在接受食物图片视觉刺激后的中枢反应,然后用手法针灸左侧足三里(ST36)及右侧丰隆(ST40)的同时,再进行一次同样的fMRI扫描。DARTEL-VBM分析:对比受试者接受阶段性治疗前后大脑灰白质体积差异。数据分析使用基于MATLAB R2009a的SPM8软件.结果1.与非食物图片视觉刺激相比,肥胖儿童接受食物图片视觉刺激后脑干、左侧丘脑、双侧眶额皮质、岛叶皮质、海马及海马旁回、后扣带回、楔前叶、小脑以及枕叶等多个脑区明显激活;2.与针灸前相比,针灸后接受食物图片视觉刺激时,脑干、双侧眶额皮质、岛叶皮质、后扣带回、枕叶及左侧小脑的激活明显受抑制;3. DARTEL-VBM结果:右侧额上回,小脑后叶椎体灰质体积减小,右侧中央前回灰质体积增大;左侧海马旁区梭状回,桥脑及中央前回区白质体积减小;右侧楔前叶白质体积增大;4.治疗前肥胖受试者与体重正常对照组比较,小脑及外侧苍白球灰质体积增大,桥脑及小脑白质体积减小;治疗后肥胖受试者与体重正常对照组比较,外侧苍白球灰质体积显著增大,桥脑白质体积增大,原先位于小脑的灰质及白质差异区未显现。结论针灸减肥疗法不仅能够对中枢产生短时的影响,并有可能导致皮层的重建;正常体重者与肥胖者间可能存在大脑细微结构的差异。
     第三部分应用中枢神经影像学及免疫组化的方法研究肥胖模型大鼠
     目的应用肥胖动物模型进一步深入研究肥胖发生的中枢机制以及针灸减肥的作用机理。方法利用高脂饲料诱导SD大鼠,构建肥胖模型动物。最终成模11只(雌性6只)。15只大鼠作为正常体重对照组。应用静息态功能磁共振及扩散张量成像手段对鼠脑成像并分析。同时,应用针灸疗法治疗肥胖大鼠,并通过对大鼠腹部脂肪体积测定来确认针灸疗法的作用。研究末期,将大鼠处死并取脑及肝脏组织进行病理及免疫组化的研究。结果1.针灸减肥疗法能有效减低肥胖大鼠的体重,并降低大鼠腹腔内脂肪的比例(P<0.05);2.大鼠神经影像学的研究发现,肥胖大鼠与正常体重对照组在多个感兴趣区存在功能差异;静息态fMRI结果,肥胖组大鼠双侧海马及右侧中丘脑较活跃,枕叶皮层活跃度较低;而针灸疗法能使大鼠的双侧嗅球,额叶皮层、右侧岛叶及海马活跃增强,而右侧丘脑活跃度减低;3.DTI从另一个角度研究大鼠脑功能差异;肥胖鼠桥脑、嗅球及杏仁核部分DTI参数与对照组存在差异(P<0.05)。桥脑可能存在性别差异;在对影响肥胖发生因素的logistic回归分析中,年龄、纤维束的ADC (apparent diffusion coefficient,表观扩散系数)值及感兴趣区的FA(Fraction Anisotropy,分数各向异性)值与肥胖的发生呈正相关;4.大鼠肝脏病理组织的分析,提示针灸治疗对内脏脂质的分布可能存在影响;脑区免疫组化分析发现,不同脑区的神经递质染色程度不同;肥胖大鼠部分脑区递质染色程度与对照组相异。肥胖组杏仁核及海马较对照组有较高的5-HT染色,在岛叶及桥/小脑对照组5-HT染色更高;瘦素染色程度较低,肥胖组桥小脑区域染色程度较对照组高,对照组在岛叶也存在5-HT染色;神经肽Y在肥胖组的染色程度较对照组高;接受针灸治疗的肥胖大鼠较未接受针灸治疗的肥胖大鼠,各脑区三种神经递质染色程度增强。结论肥胖的发生与神经中枢的功能异常以及解剖、生理基础存在关联;针灸减肥法可能存在分子水平的作用机制。
Part I Meta-analysis of fMRI studies associated with food and appetite
     Purpose:To determine the concurrence in the brain regions activated in response to different food and to assess the modulating effects of hunger state and the food's energy content. Materials and Method:Signed differential mapping (SDM) voxel-wise meta-analysis was carried out on fMRI data from healthy normal weight subjects in order to compare the different activated brain regions when food and non-food pictures were shown separately, when subjects were in hunger or full, and when the food contains different energy. Results:1. Compared to non-food picture, bilateral posterior fusiform gyrus, the left lateral orbitofrontal cortex (OFC) and the left middle insuia were activated;2. Hunger modulated the response to food pictures in the right amygdala and left lateral OFC;3. Energy content modulated the response in the hypothalamus and ventral striatum. Limitation According to the results, the concurrence between studies was moderate, meaning other factors might have effects to activation. Regions that were not mentioned in the studies might take a part in the moderation. Conclusions:To reduce neurofunctional activation in posterior fusiform gyrus, OFC, amygdale, hypothalamus and ventral striatum might suppress the desire for food.
     Part II Effects of Acupuncture Therapy on Obese Adolescence's Central Nervous System
     Purpose:To investigate obese adolescence's brain with acupuncture therapy via fMRI and voxel-based morphometry using Diffeomorphic Anatomic Registration through Exponentiated Lie algebra algorithm (DARTEL) approach. Materials and Method:10subjects with simple obesity (M:7, F:3, Aged14-18, right handed, BMI29.03±4.81kg/m2) underwent periodical acupuncture therapy and were taken high resolution T1W MR Images of the brain before and after the therapy respectively. Another10gender-and age-matched volunteers with normal BMI (right handed, BMI25.05±5.02kg/m2) were enrolled as control group. fMRI methods:Activation regions were caculated by fMRI when food pictures were shown to subjects. fMRI would be performed once more during stimulation of two acupoints (ST36and ST40). DARTEL-VBM analysis:Compare the regional volumetric difference in grey/white matter between before and after the periodic acupuncture therapy. All the analysis was carried out using SPM8software on MATLAB7.8.0.347platform. Results:1. Brainstem, left thalamus, bilateral OFC, insular cortex, hippocampus and parahippocampal gyrus, posterior cingulate gyrus, precuneus lobe, cerebellum, occipital lobe were more activated when food pictures were shown.2. Acupuncture therapy suppressed activation in brainstem, bilateral OFC, insular cortex, posterior cingulate gyrus, occipital lobe and left cerebellum.3. DARTEL results:Partial grey matter decrease was found in cortices of right gyri frontalis superior and pyramis oi cerebellum posterior lobe and that volume increase in gyri centralis anterior between subjects before and after acupuncture therapy. Left fusiform in parahippocampa gyrus, pontine and precentral gyrus were found decrease in volume of white matter. Volume oi white matter in right precuneus turned out to be increased. Obese subjects compared to control group showed volume increase in GM of cerebellum and lateral globus pallidus and volume decrease in WM of pontine and cerebellum. After the therapy, Obese subjects compared to control group showed even larger GM increase in lateral globus palidus and larger pontine WM increase. Previous differences in cerebellum in both GM and WM were not shown. Conclusion:1. Acupuncture therapy might not only have short-term effects on the neural activation but also might influence the process of brain development, leading to reorganization of cortices.2. Microstructural difference might exit in brain because of obesity.
     Part III Assessment of Obesity in Modeled Rats with Neuroimages and Immunohistochemical Methods
     Purpose:To get further understanding of neural mechanism in obesity and effects of acupuncture therapy by studying obese rats. Materials and Method:Using high fat diets to create obese modeled SD rats.11rats (Female,6) were modeled.15rats with normal weight were set to be control. Rest-fMRI and Diffusion Tensor Imaging were used to image and analyze rats'brain. Meanwhile acupuncture was performed on obese rats to confirm its effect with MR abdominal imaging measuring fat distribution. In the end, rats were sacrificed for its brain and liver needed in immunohistochemical experiments. Results:1. Acupuncture therapy could effectively help obese rats to lose weight as well as reducing proportion of fat within abdomen (P<0.05).2. Neuroimaging in rats suggested functional differences in several regions between rats with normal weight and the obese. Rest-state fMRI showed that bilateral hippocampus and right medial thalamus more active in obese ras than that of control, while occipital cortex was opposite. Acupuncture therapy would enhance the activation of bilateral olfactory bulb, frontal cortex, right insula and hippocampus while deactivating right thalamus.3. DTI showed another perception on the brain function. There seemed different between obese and normal rats in regions of ponstine, olfactory bulb and amygdale (P<0.05). Ponstine might be with sexual difference in structure. Logistic regression about risk factors causing obesity was carried out and found that fraction anisotropy (FA), ADC (apparent diffusion coefficients) of fibers and ages were the risks. They were all positively associated with obesity.4. Pathological exam on rats' liver suggested that acupuncture therapy might be able to change fat distribution within organs. In immunohistochemical experiments, regions of brain were found dyed in different degrees by antibodies of neural transmitters. The difference might exist between obese rats and normal ones. Compared to the control, amygdale and hippocampus were dyed in larger scales in obese rats with5-HT, while in insular lobe, ponstine and cerebellum were opposite. Leptin was not strongly dyed, yet ponstine and cerebellum were in larger scales in obese rats, while insular lobe was found dyed in the normal rats. NPY showed a greater scale in all regions in obese rats. And acupuncture therapy was considered to enhance NPY in all regions of rats' brain. Conclusion:Neural abnormalities and structural difference as well as physiological changes in body were associated with obesity. Acupuncture therapy might have effects on molecular level.
引文
[1]St-Onge MP, Sy M, Heymsfield SB, et al. Human cortical specialization for food:a functional magnetic resonance imaging investigation.J Nutr.2005,135(5):1014-8.
    [2]Killgore WD, Yurgelun-Todd DA. Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods.Neuroreport.2005,16(8):859-63.
    [3]Chen M,Zhang YT,Zhang TM,et al.Central sensibility of human cases with different body mass during oral glucose tolerance test using functional magnetic resonance imaging. Neural Regeneration Research 2007; 2(9):523-527.
    [4]Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement. Int J Surg.2010; 8(5):336-41.
    [5]Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex.2005,15(10):1602-8.
    [6]LaBar KS, Gitelman DR, Mesulam MM, et al. Impact of signal-to noise on functional MRI of the human amygdala.Neuroreport.2001,12(16):3461-4.
    [7]Killgore WD, Young AD, Femia LA, et al.Cortical and limbic activation during viewing of high-versus lowcalorie foods.Neuroimage.2003,19(4):1381-94.
    [8]Killgore WD, Yurgelun-Todd DA. Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods. Dev Psychobiol.2005, 47(4):377-97.
    [9]Rothemund Y, Preuschhof C, Bohner G,et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals.Neuroimage.2007, 37(2):410-21.
    [10]Beaver JD, Lawrence AD, van Ditzhuijzen J, et al.Individual differences in reward drive predict neural responses to images of food.J Neurosci.2006,26(19):5160-6.
    [11]Cornier MA, Von Kaenel SS, Bessesen DH, et al. Effects of overfeeding on the neuronal response to visual food cues.Am J Clin Nutr.2007,86(4):965-71.
    [12]Fuhrer D, Zysset S, Stumvoll M. Brain activity in hunger and satiety:anxploratory visually stimulated FMRI study.Obesity (Silver Spring).2008,16(5):945-50.
    [13]Schienle A, Schafer A, Hermann A, et al.Binge-eating disorder:reward sensitivity and brain activation to images of food. Biol Psychiatry.2009,65(8):654-61.
    [14]Santel S, Baving L, Krauel K, et al. Hunger and satiety in anorexianer vosa:fMRI during cognitive processing of food pictures. Brain Res.2006,1114(1):138-48.
    [15]Uher R, Treasure J, Heining M, et al. Cerebral Processing of food-related stimuli: effects of fasting and gender. Behav Brain Res.2006,169(1):111-9.
    [16]Miller JL, James GA, Goldstone A,et al. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome.J Neurol Neurosurg Psychiatry.2007,78(6):615-9.
    [17]Cornier A, Salzberg A, Endly DC, et al. The Effects of Overfeeding on the neuronal response to visual food cues in thin and reduced-obese individuals.PLoS One.2009, 4(7):e6310.
    [18]Holsen LM, Zarcone JR, Thompson T, et al. Neural mechanisms underlying food motivation in children and adolescents.Neuroimage.2005,27(3):669-76.
    [19]Malik S, McGlone F, Bedrossian D, et al. Ghrelin modulates brain activity in areas that control appetitive behavior.Cell Metab.2008,7(5):400-9.
    [20]Holsen LM, Zarcone JR, Brooks WM, et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.Obesity (Silver Spring).2006,14(6):1028-37.
    [21]Mohanty A, Gitelman DR, Small DM, et al. The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cereb Cortex.2008,18(11):2604-13.
    [22]Passamonti L, Rowe JB, Schwarzbauer C, et al. Personality predicts the brain's response to viewing appetizing foods:the neural basis of a risk factor for overeating.J Neurosci.2009,29(1):43-51.
    [23]Killgore WD, Yurgelun-Todd DA.Sex differences in cerebral responses to images of high versus low-calorie food.Neuroreport.2010,21(5):354-8.
    [24]Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci.2010,1191:133-55.
    [25]Fletcher PC, Napolitano A, Skeggs A, et al.Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans:a double dissociation across hypothalamus, amygdala and ventral striatum.J Neurosci.2010,30(43):14346-55.
    [26]Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder.Br J Psychiatry.2009,195(5):393-402.
    [27]Wager TD, Smith EE. Neuroimaging studies of working memory:a meta-analysis. Cogn Affect Behav Neurosci.2003,3(4):255-74.
    [28]Stoeckel LE, Kim J, Weller RE, et al. Effective connectivity of a reward network in obese women. Brain Res Bull.2009,79(6):388-95.
    [29]Martin LE, Holsen LM, Chambers RJ, et al. Neural mechanisms associated with food motivation in obese and healthy weight adults.Obesity (Silver Spring).2010, 18(2):254-60.
    [30]Siep N, Roefs A, Roebroeck A, et al. Hunger is the best spice:an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res.2009,198(l):149-58.
    [31]Grill-Spector K, Kourtzi Z, Kanwisher N. The lateral occipital complex and its role in object recognition. Vision Res.2001;41(10-11):1409-22.
    [32]O'Doherty JP, Deichmann R, Critchley HD, et al.Neural responses during anticipation of a primary taste reward.Neuron.2002,33(5):815-26.
    [33]De Araujo IE, Rolls ET.Representation in the human brain of food texture and oral fat.J Neurosci.2004,24(12):3086-93.
    [34]Baxter MG, Murray EA.The Amygdala and Reward.Nat Rev Neurosci.2002, 3(7):563-73.
    [1]Foreyt J, Goodrick K.The ultimate triumph of obesity.Lancet.1995,346(8968):134-5.
    [2]Eckel RH, Grundy SM, Zimmet PZ.The metabolic syndrome.Lancet.2005,365(9468): 1415-28.
    [3]Schwimmer JB, Deutsch R, Rauch JB, et al. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease.J Pediatr.2003, 143(4):500-5.
    [4]Must A, Jacques PF, Dallal GE, et al. Long-term morbidity and mortality of overweight adolescents.A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992,327(19):1350-5.
    [5]Lacey JM, Tershakovec AM, Foster GD. Acupuncture for the treatment of obesity:a review of the evidence. Int J Obes Relat Metab Disord.2003,27(4):419-27.
    [6]Barnes PM, Powell-Griner E, McFann K, et al. Complementary and alternative medicine use among adults:United States,2002. Adv Data.2004, (343):1-19.
    [7]相希,钟莉,艾炳蔚.神经系统在肥胖和针灸减肥中的作用机理.中华中医药学刊[J].2007,2(25):396-397.
    [8]赵玫,李嘉.针刺对实验性肥胖大鼠下丘脑摄食中枢的影响[J].中国针灸.2001,21(5):305-306.
    [9]Zhao M, Liu Z, Su J.The time-effect relationship of central action in acupuncture treatment for weight reduction. J Tradit Chin Med.2000,20(l):26-9.
    [10]Liu Z, Sun F, Su J, et al. Study on action of acupuncture on ventromedial nucleus of hypothalamus in obese rats. J Tradit Chin Med.2001,21(3):220-4.
    [11]中国肥胖问题工作组.中国学龄儿童青少年超重、肥胖筛查体重指数值分类标准[J].中华流行病学杂志.2004,25(2):97-102.
    [12]Zhu JN, Yung WH, Chan YS, et al.The cerebellar-hypothalamic circuits:potential pathways underlying cerebellar involvement in somatic-visceral integration.Brain Res Rev,2006; 52 (1):93-106.
    [13]SmucnyJ, Cornier MA, Eichman LC, et al. Brain structure predicts risk for obesity.Appetite,2012; 59(3):859-65.
    [14]Langenecker SA, Briceno EM, Hamid NM.An evaluation of distinct volumetric and functional MRI contributions toward understanding age and task performance:A study in the basal ganglia. Bra in Res,2007,1135(2):58-68.
    [1]Mahankali S, Liu YJ, PuY, et al.In Vivo fMRI Demonstration of Hypothalamic Function Following IntraPeritoneal Glucose Administration in a Rat Model.Magnetic Resonance in Medicine,1999,1(1):1-5.
    [2]MatsudaM, LiuYJ, Mahankali S, et al. Altered hyPothalamic function in Response to glucose in gestion in obese humans.Diabetes,1999,48(9):1801-1806.
    [3]LiuYJ,Gao JH,LiuHL,et al.The temporal response of the brain after eating revealed by funetionalMRI.Nature,2000,405(6790):1058-1061.
    [4]ToriiK, KondonT, MoriM, etal. Funetional MRI changes in the hypothalamus of streptozotocin-treated rats after glucose loading. Diabetologia,1997,40 (suPPl.1):A240.
    [5]Chen M,Zhang TM, Luo SL,et al.fMRI and Immunohistochemistry Demonstration of Hypothalamic Function Following Oral Glucose Ingestion in Rat Model Chinese Medical Journal 2007;120(14):1232-1235.
    [6]Liang Z, King J, Zhang N.Intrinsic Organization of the Anesthetized Brain.J Neurosci. 2012 Jul 25; 32(30):10183-91.
    [7]Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 2004; 21:1790-1797.
    [8]Lister JP, Tonkiss J, Blatt GJ, et al. Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats:a stereological investigation. Hippocampus 2006; 16:946-958.
    [9]Healy SD, de Kort SR, Clayton NS. The hippocampus, spatial memory and food hoarding:a puzzle revisited. Trends Ecol Evol 2005; 20:17-22.
    [10]Davidson TL, Kanoski SE, Walls EK, et al. Memory inhibition and energy regulation. Physiol Behav 2005; 86:731-746.
    [11]Comoli E, Coizet V, Boyes J, et al. A direct projection from superior colliculus to substantia nigra for detecting salient visual events.Nat Neurosci 2003; 6:974-980.
    [12]Owens S, Gutin B, Ferguson M, et al. Visceral adipose tissue and cardiovascular risk factors in obese children. J Pediatr.1998,133(1):41-5.
    [13]Banerji MA, Faridi N, Atluri R, et al. Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men.J Clin Endocrinol Metab.1999,84(1):137-44.
    [14]Ross R, Aru J, Freeman J, et al. Abdominal adiposity and insulin resistance in obese men.Am J Physiol Endocrinol Metab.2002,282(3):E657-63.
    [15]Liu KH, Chan YL, Chan WB, et al. Sonographic measurement of mesenteric fat thickness is a good correlate with cardiovascular risk factors:comparison with subcutaneous and preperitoneal fat thickness, magnetic resonance imaging and anthropometric indexes. Int J Obes Relat Metab Disord.2003,27(10):1267-73.
    [16]lacobellis G. Imaging of visceral adipose tissue:an emerging diagnostic tool and therapeutic target. Curr Drug Targets Cardiovasc Haematol Disord.2005,5(4):345-53.
    [17]Zhang H, Chen M, Peng Y, et al.Effects of acupuncture therapy on abdominal fat and hepatic fat content in obese children:a magnetic resonance imaging and proton magnetic resonance spectroscopy study.J Altern Complem Med.2011,17(5):1-8.
    [1]He Y, Chen H, Quon MJ, et al.The mouse obese gene.Genomic organization, promotor activity, and activation by CCAAT/enhancerbinding protein alpha.Bio Chem,1995,270:28887-288891.
    [2]Yeo GS, Farooqi IS, Aminian S, et al. A framesift mutation in MC4R associated ith dominantly inherited human obesity.Nature Genet.1998,20(2):11-112.
    [3]Montague CT, Farooqi IS, Whitehead JP, et al.Congenital letin deficincy is assciated with severe early-onset obesity in humans.Nature.1997,387(6636):903-908.
    [4]Clement K,Vaisse C,Lahlou N,et al.A mutation in the human leptin receptor gene causes obesity and pituitary dysfunctionNature,1998,392(6674):330-331.
    [5]Zhang YY,Proenca R,Maffei M,et al.Positional cloning of the mouse obese gene and its human homologue.Nature,1994,372:425-432.
    [6]Morris DL, Rui L.Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinal etab,2009,297(6):E1247-E1259.
    [7]Friedman JM, Halaas JL.Leptin and regulation of body weight in mammals.Nature,1998; 395:763-770.
    [8]徐淑静,徐明彤,傅祖植.肥胖基因和瘦素.中华内分泌代谢杂志[J],1999,15(2):50-52.
    [9]Mantzoros CS.The role of leptin in human obesity and disease:a review of current evidence.Ann Intern Med,1999; 130:671-680.
    [10]Mantzoros CS.Role of leptin in reprodution.Ann NY Acad Sci,2000; 900:174-183.
    [11]Ahima RS.Prabakaran D,Mantzoros CS,et al.Role of leptin in the neuroendocrine response to fasting.Nature,1996;382:250-252.
    [12]Bereiter DA,Jeanrenaud B.Altered neuroanatomical organization in the central nervous system of the genetically obese(ob/ob)mouse.Brain Res,1979; 165:249-260.
    [13]Matochik JA,London ED,Yildiz BO,et al.Effect of leptin replacement on brain structure in genetically leptin-deficient adults.Clin Endocrinol Metab.2005;90(5):2851-2854.
    [14]Tataranni PA,Gautier J-F,Chen K,et al.Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography.ProcNatl Acad Sci USA,1999,96:4569-4574.
    [15]Burguera B,Couce ME,Long J,et al.The long form of the leptin receptor(OB-Rb)is widely expressed in the human brai.Neuroendocrinology.2000;61:187-195.
    [16]Bouret SG, Draper SJ, Simerly RB.Trophic action of leptin on hypothalamic neruons that regulate feeding.Science.2004; 304:108-110.
    [17]Pinto S,Roseberry AG,Liu H,et al.Rapid rewiring of arcuate nucleus feeding circuits by leptin.Science.2004;304:110-115.
    [18]Ozata M, Ozdemir IC, Licinio. Human leptin deficiency caused by a missense mutation:multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptinmediated defects.J Clin Endocrinol Metab.1999; 84:3686-3695.
    [19]Farooqi IS, O'Rahilly S. Leptin:a pivotal regulator of human energy homeostasis. Am J Clin Nutr2009; 89:980S-984S.
    [20]Gazdzinski S, Kornak J, Weiner MW,et al. Body mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol.2008; 63:652-657.
    [21]Gustafson D,Lissner L,Bengtsson C,et al.A 24-year follow-up of body mass index and cerebral atrophy.Neurology,2004; 63:1876-1881.
    [22]Farooqi IS, Bullmore E, Keogh J, et al. Leptin regulates striatal regions and human eating behavior.Science.2007; 317:1355.
    [23]Matochik JA, London ED, Yildiz BO, et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol.Metab.2005; 90:2851-2854.
    [24]Morrison CD. Leptin signaling in brain:a link between nutrition and cognition? Biochim Biophys Acta.2009; 1792:401-408.
    [25]Paz-Filho G, Wong ML, Licinio J. The procognitive effects of leptin in the brain and their clinical implications. Int J Clin Prac.t2010; 64:1808-1812.
    [26]London ED,Berman SM,Chakrapani S,et al.Short-term plasticity of gray matter associated with leptin deficiency and replacement.J Clin Endocrinal Metab.2011;96(8):E1212-E1220:
    [27]Hartmann MJ,Bower JMTactile responses in the granule cell layer of cerebellar folium crus Ha of treely behaving rats.Jneurosci,2001,21(10):3549-3563.
    [28]Zhu JN,Guo CL,LiHZ,et al.Dorsomedial hypothalamic nucleus neurons integrate important peripheral feeding-related signals in ratsJournal of neuroscience Research,2007,85(14):3193-3204.
    [29]Liu YJ,Gao JH,Liu HL,et al.The temporal respons of the brain after eating revealed by functional MRI.Nature,2000,405(6790):1058-1061.
    [30]Uher R, Brammer MJ, Murphy T, et al. Recovery and chronicity in anorexia nervosa:brain activity associated with differential outcomes. Biol Psychiatry.2003; 54:934-942
    [31]Van Vugt DA. Brain imaging studies of appetite in the context of obesity and the menstrual cycle. Hum Reprod Update.2010; 16:276-292.
    [32]Mendoza J, Pe'vet P, Felder-Schmittbuhl MP, et al. The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci.2010; 30:1894-1904.
    [33]Grant S, London ED, NewlinDB, et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA.1996; 93:12040-12045.
    [34]Lieb W, Beiser AS, Vasan RS, et al. Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA.2009; 302:2565-2572.
    [35]Pannacciulli N, Le DS, Chen K, et al. Relationships between plasma leptin concentrations and human brain structure:a voxel-based morphometric study. Neurosci Lett.2007; 412:248-253.
    [36]Rosenbaum M, Sy M, Pavlovich K, et al. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest.2008; 118:2583-2591.
    [37]Narita K, Kosaka H, Okazawa H, et al. Relationship between plasma leptin level and brain structure in el-derly:a voxel-based morphometric study. Biol Psychiatry.2009; 65:992-994.
    [38]Gazdzinski S, Kornak J, Weiner MW, et alBody mass index and magnetic resonance markers of brain integrity in adults. Ann Neurol.2008; 63:652-657
    [39]Raji CA, Ho AJ, Parikshak NN, et al. Brain structure and obesity. Hum Brain Mapp.2010; 31:353-364.
    [40]Hassenstab JJ,Sweet LH,Del PA,et al.Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance:a preliminary MRI study.Psychiatry Res.2012;202(1):77-79.
    [41]Paz-Filho G, Mastronardi C, Delibasi T.Congenital leptin deficiency:diagnosis and effects of leptin replacement therapy. Arq Bras Endocrinol Metabol.2010; 54:690-697
    [42]Comings DE, Blum K. Reward deficiency syndrome:genetic aspects of behavioral disorders. Prog Brain Res 2000; 126:325-341.
    [43]Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers Neuroimage.2003; 19:1709-1715.
    [44]Szczypka MS, Kwok K, Brot MD, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 2001; 30:819-828.
    [45]Small DM, Zatorre RJ, Dagher A, et al.Changes in brain activity related to eating chocolate:from pleasure to aversion. Brain 2001; 124(9):1720.-1733.
    [46]Small DM, Veldhuizen MG, Felsted J, et al, Separable substrates for anticipatory and consummatory food chemosensation. Neuron.2008; 57(5):786-797.
    [47]Gottfried JA, O'Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex.Science.2003; 301(5636):1104-1107.
    [48]de Leon J, Diaz FJ, Josiassen RC,et al. Weight gain during a double-blind multidosage lozapine study.J Clin Psychopharmacol 2007;27(3):22-27
    [49]Leddy JJ, Epstein LH, Jaroni JL,et al. Influence of methylphenidate on eating in obese men.Obes Res 2004;12(2):224-232.
    [50]Blum K, Braverman ER, Wood RC, et al. Increased prevalence of the Taq I Al allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder:a preliminary report.Pharmacogenetics 1996; 6(4):297-305.
    [51]Tataranni PA, Baier L, Jenkinson C, et al. A Ser31 ICys mutation in the human dopamine receptor D2 gene is associated with reduced energy expenditure.Diabetes 2001; 50(4):901-904.
    [52]Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq 1 A polymorphism:reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele Pharmacogenetics 1997; 7:479-484.
    [53]Pohjalainen T, Rinne JO, Naqren K, et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers.Mol Psychiatry.1998; 3:256-260.
    [54]Ritchie T, Noble EP. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics.Neurochem.2003; Res.28 (1),73-82.
    [55]Tupala E, Hall H, Bergstrom K, et al. Dopamine D2 receptors and transporters in type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. Hum.Brain Mapp.2003; 20 (2),91-102.
    [56]Stice E,Spoor S,Bohon C,et al.Relation between Obesity and Blunted Striatal Response to Food is Moderated by TaqlA1 Gene.Science.2008;322:449-452.
    [57]Noble EP, Blum K, Ritchie T, et al. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry.1991; 48(7):648-654.
    [58]Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism:reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997; 7(6):479-484.
    [59]Pohjalainen T, Rinne JO, Nagren K, et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998; 3(3):256-260.
    [60]Jonsson EG, Nothen MM, Griinhage F,et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 1999;4(3):290-296.
    [61]Ritchie T, Noble EP. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics.Neurochem Res 2003; 28(1):73-82.
    [62]Tupala E, Hall H, Mantere T, et al. Dopamine receptors and transporters in the brain reward circuits of type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. Neuroimage 2003; 19(1):145-155.
    [63]Fetissov SO, Meguid MM, Sato T, et al.Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol.2002; 283(4):R905-910.
    [64]Epstein LJ, Temple JL, Neaderhiser BJ, et al. Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav Neuroscience 2007; 121(5):877-886.
    [65]Bello NT, Lucas LR, Hajnal A. Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 2002; 13(12):1557-1558.
    [66]Colantuoni C, Schwenker J, McCarthy J, et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001; 12:3549-3552.
    [67]Kelley AE, Will MJ, Steininger TL, et al. Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 2003; 18(9):2592-2598.
    [68]Spitz MR, Detry MA, Pillow P, et al. Variant alleles of the D2 dopamine receptor gene and obesity. Nutr Res.2000; 20 (3),371-380.
    [69]Thomas GN, Critchley JA, Tomlinson B, et al. Relationships between the TaqI polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects.Clin.Endocrinol.2001; 55 (5),605-611.
    [70]Jenkinson CP, Hanson R, Cray K, et al. Association of dopamine D2 receptor polymorphisms Ser311Cys and TaqIA with obesity or type 2 diabetes mellitus in Pima Indians. Int. J. Obes. Relat.Metab.Disord.2000; 24 (10),1233-1238.
    [71]Southon A, Walder K, Sanigorski AM, et al.The TaqIA and Ser311 Cys polymorphisms in the dopamine D2 receptor gene and obesity.Diabetes Nutr Metab.2003; 16 (1),72-76.
    [72]Grosshans M,Vollmert C,Vollstadt-Klein S,et al.Association of leptin with food cue-induced activation in human reward pathways.Arch Gen Psychiatry.2012;69(5):529-537.
    [73]Davis C, Strachan S, Berkson M. Sensitivity to reward:implications for overeating and obesity. Appetite.2004; 42 (2),131-138.
    [74]Noain D, Avale ME, Wedemeyer C,et al.Identification of brain neurons expressing the dopamine D4 receptor gene using BAC transgenic mice. Eur. J. Neurosci.2006; 24 (9),2429-2438.
    [75]Asghari V, Sanyal S, Buchwaldt S, et al. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem.1995; 65 (3),1157-1165.
    [76]Guo G., North KE, Gorden-Larsen P, et al. Body mass, DRD4,physical activity, sedentary behavior, and family socioeconomic status:the Add Health Study. Obesity 2007; 15 (5),1199-1206.
    [77]Sobik L, Hutchison K, Craighead L. Cue-elicited craving for food:a fresh approach to the study of binge eating. Appetite.2005; 44 (3),253-261.
    [78]Stice E, Spoor S, Bohon C, et al. Relation of reward from food intake and anticipated intake to obesity:a functional magnetic resonance imaging study. J. Abnorm. Psychol.2008b; 117 (4), 924-935.
    [79]Kennerley SW, Wallis JD. Reward-dependent Modulation of Working Memory in lateral prefrontal cortex.J. Neurosci.2009; 29,3259-3270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700