大鼠血管源性脑水肿模型3T MR弥散成像动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Wistar大鼠血管源性脑水肿模型弥散成像动态演变研究
     目的:通过分析Wistar大鼠血管源性脑水肿(vasogenic brain edema,VBE)模型MR弥散成像测量参数与脑组织水含量的相关性,得出该模型最佳扫描方案、弥散成像动态演变规律以及通过该方法在体评估脑组织水含量的可能性,确立该模型血清S-100B水平变化方式。对象和方法:通过黄铜棒液氮冷冻法制备Wistar大鼠VBE模型,按时间点分为2小时组,4小时组,6小时组,8小时组,12小时组,24小时组,48小时组,3天组,5天组及7天组及正常对照组共11组,每组保证6只模型制备成功。分别进行b值=1000s/mm~2、b值=1400s/mm~2、b值=1800s/mm~2弥散加权成像(diffusion weighted imaging,DWI),b值=1000s/mm~2弥散张量成像(diffusion tensor imaging,DTI),快速自旋回波-反转恢复(fast spin echo-iversion recovery,FSE-IR)T_1加权成像,病灶侧及对照侧分别计算相应表观弥散系数(apparent diffusion coefficient,ADC)值、指数表观弥散系数(exponential apparent diffusion coefficient,eADC)值、平均弥散系数(average diffusion coefficient,DC_(avg))值、部分各向异性(fractional anisotropy,FA)值和T_1弛豫时间,灌注取脑,对应层面对应部位取材测量脑组织水含量,取血测量血清S-100B蛋白水平。通过单因素方差分析进行DWI信号噪声比(signal noise ratio,SNR)及各测量参数不同b值间比较,相同b值下各弥散参数、T_1弛豫时间、脑组织水含量、血清S-100B水平各时间点变化比较,并通过pearson相关分析分析各弥散测量参数、血清S-100B水平与脑组织水含量的相关性。结果:①b值=1000s/mm~2图像可以获得最佳SNR,不同b值下各时间点SNR呈不同演变趋势,b值=1000s/mm~2时由于T_2透射效应作用较易显示病变;②ADC值在各个时间点随b值增加呈下降趋势,eADC值反之;③脑组织水含量随时间变化呈先升后降趋势,于4小时、6小时、8小时间未见统计学差异;④各b值下ADC值、eADC值以及DC_(avg)值、FA值和T_1值与脑组织水含量显示良好的相关性;其中以b值=1000s/mm~2时ADC值与其相关性最高;⑤血清S-100B蛋白水平于24小时组达高峰,与脑组织水含量相关系数较低。结论:①改进黄铜棒液氮冷冻法致Wistar大鼠VBE模型,确定冷冻时间为2分可以达到比较理想的病程及冷冻程度,进行MR弥散成像时去除头皮软组织保持局部干燥是减少图像伪影的关键,通过脑组织水含量及MR弥散成像观察最终确立2小时、6小时、12小时、24小时、48小时、3天、5天和7天8个观察时间点;②确定DWI成像b=1000 s/mm~2为最佳b值,同时ADC值与脑组织水含量相关性最高,可以在体对于脑组织水含量进行定量评估;DTI相对于DWI成像时间更长,参数测量与脑组织水含量相关性并未显示出优势;在体评估脑组织水含量而不关心组织各向异性时可选用DWI序列节省检查时间;③T_1值在体测量脑组织水含量研究显示与脑组织水含量存在良好相关性,但成像时间较长,DWIADC值测量更具有相对优越性;④通过血清S-100B测量建立该模型脑组织损伤程度血清学评价指标。
     第二部分Wistar大鼠血管源性水肿模型血脑屏障通透性动态演变研究
     目的:通过伊文氏蓝(Evans blue)染料定量分析血脑屏障(blood brain barrier,BBB)通透性,探讨Wistar大鼠VBE模型BBB通透性随时间演变过程,确定Evans blue对弥散成像各测量值的影响。对象和方法:通过黄铜棒液氮冷冻法制备Wistar大鼠VBE模型,按时间点分为2小时组,4小时组,6小时组,8小时组,12小时组,24小时组,48小时组,3天组,5天组及7天组及正常对照组共11组,每组保证6只模型制备成功。在时间点前2小时经股静脉注射Evans blue染料,相应时间点行b=1000s/mm~2DWI及DTI,病变侧及对照侧分别计算相应ADC值、eADC值、DC_(avg)值和FA值,灌注取脑,对应层面对应部位取材测量脑组织水含量及Evans blue含量。通过独立样本t检验分析模型制作可重复性及Evans blue是否会对弥散测量值产生影响。通过单因素方差分析进行脑组织Evans blue含量、脑组织水含量、各弥散参数值各时间点变化比较,并通过pearson相关分析各弥散测量参数与脑组织水含量的相关性。结果:①通过Evans blue注射组与未注射组脑组织水含量比较显示模型制作稳定性良好,Evans blue注射后会造成病变部位ADC值、DC_(avg)值的降低、eADC值的升高,而对FA值测量无明显影响;各测量值与脑组织水含量相关系数较Evans blue未注射组略减低;②脑组织Evans blue含量在模型制作后2小时即达峰值,后随时间延长缓慢恢复,7天时间组仍高于正常。结论:①通过Evans blue定量分析确立黄铜棒液氮冷冻法致Wistar大鼠VBE模型BBB通透性动态演变过程,与脑组织水含量变化趋势不同,在模型制备2小时后BBB通透性即达峰值,后缓慢恢复;②首次发现Evans blue注入后对VBE病变处弥散成像平均弥散能力测量值产生影响,而对弥散各向异性值未产生明显影响,在其他条件不变的情况下推测可能由于BBB通透性增高Evans blue漏出造成局部水分子结合状态的改变造成:相应弥散测量值与脑组织水含量仍显示较高相关性。
     第三部分Wistar大鼠血管源性脑水肿模型水通道蛋白-4免疫组织化学染色动态观察研究
     目的:通过免疫组化方法半定量观察Wistar大鼠VBE模型室管膜细胞水通道蛋白-4(aquaporin-4,AQP-4)表达随时间动态演变,并分析其与MR弥散成像各测量参数的相关性。对象和方法:通过黄铜棒液氮冷冻法制备Wistar大鼠VBE模型,按时间点分为2小时组,4小时组,6小时组,8小时组,12小时组,24小时组,48小时组,3天组,5天组及7天组及正常对照组共11组,每组保证6只模型制备成功。行b=1000s/mm~2DWI及DTI检查,病变侧及对照侧计算相应ADC值、eADC值、DC_(avg)值和FA值,灌注取脑,对应层面石蜡包埋切片行AQP-4免疫组化染色。通过imagepro-plus软件半定量分析室管膜细胞AQP-4表达累积光密度(integrate optical density,IOD)值,确定其动态演变规律及与弥散各参数相关性。结果:①AQP-4表达呈先下调后上调再下调趋势,2小时组室管膜细胞AQP-4表达即出现明显下调,并与6小时组达到最低值,8小时组可见AQP-4表达出现上调,于24小时组达高峰,随后表达水平缓慢下降,于7天组仍高于正常值;②AQP-4表达半定量于弥散各参数相关系数较低,在0.2902~0.4475之间。结论:确立了黄铜棒液氮冷冻法致Wistar大鼠VBE模型室管膜细胞AQP-4表达随时间动态演变规律,呈先下调后上调再下调趋势;该结果为下一步药理学研究奠定了基础。
PartⅠA dynamic evolution of MR diffusion imaging in vasogenicbrain edema model of Wistar rats
     Objective: To establish the best scan mode and the dynamic evolution mode ofdiffusion imaging in vasogenic brain edema(VBE) model of Wistar rats through theanalysis of the correlations between the parameters of diffusion imaging and watercontent of brain tissue. To evaluate the value of diffusion imaging in quantification ofbrain water content in vivo. To establish the dynamic evolution mode of S-100B inserum. Materials and Methods: VBE model of Wistar rats was made by cold injurywith copper rod which cooled with liquid nitrogen. There were 11 groups(normalcontrol, 2hrs, 4hrs, 6hrs, 8hrs, 12hrs, 24hrs, 48hrs, 3d, 5d and 7d), and each group had6 rats. Diffusion weighted imaging(DWI) with 3 b values (1000s/mm~2, 1400s/mm~2,1800s/mm~2), diffusion tensor imaging(DTI) with b=1000s/mm~2 and fast spinecho-iversion recovery(FSE-IR) T_1 weighted image were performed, the values ofapparent diffusion coefficient(ADC), exponential apparent diffusion coefficient(eADC), average diffusion coefficient(DC_(avg)), fractional anisotropy(FA) and T_1 werecalculated in the lesion side and contralateral side, the corresponding brain tissueswere gotten to calculate the water content. Blood samplings from venae femoraliswere used to test the level of S-100B in serum. ANONA were used to analysis thedifferences of the signal noise ratio(SNR) of DWI, the parameters of different bvalues and the dynamic evolutions of the parameters of diffusion imaging in the sameb value, T_1 time, water content of brain tissues and the level of S-100B in serum. Thecorrelations between the parameters of diffusion imaging, the level of S-100B inserum and the water content of brain tissue were analyzed with pearson correlationanalyzation. Results:①The SNR was best when b=1000s/mm~2, and SNR showeddifferent changing mode in different b values, and when b=1000s/mm~2 the lesionswere more obvious because of T_2 shine through effect;②ADC values were decreased when b values were increased, and eADC values were opposite;③The water contentof brain tissues first increased and then decreased with the time evolution, and therewas no significant difference in groups between 4hrs, 6hrs and 8hrs;④The values ofADC, eADC, DC_(avg), FA and T_1 showed good correlations with the water content ofbrain tissue, and the ADC values of b=1000s/mm~2 had the highest correlationcoefficient;⑤The level of S-100B in serum had the peak value in 24hrs group, andhad a low correlation coefficient with the water content of brain tissue. Conclusion:①2 minutes is the most suitable time for cold injury in this model, and removing thesoft tissues of scalp and keeping the local site dry are the key points to avoid theartifact of the diffusion imagings, 8 groups(2hrs, 6hrs, 12hrs, 24hrs, 48hrs, 3d, 5d and7d) are made sure to observe the VBE evolution;②b=1000s/mm~2 is the best b value,ADC shows the best correlation with the water content of brain tissue whenb=1000s/mm~2, and it can be used to quantitative analysis the water content of braintissue in vivo. DTI has a longer scan time compared with DWI and the parameters ofDTI have no advantage of correlations with the water content of brain tissues. We canchoose the DWI for in vivo quantification of the water content of brain tissues whenthe anisotropy of tissue is not the focal point to observe in order to save the scantime;③The T_1 values show the good correlation with the water content of braintissue, but it's scan time is much longer than DWI, so ADC values of DWI are moresuitable to measure the water content of brain tissue in vivo;④The dynamicevolution mode of S-100B in serum can be the evaluating indicator of the degree ofcerebral tissue injury.
     PartⅡA dynamic analysis of permeability of blood brain barrier invasogenic brain edema model of Wistar rats
     Objective: To analysis the dynamic evolution mode of permeability of bloodbrain barrier in VBE model of Wistar rats through the quantification of Evans blue ofbrain tisse, and to make sure whether the Evans blue has influence on measurement ofparameters of diffusion imaging. Materials and Methods: VBE model of Wistar rats was made by cold injury with copper rod which cooled with liquid nitrogen. Therewere 11 groups(normal control, 2hrs, 4hrs, 6hrs, 8hrs, 12hrs, 24hrs, 48hrs, 3d, 5d and7d), and each group had 6 rats. Evans blue was injected through venae femoralis 2hrsbefore the time points, DWI and DTI with b=1000s/mm~2 were performed, the valuesof ADC, eADC, DC_(avg) and FA were calculated in the lesion side and contralateralside, the corresponding brain tissues were gotten to calculate the water content andthe content of Evans blue. Independent-samples t test was used to analysis therepeatability of the VBE model and to make sure whether the Evans blue hasinfluence on measurement of parameters of diffusion imaging. ANOVA was used toanalysis the dynamic changes of the Evans blue content of brain tissue, water contentof brain tissue, and the parameters of diffusion imaging. The correlations betweenthe parameters of diffusion imaging and the water content of brain tissue wereanalyzed with pearson correlation analyzation. Results:①VBE model showed goodrepeatability throught the analysis of water content of brain tissues, and Evans bluecould make the values of ADC and DC_(avg) decreased, and the values of eADCincreased. Evans blue had no influence on FA measurement. The correlationcoefficients were lower than the groups which had no injection of Evans blue;②The content of Evans blue of brain tissue got the peak value at 2hrs group, and itdeclined gradually, when 7d group it was still higher than normal level. Conclusion :①The dynamic evolution mode of permeability of blood brain barrier is differentfrom water content of brain tissue, it gets the peak value at 2hrs group, and it declinesgradually, when 7d group it is still higher than normal level;②Evans blue hasinfluence on parameters of average diffusion ability, and has no influence onparameters of diffusion anisotropy. The leakage of Evans blue in the lesion site couldhave influence on the molecular binding situation of water, the parameters ofdiffusion imaging after Evans blue injections also show the good correlation with thewater content of brain tissues.
     PartⅢA dynamic evolution of AQP-4 immunohistochemistry staining in vasogenic brain edema model of Wistar rats
     Objective: To analysis the dynamic evolution mode of aquaporin-4 expression ofependymal cells in VBE model of Wistar rats through the semi-quantification ofimmunohistochemistry staining, and analysis of the correlations between theparameters of diffusion imaging and AQP-4 expression. Materials and Methods:VBE model of Wistar rats was made by cold injury with copper rod which cooledwith liquid nitrogen. There were 11 groups(normal control, 2hrs, 4hrs, 6hrs, 8hrs,12hrs, 24hrs, 48hrs, 3d, 5d and 7d), and each group had 6 rats. DWI and DTI withb=1000s/mm~2 were performed, the values of ADC, eADC, DC_(avg) and FA werecalculated in the lesion side and contralateral side, the corresponding slice of the braintissues were gotten to stain with immunohistochemical technique. Thesemi-quantification of immunohistochemistry staining of AQP-4 was made bysoftware imagepro-plus through the value of integrate optical density(IOD). ANOVAwas used to analysis the dynamic changes of the AQP-4 expression. The correlationsbetween the parameters of diffusion imaging and AQP-4 expression were analyzedwith pearson correlation analyzation. Results:①The expression of AQP-4 showed atrend of first down-regulate, then up-regulate and last down-regulate. 2hrs group hadobvious down-regulation and 6hrs group had the lowest value, and 8hrs groupshowed up-regulation, 24hrs group got the peak value, then the expression of AQP-4gradually down-regulated, 7d group it was still higher than normal;②The correlationcoefficients between expression of AQP-4 and the parameters of diffusion imagingwere low, they were 0.2902~0.4475. Conclusion: The dynamic evolution of AQP-4of the ependymal cells is first down-regulated, then up-regulated and lastdown-regulated, this trend make the fund for further pharmacology study.
引文
[1] Klatzo I. Presidental address: neuropathological aspects of brain edema[J]. J Neuropathol Exp Neurol 1967; 26(1): 1-14.
    [2] Fishman RA. Brain edema[J]. N Engl J Med 1975; 293(14):706-711.
    [3] Miller JD. The management of cerebral oedema[J]. Br J Hosp Med. 1979; 21(2): 152,154,161.
    [4] Iencean SM. Brain edema - a new classification[J]. Med Hypotheses. 2003; 61(1): 106-109.
    [5] Marmarou A, Tanaka K, Shulman K. An improved gravimetric measure of cerebral edema[J]. J. Neurosurg. 1982; 56(2): 246-253.
    [6] Zimmerman RD. Stroke wars: episode IV CT strikes back[J]. AJNR Am J Neuroradiol 2004; 25(8): 1304-1309.
    [7] Venkatesan R,Lin W,Gurleik K ,et al. Absolute measurements of water content using magnetic resonance imaging: prelminary findings in an in vivo focal ischemic rat model[J].Magn Reson Med 2000; 43(1): 146-150.
    [8] Andrew L. Alexander, Jee Eun Lee, Mariana Lazar, et al. Diffusion Tensor Imaging of the BrainfJ]. Neurotherapeutics. 2007; 4(3): 316-329.
    [9] Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging[Jj. Radiology. 1992; 185(3): 687-690.
    [10]Kuroiwa T, Nagaoka T, Ueki M, et al. Correlations between the apparent diffusion coefficient, water content, and ultrastructure after induction of vasogenic brain edema in cats[J]. J Neurosurg. 1999; 90(3): 499-503.
    [11]Zador Z, Bloch O, Yao X, et al. Aquaporins: role in cerebral edema and brain water balance[J]. Prog Brain Res. 2007; 161: 185-194.
    [12]Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema[J]. FASEB J. 2004; 18(11): 1291-1293.
    [13]Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience. 2004; 129(4): 1021-1029.
    [14]Gonalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury[J]. Clin Biochem. 2008;41(10-11):755-763.
    [15]Bloomfield SM, McKinney J, Smith L, Reliability of S100B in predicting severity of central nervous system injury[J]. Brisman J.Neurocrit Care. 2007;6(2):121-138.
    [16]Murakami K, Kondo T, Yang G, et al. Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis[J]. Prog Neurobiol. 1999;57(3): 289-299.
    [17]Overgaard K, Meden P. Influence of different fixation procedures on the quantification of infarction and oedema in a rat model of stroke[J]. Neuropathol Appl Neurobiol, 2000;26(3):243-250.
    [18]Chan PH, Long SS, F ishman RD. Phospholipid degradation and edema development in co ld-injured rat brain[J]. Brain Res, 1983; 277(2):329-337.
    [19]Chan PH, Yang GY, Chen SF, et al. Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase[J]. Ann Neurol,1991;29(5):482-486.
    [20]孙正清,杨天德,王显望,等.大鼠冷冻伤血管源性脑水肿模型的建立与评价[J].四川医学,2005;26(8):827-829.
    [21]Tsutomu Nakada. Clinical application of high and ultra high-field MRI [J]. Brain & Development 2007; 29(6):325-335.
    [22]Hahn EL. Spin echoes[J]. Phys Rev, 1950, 80:580-594.
    [23]Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments[J]. Phys Rev, 1954,94:630-638.
    [24]Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys,1965, 42: 288-292.
    [25]Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motion: application to diffusion and perfusion in neurologic disorders[J].Radiology, 1986, 161(2):401-407.
    [26]Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy[J]. Magn Reson Med 1990;14(2):330-346.
    [27]Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology [J].Am J Roentgenol. 2007; 188(6): 1622-1635.
    [28] Andrew L. Alexander, Jee Eun Lee, Mariana Lazar, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics 2007; 4(3): 316-329
    [29]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging [J].Radiology.l988; 168(2): 497-505.
    [30] Thomas L Chenevert, Pia C Sundgren,Brian D. Ross. Diffusion Imaging: Insight to Cell Status and Cytoarchitecture[J]. Neuroimag Clin N Am 2006; 16(4): 619-632
    [31]Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging[J]. Radiology, 1999, 210(3): 617-623.
    [32]Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients [J]. Radiology. 2003; 226(1): 71-78.
    [33]Thoralf Niendorf, Rick M. Dijkhuizen, David G Norris, et al. Biexponential Difision Attenuation in Various States of Brain Tissue: Implications for Diffusion-Weighted lmaging[J]. MRM 1996; 36(6): 847-857.
    [34]Provenzale JM, Engelter ST, Petrella JR, et al.Use of MR exponential diffusion-weighted images to eradicate T2 "shine-through" effect [J].AJR Am J Roentgenol. 1999;172(2):537-539.
    [35]Jeffrey J Neil. Diffusion imaging concepts for clinicians[J]. J Magn Reson Imaging. 2008; 27(1): 1-7.
    [36]Denis Le Bihan. The "wet mind" : water and functional neuroimaging[J]. Phys Med Biol, 2007; 52(7): 57-90.
    [37]Mark H. Khachaturian, John Arsenault, Leeland B. Ekstrom,et al. Focal Reversible Deactivation of Cerebral Metabolism Affects Water Diffusion[J]. Magnetic Resonance in Medicine 2008; 60(5): 1178-1189.
    [38]Christian B. The basis of anisotropic water diffusion in the nervous system- a technical review[J]. NMR Biomed, 2002; 15(7-8): 435-455.
    [39]Patric Hagmann, Lisa Jonasson, Philippe Maeder, et al. Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond[J]. RadioGraphics, 2006; 26(suppl 1): 205-223.
    [40]Meyer JR, GutierrezA, Mock B, et al. High-b-value Diffusion-weighted MR Imaging of Suspected Brain Infarction[J].AJNR, 2000, 21(10): 1821-1829.
    [41]MarksMP, Cresp ignyA, LentzD, et al. Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imiaging[J].Radiology,1996, 199(2): 403-408.
    [42]Marc Doelken, Stefan Lanz, Janine Rennert,et al. Differentiation of cytotoxic and vasogenic edema in a patient with reversible posterior leukoencephalopathy syndrome using diffusion-weighted MRI[J]. Diagn Interv Radiol 2007; 13(3): 125-128.
    [43]Marios C. Papadopoulos, Devin K. Binder, and A. S. Verkman. Enhanced macromolecular diffusion in brain extracellular space in mouse models of vasogenic edema measured by cortical surface photobleaching[J]. FASEB J 2005; 19(3): 425-427.
    [44]Schwarcz A, Ursprung Z, Berente Z, et al. In vivo brain edema classification: New insight offered by large b-value diffusion-weighted MR imaging[J]. J Magn Reson Imaging. 2007; 25(1): 26-31.
    [45] Clark CA Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain[J]. Magn Reson Med 2000;44(6):852-859.
    [46]Pierre Brugie'res, Philippe Thomas, Anne Maraval, et al. Water Diffusion Compartmentation at High b Values in Ischemic Human Brain[J]. AJNR Am J Neuroradiol 2004; 25(5):692-698.
    [47]Panos P Fatouros, Anthony Marmarou. Use of magnetic resonance imaging for in vivo measurements of water content in human brain method and normal values[J]. J Neurosurg, 1999; 90(1): 109-115.
    [48] Fatouros P, Marmarou A, Kraft A , Inao S, Schwarz FP. In vivo brain water determination by Tl measurements: Effect of total water content, hydration fraction, and field strength[J]. Magn Reson Med 1991; 17(2): 402-413.
    [49]F. Ko've'r, A. Schwarczl, J. Pa'l, et al. Fast method for longitudinal relaxation time and water content mapping of the human brain on a clinical MR scanner[J]. Acta Neurochir (Wien) 2004; 146(12): 1341-1346.
    [50]Emmanuel L. Barbier,Lijun Liu, Emmanuelle Grillon, et al. Focal brain ischemia in rat: acute changes in brain tissue Tl reflect acute increase in brain tissue water content[J]. NMR Biomed. 2005; 18(8): 499-506.
    [51]H. Neeb, K. Zilles, and N.J. Shaha. A new method for fast quantitative mapping of absolute water content in vivo[J]. NeuroImage 2006; 31(3): 1156-1168.
    [52]Moore BW. A Soluble protein characteristic of the nervous system[J]. Biochem Biophys Res Commun ,1965; 19(6): 739-744.
    [53]Fano G,Biocca S, Fulle S, et al. The S-100: a protein family in search of a function [J] Prog Neurobio ,1995 ;46 (1) :71-82.
    [54]Yuan XS, Bian XX. S100B protein and its clinical effect on craniocerebral injury. Chin J Traumatol[J]. 2008; 11(1): 54-57.
    [55]Kleindienst A, Hesse F, Bullock MR, et al.The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications[J]. Prog Brain Res. 2007; 161:317-325.
    [56]Kleindienst A, Ross Bullock M.A. Critical analysis of the role of the neurotrophic protein S100B in acute brain injury[J]. J Neurotrauma. 2006; 23(8): 1185-2000.
    [57]Gonalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury[J]. Clin Biochem. 2008; 41(10-11): 755-763.
    [58] Young AB. A Method for extraction of Evans blue from plasma and tissues[J]. Proc Soc Exp Biol Med. 1964; 116: 220-222.
    [59]Ozerk Okutan, Omer Faruk Turkoglu, Hayriye Beril Gok, et al.Neuroprotective effect of erythropoietin after experimental cold injury-induced vasogenic brain edema in rats[J]. Surg Neurol. 2008; 70(5): 498-502.
    [60]Masaki Ueno. Molecular anatomy of the brain endothelial barrier: an overview of the distributional features[J]. Curr Med Chem. 2007; 14(11): 1199-206.
    [61]Reese, T.S, Karnovsky, M.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase[J].J. Cell Biol, 1967; 34(1): 207-217.
    [62]Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view[J]. Brain Res Brain Res Rev. 2003; 42(3): 221-242.
    [63] Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonulaoccludens[J]. J Membr Biol, 1979, 39(2-3): 219-232.
    [64] Nusra A , Parkos CA , Verekade P, et al. Tight junctions are membrane microdomains[J]. J Cell Sci, 2000; 113(10): 1771-1778.
    [65]Cenk Ayata, Allan H. Ropper. Ischaemic brain oedema[J]. Journal of Clinical Neuroscience 2002; 9(2), 113-124.
    [66]Kuge Y, Minematesu K, Yamaguchi T, et al.Nylon monofilament for intraluminal middle cerebral artery occlusion in rats[J]. Stroke 1995; 26(9): 1655-1657.
    [67]Kiyohiro Houkin, Hiroshi Abe, Yuji Hashiguchi, et al. Magnetic Resonance Imaging of Cold Injury-induced Brain Edema in Rats[J]. Neural Med Chir(Tokyo), 1996; 36(2): 72-77.
    [68]KayaM, PalanduzA, KalayeiR, et al. Effects of lipopolysaccharide on the radiation-induced changes in the blood-brain barrier and the astrocytes [J].BrainRes, 2004; 1019(1-2): 105-112.
    [69]Y.R. Kim,E.Tejima,S.Huang,et al.In vivo quantification of transvascular water exchange during the acute phase of permanent stroke[J]. Magn Reson Med. 2008; 60(4): 813-821.
    [70]Sulyok E, Vajda Z, Doczi T, et al. Aquaporins and the central nervous system[J]. Acta Neuro chir (Wien). 2004; 146(9): 955-960.
    [71]Denker B M , Smit h B L , Kuhajda F P , et al. Identification, purification, and partial characterization of a novel Mr28,000 integral membrane protein from erythrocytes and renal tubules [J ]. J Biol Chem, 1988, 263(30): 15634-15642.
    [72] Preston G M, Agre P. Isolation of t he cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family [J]. Proc Natl Acad Sci USA, 1991; 88(24): 11110-111141.
    [73]Bloch O, Papadopoulos MC, Manley GT, et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess[J]. J Neurochem, 2005; 95(1): 254-262.
    [74]Amiry-Moghaddam M, Xue R, Haug FM. et al. a -syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia[J]. FASEB J, 2004; 18(3): 542-544.
    [75]Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord[J]. Neuroscience, 2004; 127(3): 685-931.
    [76]Vitellaro-Zuccarello L, Mazzetti S, Bosisio P, et al. Distribution of aquaporin 4 in rodent spinal cord: relationship with astrocyte markers and chondroitin sulfate proteoglycans[J]. Glia, 2005; 51(2): 148-159.
    [77]Nicchia GP, Nico B, Camassa LM, et al. The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models[J]. Neuroscience, 2004; 129(4): 935-945.
    [78]Morais-Cabral JH, Zhou Y, Mackinnon R. Energetic optimization of ion conduction rate by the K(+) selectivity filter[J]. Nature, 2001; 414(6859): 37-42.
    [79]Ke C, Poon W S, NG H K, et al. Heterogeneous response of aquaporin-4 in edema formation in a replicated severe traumatic brain injury model in rat [J]. Neurosci Lett, 2001; 301(1): 21-41.
    [80]Vajda Z, Pedersen M, Fuchtbauer EM, et al. Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin null transgenic mice[J]. Proc Natl Acad Sci, 2002; 99(20): 13131-13135.
    [81]Kiening KL, Landeghem F K, Schreiber S, et al. Decreased hemispheric Aquaporin-4 is linked to evolving brain edema following cont rolled cortical impact injury in rats[J ]. Neurosci Lett, 2002; 324(2): 105-108.
    [82]Zhao J, Moore AN, Clifton GL, et al. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury[J]. J Neurosci Res, 2005; 82(4): 499-506.
    [83]Papadopoulos MC, Manley GT, Krishna S, et al. Aquaporin-4 facilitates reabsorbtion of excess fluid in vasogenic brain edema[J]. FASEB J, 2004; 18(11): 1291-1293.
    [84]Marios C. Papadopoulos, Alan S. Verkman. Aquaporin-4 and brain edema[J]. Pediatr Nephrol,2007;22(2):778-784.
    [85]Zsolt Zador, Orin Bloch, Xiaoming Yao,et al. Aquaporins: role in cerebral edema and brain water balance[J]. Progress in Brain Research, 2007;161:185-194.
    [86]鲁宏,孙善全.缺血性脑水肿的AQP24表达与磁共振成像的相关性研究[J].中国医学影像技术,2003;19(8):957-960.
    [87]Yamamoto N, Sobue K, Miyachi T, et al. Differential regulation of aquaporin expression in astrocytes by protein kinase C[J]. Brain Res Mol Brain Res, 2001,95(1-2):110-116.
    [1] Unterberg AW, Stover J, Kress B, et al. Edema and brain trauma[J]. Neuroscience. 2004; 129(4): 1021-1029.
    [2] Klatzo I Presidental address: neuropathological aspects of brain edema[J]. J Neuropathol Exp Neurol 1967; 26(1): 1-14.
    [3] Fishman RA. Brain edema[J]. N Engl J Med 1975; 293(14): 706-711.
    [4] Miller JD.The management of cerebral oedema[J]. Br J Hosp Med. 1979; 21(2): 152,154,161.
    [5] Papadoooulo s MC, Krishna S, V erkman A S. Aquaporin water channels and brain edema[J]. Mt Sinai J Med, 2002, 69(4): 242-248.
    [6] Amara SG, Fontana AC. Excitatory amino acid transporters: keeping up with glutamate[J]. Neurochem Int 2002; 41(5): 313-318.
    [7] Masaki Ueno. Molecular anatomy of the brain endothelial barrier: an overview of the distributional features[J]. Curr Med Chem. 2007; 14(11): 1199-1206.
    [8] Reese, T.S, Karnovsky, M.J. Fine structural localization of a blood-brain barrier to exogenous peroxidase[J].J. Cell Biol, 1967; 34(1): 207-217.
    [9] Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view[J]. Brain Res Brain Res Rev. 2003; 42(3): 221-242.
    [10] Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonulaoccludens[J]. J M embrBiol, 1979, 39(2-3): 219-232.
    [11] Nusra A , Parkos CA , Verekade P, et al. Tight junctions are membrane microdomains[J]. J Cell Sci, 2000; 113(10): 1771-1778.
    [12]Cenk Ayata, Allan H. Ropper. Ischaemic brain oedema[J]. Journal of Clinical Neuroscience 2002; 9(2), 113-124.
    [13]S. M. lencean. Brain edema-a new classification[J]. Medical Hypotheses 2003; 61(1): 106-109.
    [14]Marmarou A, Tanaka K, Shulman K. An improved gravimetric measure of cerebral edema[J]. J. Neurosurg. 1982; 56(2): 246-253.
    [15]Mull RT. Mass estimates by computed tomography: physical density from CT numbers[J]. Am J Radi(?) 1984; 143(5): 1101-1104.
    [16]Torack RM, Alcala H, Gado M, et al. Correlative assay of computerized cranial tomography (CCT), water content and specific gravity in normal and pathological postmortem brain[J]. J Neuropathol Exp Neurol 1976; 35(4): 385-392.
    [17]Torack RM. Computed tomography and stroke edema: case report with an analysis of water in acute infarction[J]. Comput Radiol. 1982; 6(1): 35-41.
    [18]Dzialowski I, Weber J, Doerfler A, et al. Brain tissue water uptake after middle cerebral artery occlusion assessed with CT[J]. J Neuroimaging 2004; 14(1): 42-48.
    [19]Rieth KG, Fujiwara K, Di Chiro G et al. Serial measurements of CT attenuation and specific gravity in experimental cerebral edema[J]. Radiology. 1980; 135(2): 343-348.
    [20]Zimmerman RD. Stroke wars: episode IV CT strikes back[J]. AJNR Am J Neuroradiol 2004; 25(8): 1304-1309.
    [21]Na DG, Kim EY, Ryoo JW, et al. CT sign of brain swelling without concomitant parenchymal hypoattenuation: comparison with diffusion- and perfusion-weighted MR imaging[J]. Radiology 2005; 235(3): 929-948.
    [22]Lescot T, Degos V, Puybasset L.Does the brain become heavier or lighter after trauma? [J] Eur J Anaesthesiol Suppl. 2008; 42: 110-114.
    [23]Mintorovitch J, Yang GY, Shimizu H, et al. Diffusion weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na K-ATPase activity[J]. J Cereb Blood Flow Metab 1994; 14(2): 332-336.
    [24]Andrew L. Alexander, Jee Eun Lee, Mariana Lazar, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics 2007; 4(3): 316-329.
    [25]Andrei I.H, Martin O. Diffusion Imaging in Brain Tumors[J]. Neuroimaging Clinics of North America 2002; 12(1): 107-124.
    [26]Marc Doelken, Stefan Lanz, Janine Rennert, et al. Differentiation of cytotoxic and vasogenic edema in a patient with reversible posterior leukoencephalopathy syndrome using diffusion-weighted MRI[J]. Diagn Interv Radiol 2007; 13(3) :125-128.
    [27]Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging[J]. Radiology. 1992; 185(3): 687-690.
    [28]Kuroiwa T, Nagaoka T, Ueki M, et al. Correlations between the apparent diffusion coefficient, water content, and ultrastructure after induction of vasogenic brain edema in cats[J]. J Neurosurg. 1999; 90(3): 499-503.
    [29]Schwarcz A, Ursprung Z, Berente Z, et al. In vivo brain edema classification: New insight offered by large b-value diffusion-weighted MR imaging[J]. J Magn Reson Imaging. 2007; 25(1): 26-31.
    [30] Thomas P, Maraval A, et al. Water diffusion compartmentation at high b values in ischemic human brain[J]. Brugi(?)res P, AJNR Am J Neuroradiol. 2004; 25(5): 692-698.
    [31]D Barnes, W Mcdonald, G Johnson, et al. Quantitative nuclear magnetic resonance imagingxharacterisation of experimental cerebral oedema[J]. Journal of Neurology, Neurosurgery, and Psychiatry 1987; 50(2): 125-133.
    [32]Venkatesan R,Lin W,Gurleik K ,et al. Absolute measurements of water content using magnetic resonance imaging:prelminary findings in an in vivo focal ischemic rat model[J].Magn Reson Med 2000; 43(1): 146-150.
    [33]F. Ko've'r, A. Schwarczl, J. Pa'l, et al. Fast method for longitudinal relaxation time and water content mapping of the human brain on a clinical MR scanner[J]. Acta Neurochir (Wien) 2004; 146(12): 1341-1346.
    [34]Fatouros P, Marmarou A, Kraft A, et al. In vivo brain water determination by Tl measurements: Effect of total water content, hydration fraction, and field strength[J]. Magn Reson Med 1991; 17(2): 402-413.
    [35]H. Neeb, K. Zilles, and N.J. Shaha. A new method for fast quantitative mapping of absolute water content in vivo[J]. NeuroImage 2006; 31(3): 1156 - 1168.
    [36]Emmanuel L. Barbier,Lijun Liu, Emmanuelle Grillon, et al. Focal brain ischemia in rat: acute changes in brain tissue Tl reflect acute increase in brain tissue water content[J]. NMR Biomed. 2005; 18(8): 499-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700