鸽早期小肠发育及碳水化合物对其调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以泰平王鸽为研究对象,通过研究孵化后期及出壳后两周内小肠形态、消化酶活性和小肠消化吸收相关功能基因表达的变化,揭示鸽早期发育阶段小肠的消化生理特性。在此基础上,采用孵化后期向羊膜腔补充外源营养物质的方法(胚蛋注射营养,In ovo feeding),探讨其对鸽小肠发育的早期营养调控作用。主要研究内容和结果如下:
     1.鸽早期小肠形态和消化酶活性的发育规律
     肠绒毛在孵化期12d已初步形成,绒毛高度和绒毛表面积在孵化期16d时迅速增加,其中十二指肠和空肠一直持续到14d;绒毛宽度从孵化期14d到出壳后24h内增加显著(P<0.05);小肠隐窝在出壳当天开始形成内陷结构,并在出壳后3d内生长迅速(P<0.05);十二指肠和空肠绒毛形态变化显著大于回肠(P<0.05);肠上皮细胞密度从孵化期12d到出壳后3d显著增加(P<0.05);粘膜DNA含量从孵化期12d到出壳当天呈线性增加(P<0.05);蛋白质和DNA的比值出壳3d时开始显著增加(P<0.05);孵化期12d小肠可检测到较低水平的麦芽糖酶、氨基肽酶-N、碱性磷酸酶和Na+-K+-ATP酶活性,孵化期14d可检测到蔗糖酶活性;二糖酶比活力在出壳后8d时达到最大值,且空肠增长速度显著高于回肠和十二指肠(P<0.05);氨基肽酶-N比活力在3d后不再随日龄变化而变化;碱性磷酸酶比活力出壳前显著增加(P<0.05);Na+-K+-ATP酶比活力从孵化期12d到出壳后14d内随日龄呈线性增加(P<0.05);空肠和回肠ATP酶比活力增长速度显著高于十二指肠(P<0.05)。小肠粘膜酶总活力从出壳后3-5d开始显著增加,并与体重随日龄变化显著线性正相关(P<0.05);孵化期14d可检测到胰蛋白酶和胰凝乳蛋白酶活性,孵化期16d可检测到淀粉酶活性,胰腺酶活性随日龄变化的发育规律与小肠相似。
     2.小肠刷状缘酶及相关营养物质转运载体基因的克隆及分析
     采用RT-PCR方法克隆得到鸽小肠钠葡萄糖共转运载体SGLT1、葡萄糖转运载体GLUT2、寡肽转运载体PepTl、氨基肽酶APN和蔗糖-异麦芽糖酶SI基因片段长度分别为946bp、762bp、946bp、985bp和700bp。通过NCBI基因数据库Blast搜索结果表明这些序列为目的基因片段,提交到Genbank后获得登陆号分别为JN887478、JN887480、JN887476、JN887477和JN887479;鸽SGLT1基因翻译的氨基酸序列与斑胸草雀、火鸡和鸡一致性均在88%以上,与斑胸草雀的一致性最高,与人、鼠、羊等哺乳类动物也达到80%以上,在系统发育树上与哺乳类动物处于同一分支;鸽GLUT2、PepT1、APN和SI氨基酸序列与鸡的一致性最高,与哺乳类动物一致性较差,在系统发育树上与哺乳类动物处于不同分支。
     3.小肠刷状缘酶及相关营养物质转运载体基因表达的时空变化
     利用实时荧光定量PCR方法,分析PepT1、SGLT1、GLUT2、APN和SI mRNA相对表达量在十二指肠、空肠和回肠(孵化期12、14和16d,出壳当天,出壳后1、3、5、8和14d)以及卵黄囊膜(孵化期12、14、16d和出壳当天)上的变化规律。结果表明,孵化后期12d,目的基因nRNA在小肠已经开始表达;小肠营养物质转运载体基因nRNA相对表达量随日龄呈一次线性增加(P<0.05),APN mRNA相对表达量随日龄呈二次曲性增加(P<0.05),于孵化期16d显著下降(P<0.05),出壳当天再次增加(P<0.05), SI mRNA相对表达量随日龄呈三次曲性增加(P<0.05),于出壳当天和出壳后8d时分别显著上调(P<0.05);十二指肠PepT1mRNA相对表达量最高,空肠SGLT1和GLUT2mRNA相对表达量最高,回肠APN mRNA相对表达量最高,小肠各段SI mRNA相对表达量无显著差异(P>0.05);目的基因mRNA在卵黄囊膜各时期均有表达,且在出壳当天显著下调(P<0.05)。
     4.胚蛋注射碳水化合物对鸽生长和能量贮存状态的影响
     通过分析鸽胚蛋不同孵化日龄羊水体积变化,确定胚蛋注射时间为孵化期14.5d。选择发育良好的含活胚蛋200枚,编号后随机分成5个处理组,每个处理4个重复(每个重复分列于孵化箱内的不同托盘上)。对照组不注射任何物质,四个处理组注射营养液如下:(Ⅰ)蔗糖15g/L,麦芽糖15g/L, NaCl7.5g/L;(Ⅱ)蔗糖25g/L,麦芽糖25g/L, NaCl7.5g/L;(Ⅲ)蔗糖35g/L,麦芽糖35g/L, NaCl7.5g/L;(Ⅳ)蔗糖45g/L,麦芽糖45g/L, NaCl7.5g/L.预实验表明假注射和生理盐水注射均不会显著抑制鸽胚的生长发育,故正式试验不再设假注射和生理盐水注射作对照。于孵化期16d和出壳当天进行取样分析,通过研究胚蛋注射不同水平碳水化合物溶液对鸽出壳率、体重以及能量贮存状态的影响,探讨胚蛋注射营养技术在鸽中应用的效果。结果表明,从孵化期16d到出壳当天,各组中G6pase活性和血糖浓度均表现出上升的特点,而胸肌和糖原储备均表现出下降的特点(P<0.05);与对照组相比,试验Ⅱ组显著提高了雏鸽孵化率(P<0.05),但随着碳水化合物注射溶液浓度的继续增加,孵化率呈线性下降(P<0.05);胚蛋注射48h后,试验Ⅰ和Ⅱ组鸽胚体重显著高于其它各组(P<0.05),试验Ⅱ组鸽胚胸肌重显著高于对照组(P<0.05),试验Ⅱ和Ⅲ组鸽胚小肠重显著高于其它各组(P<0.05);出壳当天,试验Ⅱ组雏鸽体重和绝对体重显著高于对照组(P<0.05),试验Ⅱ和Ⅲ组卵黄重显著低于其它各组(P<0.05),试验Ⅱ组雏鸽肝脏、胸肌、胃、和小肠重显著高于对照组,且显著提高了小肠相对重(P<0.05);胚蛋注射48h后,血糖浓度随碳水化合物浓度的增加呈线性增长,G6pase活性则显著下降;胚蛋注射48h后,试验Ⅰ和Ⅱ组鸽胚肝糖原含量均显著高于对照组(P<0.05),出壳当天,试验Ⅱ组肌糖原浓度显著高于对照组(P<0.05)。
     5.胚蛋注射碳水化合物对鸽小肠早期发育的调控作用
     选择发育良好的含活胚蛋160枚,编号后随机分成2个处理组,每个处理4个重复(每个重复分列于孵化箱内的不同托盘上)。于孵化期14.5d进行胚蛋注射。对照组不注射任何物质,试验组注射营养液成分:蔗糖25g/L,麦芽糖25g/L,NaCl7.5g/L。于孵化期16d和出壳当天进行取样分析,研究胚蛋注射碳水化合物溶液对鸽空肠绒毛形态,刷状缘酶活性和消化吸收相关基因表达的影响。结果表明孵化期16d和出壳当天,胚蛋注射组空肠绒毛表面积比对照组分别增加了38%和23%(P<0.05),空肠麦芽糖酶比活力比对照组分别增加了43%和52%(P<0.05),蔗糖酶比活力比对照组分别增加了39%和26%(P<0.05),空肠碱性磷酸酶比活力比对照组分别增加了44%和35%(P<0.05);孵化期16d,胚蛋注射组空肠DNA含量比对照组提高了20%(P<0.05);出壳当天,胚蛋注射组空肠刷状缘氨基肽酶-N比活力比对照组增加了27%(P<0.05);胚蛋注射碳水化合物显著提高了孵化期16d空肠SGLT1、GLUT2和APN mRNA相对表达量(P<0.05)。
     综上所述,孵化后期及出壳后两周内鸽小肠形态、消化酶活性和消化吸收关键基因表达变化显著,且随日龄变化在小肠各段的发育模式各不相同,其中肠粘膜水解作用是鸽小肠早期发育阶段消化吸收营养物质的限速步骤;鸽出壳时小肠发育程度比肉鸡等家禽低,表现为鸽小肠粘膜水解酶比活力的增加和绒毛的生长一直持续到8-14d,而肉鸡等家禽则在出壳后72h内完成;鸽出壳后的早期发育过程中,小肠粘膜及胰腺中碳水化合物类水解酶变化比蛋白质类水解酶显著,表明碳水化合物类水解酶是限制鸽早期小肠消化功能发育成熟的主要因素;孵化期14.5d,向鸽胚羊膜腔中注射碳水化合物(蔗糖25g/L,麦芽糖25g/L,NaCl7.5g/L)可以增加鸽胚机体能量储备、提高鸽出壳体重和孵化率,并可以通过刺激肠上皮细胞增殖,增加绒毛表面积,提高刷状缘水解酶活性和上调消化吸收相关基因表达促进鸽孵化后期小肠的发育,从而提高了鸽出壳时小肠功能成熟程度,表明胚蛋注射可作为鸽小肠发育早期营养调控的有效手段。
This study was conducted to evaluate the digestive capacity in domestic pigeons (Columba livia) by determining the intestinal morphology, mucosal and pancreatic enzyme activities, and mRNA expression of the digestion/absorption related genes during pre-and posthatch development. Furthermore, the nutritional regulation on intestinal development prior to hatching in pigeons by in ovo feeding, a method of supplementing exogenous nutrients into the amnion of the late-term avian embryo, was also evaluated. The main results are listed as follows:
     1. Early development of intestinal morphology and digestive enzyme activities in pigeons
     Villi were rudimentary at12d of incubation (E12) and rapid increase of villus height and area was observed from E16. In the duodenum and jejunum, villus size continued to increase through14d posthatch (D14). Villus width increased dramatically from E14to24h after hatch (P<0.05). At day of hatch (DOH), crypts invagination was not complete throughout the small intestine, and increased intensively during the first3d posthatch (P<0.05). Villus area and crypt depth increased in parallel in the duodenum and jejunum and more slowly in the ileum (P<0.05). Enterocyte density peaked at3d after hatching in all segments. The mucosa DNA content increased linearly from E12to DOH, whereas the protein/DNA increased from D3(P<0.05). Mucosa enzyme activities were detectable for maltase, aminopeptidase-N (APN), Na+K+ATPase, and alkaline phosphatase (ALP) at E12, and for sucrase at E14. The disaccharidase mass specific activity peaked at D8and increased most dramatically in the jejunum as compared with the duodenum and ileum (P<0.05). Na+K+ATPase activity increased linearly from E12to D14, while APN changed slightly after D3(P<0.05). The ALP activity increased most dramatically before hatching (P<0.05). Intestinal total enzyme activities exhibited a steady increase after3-5d posthach, which was highly correlated with BW (P<0.05). Trypsin and chymotrypsin were detectable at E14, while amylase activity was detectable at E16. Pancreatic enzymes indicated patterns somewhat similar to those for intestinal enzymes.
     2. Cloning and analyzing of pigeon brush border enzymes and nutrient transporter genes
     The cDNA fragments for sodium glucose transporter SGLT1, glucose transporter GLUT2, oligopeptide transporter PepTl, aminopeptidase-N APN and sucrase-isomaltase SI were isolated and cloned using reverse transcription PCR, containing946bp,762bp,946bp, and985bp and700bp nucleotides, respectively. These cDNA fragments were submitted to Genbank with accession number JN887478, JN887480, JN887476, JN887477, and JN887479, respectively. The predicted amino acid sequence for pigeon SGLT1was more than88%identical to Zebra Finch, turkey and chicken, and showed highest identical to Zebra Finch. The pigeon SGLT1amino acid sequence also showed high identical to mammalias, such as human, sheep and mice, and they were located in the same branch in phylogenetic trees. The predicted amino acid sequences for pigeon GLUT2, PepTl, APN and SI were highly identical to those of chicken, and were located in different branches in phylogenetic trees as compared to mammalias.
     3. The ontogeny of nutrient transporter and brush border enzymes gene expression
     To better understand the digestive capacity in pigeons, this part was conducted to evaluate nutrient transporters and digestive enzymes gene expression in small intestine and yolk sac membrane (YSM) during pre-and posthatch development. Intestine was collected at embryo d12,14and16, day of hatch, and d1,3,5,8and14posthatch. YSM was collected at embryo d12,14,16and day of hatch. The mRNA expression of each gene was assayed using real-time PCR. The examined genes were all detectable in pigeon small intestine at E12. Expression of intestinal nutrient transporters increased linearly (P<0.05) with age, whereas that of APN increased quadratically (P<0.05) and SI increased cubically (P<0.05). The APN mRNA expression showed a decline from E14to E16, and subsequent increase to D14 (P<0.05), while the greatest mRNA quantities for SI were observed at day of hatch and D8after hatch (P<0.05). Levels of PepTl mRNA were greatest in the duodenum, GLUT2and SGLT1mRNA were greatest in the jejunum, and APN were greatest in the ileum (P<0.05). The YSM expressed all the examined genes. The YSM-expressed genes decreased between embryo d16and day of hatch, whereas intestine-expressed genes increased (P<0.05).
     4. Effects of in ovo feeding of carbohydrates on growth and energy status in pigeons
     The optimum time for in ovo injection was identified as14.5d of incubation by determining changes of pigeon amniotic fluid volume.200fertile eggs with viable embryos were identified by number and weighed. The eggs were then randomly distributed into5groups of4replications. The injection solutions were:(Ⅰ)15g/L maltose (M)+15g/L sucrose (S),(Ⅱ)25g/L M+25g/L S,(Ⅲ)35g/L M+35g/L%S,(Ⅳ)45g/L M+45g/L S, all dissolved in7.5g/L saline. Preliminary experiments conducted in our laboratory demonstrated that sham injection (shell perforated but without solution injection) or injection of200μL0.75%saline did not affect embryo growth and development. Thus, the other group was not injected and served as the control group in this study. Results showed that, G6pase activity and serum glucose level increased from E6to DOH in all groups, whereas those of pectoral muscle and energy status decreased (P<0.05). Treatment Ⅱ increased (P<0.05) the hatchability as compared with the control. However, the hatchability decreased linearly as the carbohydrate level continued to increase (P<0.05).48h after in ovo injection, treatment Ⅰ and Ⅱ showed highest BW, while treatment Ⅱ and Ⅲ showed highest intestinal weight (P<0.05). Pectoral muscle weight in treatment Ⅱ increased significantly as compared with the control group (P<0.05) at E16. At day of hatch, treatment Ⅱ increased pigeon hatching weight and the yolk sac free BW, while the yolk sac weight decreased in treatment Ⅱ and Ⅲ (P<0.05). The weight of liver, pectoral muscle, stomach and small intestine, as well as the relative intestinal weight, increased significantly as compared with that of the control (P<0.05).48h after in ovo injection, G6pase activity decreased while serum glucose increased compared to the control (P<0.05). The liver glycogen concentration increased in treatment Ⅰ and Ⅱ at E16, and the muscle glycogen increased in treatment Ⅱ at day of hatch (P<0.05).
     5. Effects of in ovo injection of carbohydrates on small intestine development in pigeons
     At day14.5of incubation, fertile eggs were injected with200μL of carbohydrate solution containing25g/L maltose+25g/L sucrose, all dissolved in7.5g/L saline. Jejunal villus surface area, activity of the brush border enzymes sucrase, maltase, aminopeptidase-N and alkaline phosphatase, and mRNA expression of the digestion/absorption related genes were examined at day16of incubation and day of hatch. Results showed that in ovo injection of carbohydrates caused a villus surface area increase of38%on day16of incubation and23%on day of hatch relative to controls (P<0.05). The in ovo injected pigeons exhibited higher (P<0.05) activities of jejunal sucrase, maltase and alkaline phosphatase per gram of tissue from day16of incubation to day of hatch, compared with the controls. At16d of incubation, the mucosa DNA content increased by20%by in ovo injection as compared to the control group (P<0.05). At day of hatch, aminopeptidase-N activity per gram of tissue in embryos injected in ovo was approximately27%greater (P<0.05) than control embryos. Enhanced expressions of the jejunal SGLT1, GLUT2and APN mRNA were found at day16of incubation in embryos that received carbohydrate solution into the amniotic fluid in comparison with the control group (P<0.05).
     In conclusion, changes of pigeon intestinal morphology, enzyme activities, and mRNA expression of the digestion/absorption related genes were rapidly during pre-and posthatch development, although rates of development were different in the three intestinal segments. The results indicated that intestinal hydrolysis may be a determining step in digestion and young pigeons may hatch with a less mature digestive tract as compared to precocial chicks. Changes in carbohydrate-digesting enzymes activity in both small intestine and pancreas are more pronounced than for protein-digesting enzymes activity, suggesting that carbohydrate-digesting enzymes may be a determining step in pigeon intestinal development. In ovo injection of carbohydrate (25g/L maltose+25g/L sucros dissolved in7.5g/L saline) on14.5d of incubation can enhance the hatchability, hatching BW and glycogen reserves. Besides, the in ovo injection of carbohydrate improved villi size, brush border enzymes activity, and digestion/absorption-related intestinal genes mRNA expression and hence hatching intestinal maturity in pigeons. Therefore, the in ovo feeding may serve as a tool to regulate the pigeon intestinal development prior to hatching.
引文
Akiba Y, Murakami H. Partitioning of energy and protein during early growth of broiler chicks and contribution of vitelline residue[C].10th European Symposium on Poultry Nutrition, Antalia, Turkey.1995, pp:46-52.
    Al-Daraji H J, Al-Mashadani A A, Al-Hayani W K, et al. Effect of in ovo injection with L-arginine on productive and physiological traits of Japanese quail[J]. South African Journal of Animal Science,2012,42 (2):139-145.
    Amasheh S, Wenzel U, Boll M, et al. Transport of charged dipeptides by the intestinal H+/peptide symporter PepTl expressed in Xenopus laevis oocytes[J]. The Journal of Membrane Biology,1997,155(3):247-256.
    Ar A, Rahn H. Water in the avian egg:Overall budget of incubation[J]. American Zoology,1980,20(2):373-384.
    Ar A. Egg water movements during incubation. Pages 157-173 in Avian Incubation. S. G. Tullett, ed. Butterworth-Heinemann Ltd., London, UK.1991.
    Baranyiova E, Holman J. Morphological changes in the intestinal wall in fed and fasted chickens in the first week after hatching[J]. Acta Veterinaria Brno,1976, 45:151-158.
    Barfull A, Garriga C, Mitjans M, et al. Ontogenetic expression and regulation of Na+-D-glucose cotransporter in jejunum of domestic chicken[J]. American Journal of Physiology,2002,282(3):559-564.
    Bharathi L, Shenoy KB, Hegde S N. Biochemical differences between crop tissue and crop milk of pigeons(Columbia livia)[J]. Comparative Biochemistry and Physiology,1997:116A(1):51-55.
    Biviano A B, del Rio C M, Phillips D L, Ontogenesis of intestine morphology and intestinal disaccharidases in chickens (Gallus gallus) fed contrasting purified diets[J]. Journal of Comparative Physiology B,1993,163(6):508-518.
    Broyart J P, Hugot J P, Perret C, et al. Molecular cloning and characterization of a rat intestinal sucrase-isomaltase cDNA. Regulation of sucrase-isomaltase gene expression by sucrose feeding[J]. Biochimica et Biophysica Acta,1990,1087(1): 61-67.
    Buddington R K, Diamond J M. Ontogenetic development of intestinal nutrient transporters[J]. Annual review of physiology,1989,51(1):601-619.
    Burley R W, Vadehra D V. The avian egg:Chemistry and biology[M]. John Wiley and Sons, New York, NY.1989.
    Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid[J]. Biochemical Journal, 1956,62(3):315-323.
    Canfield P. Physiology of domestic animals[J]. Australian Veterinary Journal,1978, 54(7):344-344.
    Caviedes-Vidal E, Karasov W H. Developmental Changes in Digestive Physiology of Nestling House Sparrows, Passer domesticus[J]. Physiological and Biochemical Zoology,2001,74(5):769-782.
    Chao J C J, Donovan S. Effects of insulin, insulin-like growth factors and epidermal growth factor on mitogenesis and disaccharidase activity in rat (IEC-6) and human (FHs 74 Int) intestinal cells[J]. The Chinese Journal of Physiology,1996, 39(4):253-263.
    Chen H, Pan Y X, Wong E A, et al. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepTl) in Xenopus oocytes and Chinese hamster ovary cells[J]. The Journal of nutrition,2002,132(3):387-393.
    Chen H, Pan Y X, Wong E A, et al. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepTl) in chickens[J]. Journal Nutrition,2005,135(2):193-198.
    Christensen V L, Donaldson W E, Nestor K E, et al. Effects of genetics and maternal dietary iodide supplementation on glycogen content of organs within embryonic turkeys[J]. Poultry Science,1999,78(6):890-898.
    Christensen V L, Grimes J L, Wineland M J, et al. Accelerating embryonic growth during incubation following prolonged egg storage.2. Embryonic growth and metabolism[J]. Poultry Science,2003,82(12):1869-1878.
    Dahlqvist A. Method for assay of intestinal disaccharidases[J]. Analytical Biochemistry,1964,7(1):18-25.
    Daillaire A. Textbook of Veterinary Physiology[J]. The Canadian Veterinary Journal, 1973,14(10):263.
    Dalloul R A, Lillehoj H S, Klinman D M, et al. In ovo administration of CpG oligodeoxynucleotides and the recombinant microneme protein MIC2 protects against Eimeria infections[J]. Vaccine,2005,23(24):3108-3113.
    Davies W L. The composition of the crop-milk of pigeons[J]. Biochemical Journal, 1939,33(6):898-901.
    de Oliveira J E. Effects of in ovo feeding on turkey embryos development, energy status, intestinal maturation, gene expression and post-hatch development[D]. Raleigh:North Carolina State University,2007.
    de Oliveira J E, Druyan S, Uni Z, et al. Prehatch intestinal maturation of turkey embryos demonstrated through gene expression patterns[J]. Poultrt Science,2009, 88(12):2600-2609.
    Donaldson W E, Christensen V L. Dietary carbohydrates level and glucose metabolism in turkey poults[J]. Comparative Biochemistry and Physiology,1991, 98(2):347-350.
    Du Z Z, Li W P, Shi Z G, et al. Effect of artificial feeding of pigeons at different ages[J]. Gansu Nongye Daxue Xuebao,1993.28:10-12 (Chinese with English abstract).
    Engstrom L. Studies on calf-intestinal alkaline phosphatase I. Chromatographic purification, microheterogeneity and some other properties of the purified enzyme[J]. Biochimica et Biophysica Acta,1961,52(1):36-48.
    Escribano F, Rahn B E, Sell J L. Development of lipase activity in yolk membrane and pancreas of young turkeys[J]. Poultry Science,1988,67(7):1089-1097.
    Esteban S, Rayo J M, Moreno M, et al. A role played by the vitelline diverticulum in the yolk sac resorption in young post-hatched chickens[J]. Journal of Comparative Physiology B,1991,160(6):645-648.
    Fei Y J, Kanai Y, Nussberger S, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter[J]. Nature,1994,368:563-566.
    Ferraris R P, Diamond J M. Specific regulation of intestinal nutrient transporters by their dietary substrates[J]. Annual review of physiology,1989,51(1):125-141.
    Ferraris R P, Diamond J. Regulation of intestinal sugar transport[J]. Physiological Reviews,1997,77(1):257-302.
    Ferraris R P. Dietary and developmental regulation of intestinal sugar transport[J]. Biochemical Journal,2001,360(Pt 2):265.
    Ferraris R P, Villenas S A, Hirayama B A, et al. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis[J]. American Journal of Physiology,1992,262(6):G1060-G1068.
    Forstner G. Signal transduction packaging and secretion of mucins[J]. Annual review of physiology,1995,57(1):585-605.
    Foye O T, Ashwell C, Uni Z, et al. The effects of intra-amnionic feeding of arginine and/or B-hyroxy-B-methylbutyrate on jejunal gene expression in the turkey embryo and hatchling[J]. International Journal of Poultry Science,2009,8 (5): 437-445.
    Foye O T, Ferket P R, Uni Z. The effects of In ovo feeding arginine, β-hydroxy-β-methyl-butyrate,and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults[J]. Poultry Science,2007, 86(11):2343-2349.
    Foye O T, Uni Z, McMurtry J P, et al. The effects of amniotic nutrient administration, "In ovo Feeding" of arginine and/or β-hydroxy-β-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in turkey poults[J]. International Journal of Poultry Science,2006a,5 (4):309-317.
    Foye O T. Uni Z, Ferket P R. Effect of in ovo feeding egg white protein, β-hydroxy-β-methylbutyrate, and carbohydrates on glycogen status and neonatal growth of turkeys[J]. Poultry Science,2006b,85(7):1185-1192.
    Frazier S, Ajiboye K, Olds A, et al. Functional characterization of the chicken peptide transporter 1 (peptl, slcl5al) gene[J]. Animal biotechnology,2008,19(4): 201-210.
    Gal-Garber O, Uni Z. Chicken Intestinal Aminopeptidase:Partial Sequence of the Gene, Expression and Activity[J]. Poultry Science,2000,79(1):41-45.
    Ganapathy V, Burckhardt G, Leibach F H. Characteristics of Glycylsarcosine Transport in Rabbit Intestinal Brush-Border Membrane Vesicles[J]. The Journal of Biological Chemistry,1984,259(14):8954-8959.
    Geyra A, Uni Z, Sklan D. Enterocyte dynamics and mucosal development in the posthatch chick[J]. Poultry Science,2001,80(6):776-782.
    Gilbert E R, Li H, Emmerson D A, et al. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers[J]. Poultry Science,2007,86(8):1739-1753.
    Giles K W, Myers A. An improved diphenylamine method for the estimation of deoxyribonucleic acid[J]. Nature,1965,206(4979):93.
    Gray M G. Carbohydrate absorption and maltose absorption[A]. In:Physiology of the gastrointestinal tract [C]. Ravens Press,1981,1063-1072.
    Griminger, P. Digestive system and nutrition. In:Physiology and Behaviour of the Pigeon. M. Abs, Ed. Acad. Press, New York, NY.1983:14-34.
    Goudsward J, Vaerman J P, Heremans J F. The immunoglobulin classes in the pigeon (Columbia livia)[J]. International Archives of Allergy and Applied Immunology, 1977,53(5):409-419.
    Haque A K M, Broom D M, Gaitens J F. Laboratory rearing of woodpigeons[J]. Laboratory Animals,1982,16(2):114-115.
    Hampson D J, Kidder D E. Alterations in piglet small intestinal structure at weaning[J]. Research in Veterinary Science,1986,40(1):32-40.
    Hegde S N. The amino acid composition of crop milk[J]. Current Science,1972,41: 23-24.
    Hegde S N. Composition of pigeon milk and its effects on growth in chicks[J]. Indian Journal of Experimental Biology,1973,11(3):238-239.
    Henning S J, Rubin D C, Shulman R J. Ontogeny of the intestinal mucosa. In:L R Johnson, Editor. Physiology of the Gastrointestinal Tract, New York:Raven Press,1994,571-610.
    Hirayama B A, Smith C D, Wright E M. Secondary structure of the Na+/glucose co-transporter[J]. The Journal of general physiology,1992,100:19a-20a.
    Hoffman L R, Chang E B. Determinants of regional sucrase-isomaltase expression in adult rat small intestine[J]. Journal of Biological Chemistry,1991,266(32): 21815-21820.
    Hong D H, Petrovics G, Anderson W B, et al. Induction ofmucin gene expression in human colonic cell lines by PMA is dependent on PKC-epsilon[J]. American Journal of Physiology,1999,277:G1041-G1047.
    Hsu C P, Walter E, Merkle H P, et al. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells[J]. AAPS Pharmsci,1999,1(3):41-49.
    Hullar I, Meleg I, Fekete S, et al. Studies on the energy content of pigeon feeds I. Determination of digestibility and metabolizable energy content[J]. Poulty Science,1999,78(12):1757-1762.
    Hunziker W, Spiess M, Semenza G. The sucrase-isomaltase complex:primary structure, membrane orientation and evolution of a stalked intrinsic brush border protein[J]. Cell,1986,46(2):227-234.
    Iji P A, Saki A, Tivey D R. Body and intestinal growth of broiler chicks on a commercial starter diet.1. Intestinal weight and mucosal development[J]. British Poultry Science,2001,42(4):505-513.
    Jackson S, Diamond J. Metabolic and digestive responses to artificial selection in chickens[J]. Evolution,1996,50(4):1638-1650.
    Janssens G P J, Hesta M, Debal V, et al. L-carnitine supplementation in breeding pigeons:impact on zootechnical performance and carnitine metabolism[J]. Reproduction Nutrition Development,2000,40(6):535-548.
    Jardinaud F, Banisadr G, Noble F, et al. Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography[J]. Biochimie (Paris),2004,86(2):105-113.
    Jarvinen M, Hopsu-Havu V K. Alpha-N-benzoylarginine-2-naphthylamide hydrolase (cathepsin B1?) from rat skin. Ⅰ. Preliminary experiments with skin extract[J]. Acta chemica Scandinavica. Series B:Organic chemistry and biochemistry,1975, 29(6):772-780.
    Kadam D M M, Bhanja S K, Mandal A B, et al. Effect of in ovo threonine supplementation on early growth, immunological responses and digestive enzyme activities in broiler chickens[J]. British Poultry Science,2008,49(6): 736-741.
    Kakuk T. Feeding of pigeons. In:Pigeon Breeders Manual, Horn P., Ed.1991: 123-148.
    Kellett G L, Helliwell P A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane[J]. Biochemical Journal,2000,350(Pt 1):155-162.
    Kellett G L. The facilitated component of intestinal glucose absorption[J]. The Journal of physiology,2001,531(3):585-595.
    Keralapurath M M, Corzo A, Pulikanti R, et al. Effects of in ovo injection of L-carnitine on hatchability and subsequent broiler performance and slaughter yield[J]. Poultry Science,2010a,89(7):1497-1501.
    Keralapurath M M, Keirs R W, Corzo A, et al. Effects of in ovo injection of L-carnitine on subsequent broiler chick tissue nutrient profiles[J]. Poultry. Science,2010b,89(2):335-341.
    King D, Fan M Z, Ejeta G, et al. The effects of tannins on nutrient utilisation in the White Pekin duck[J]. British poultry science,2000,41(5):630-639.
    Kirk Baer C. Comparative nutrition and feeding considerations in young Columbidae(M). In Zoo and Wild Animal Medicine,4th edition. (Fowler M E, Miller R E, Eds.), Philadelphia:W.B. Saunders,1999, pp:269-277.
    Kishi K, Tanaka T, Igawa M, et al. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum[J]. Journal of Nutrition,1999,129(5):953-956.
    Klang J E, Burnworth L A, Pan Y X, et al. Functional characterization of a cloned pig intestinal peptide transporter (pPepTl)[J]. Journal of animal science,2005,83(1): 172-181.
    Klein R M, McKenzie J C. The Role of Cell Renewal in the Ontogeny of the Intestine. I. Cell Proliferation Patterns in Adult, Fetal, and Neonatal Intestine[J]. Journal of Pediatric Gastroenterology and Nutrition,1983,2(1):10-43.
    Krogdhal A, Sell J L. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys[J]. Poultry Science, 1989,68(11):1561-1568.
    Lambson R O. An electron microscopic study of the entodermal cells of the yolk sac of the chick during incubation and after hatching[J]. American Journal of Anatomy,1970,129(1):1-19.
    Leash A, Liebman J, Taylor A, et al. An analysis of the crop contents of White Carneaux Pigeons (Columba livia), days one through twenty-seven[J]. Laboratory animal science.1971,21(1):86-90.
    Leibach F H, Ganapathy V. Peptide transporters in the intestine and the kidney[J]. Annual review of nutrition,1996,16(1):99-119.
    Levi W L. The pigeon. USA:Levi Publishing Company Inc., Sunter, Columbia, S.C.. 1974.
    Lilja C, Sperber I, Marks H L. Postnatal growth and organ development in Japanese quail selected for high growth rate[J]. Growth,1985,49(1):51-62.
    Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCt Method[J]. methods,2001,25(4): 402-408.
    Martinez del Rio C. Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds[J]. Physiology Zool,1990,63:987-1011.
    McGruder B M, Zhai W, Keralapurath M M, et al. Effects of in ovo injection of electrolyte solutions on the pre- and posthatch physiological characteristics of broilers[J]. Poultry Science,2011a,90(5):1058-1066.
    McGruder B M, Zhai W, Keralapurath M M, et al. Effects of in ovo injection of stimulant solutions on growth and yolk utilization in broiler embryos[J]. International Journal of Poultry Science,2011b,10:338-343.
    Miyamoto K, Hase K, Takagi T, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars[J]. Biochemical Journal, 1993,295(Pt1):211-215.
    Mott C R, Siegel P B, Webb Jr. K E, et al. Gene expression of nutrient transporters in the small intestine of chickens from lines divergently selected for high or low juvenile body weight[J]. Poultry Science,2008,87(11):2215-2224.
    Mueckler M, Caruso C, Baldwin S A, et al.1985. Sequence and structure of a human glucose transporter[J]. Science,229(4717):941-945.
    Murakami H, Akiba Y, Horiguchi M, et al. Growth and utilization of nutrients in newly-hatched chick with or without removal of residual yolk[J]. Growth Development and Aging,1992,56(2):75-84.
    Neff M. Studies of embryonal and post-embryonal organ growth in bird species with different features of ontogenesis [J]. Revue suisse Zool,1972,79(4):1471-1597.
    Neutra M, Leblond C P. Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radio autography of goblet cells fromrats injected with glucose-H3[J]. The Journal of Cell Biology,1966,30(1):119-136.
    Newey H, Smyth D H. Cellular mechanisms in intestinal transfer of amino acids[J]. The Journal of physiology,1962,164(3):527-551.
    Nir I, Nitsan Z, Dror Y, et al. Influence of overfeeding on growth, obesity and intestinal tract in young chicks of light and heavy breeds[J]. British Journal of Nutrition,1978,39:27-35.
    Noble R C, Cocchi M. Lipid metabolism and the neonatal chicken[J]. Progress in lipid research,1990,29(2):107-140.
    Noy Y, Sklan D. Post hatch development in poultry[J]. The Journal of Applied Poultry Research,1997,6(3):344-354.
    Noy Y, Sklan D. Yolk utilisation in the newly hatched poult[J]. British Poultry Science, 1998,39(3):446-451.
    Nunez M C, Bueno J D, Ayudarte M V, et al. Dietary restriction induces biochemical and morphometric changes in the small intestine of nursing piglets[J]. The Journal of nutrition,1996,126(4):933.
    Obst B S, Diamond J. Ontogenesis of intestinal nutrient transport in domestic chickens (Gallus gallus) and its relation to growth[J]. The Auk,1992,109(3): 451-464.
    Olsen J, Cowel G M, Koenigshoefer E, et al. Complete amino acid sequence of human intestinal aminopeptidaseN as deduced fromcloned cDNA[J]. FEBS Lett, 1988,238(2):307-314.
    Orit Gal-Garber, Sameer J. Mabjeesh, David Sklan, et al. Partial Sequence and Expression of the Gene for and Activity of the Sodium Glucose Transporter in the Small Intestine of Fed, Starved and Refed Chickens[J]. The Journal of Nutrition,2000,130(9):2174-2179.
    O'Sullivan N P, Dunnington E A, Siegel P B. Correlated responses of chickens divergently selected for fifty-six-day body weight. I. Growth, feed intake and feed utilization[J]. Poultry Science,1992,71:590-597.
    Palo P E, Sell J L, Piquer F J, et al. Effect of early nutrient restriction on broiler chickens.1. Performance and development of the gastrointestinal tract[J]. Poultry science,1995,74(1):88-101.
    Petersen Y M, Elnif J, Schmidt M, et al. Glucagon-like peptide 2 enhances maltase-glucoamylase and sucrase-isomaltase gene expression and activity in parenterally fed premature neonatal piglets[J]. Pediatr Research,2002,52(4): 498-503.
    Phillips J D, Diamond J M, Fonkalsrud E W. Fetal rabbit intestinal absorption: implications for transamniotic fetal feeding[J]. Journal of pediatric surgery,1990, 25(8):909-913.
    Pluske J R, Thompson M J, Atwood C S, et al. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows' whole milk after weaning[J]. British Journal of Nutrition,1996,76(3):409-422.
    Pocai A, Lam T K, Gutierrez-Juarez R, et al. Hypothalamic K (ATP) channels control hepatic glucose production[J]. Nature,2005,434(7036):1026-1031.
    Quick M, Tomasevic J, Wright E M. Functional Asymmetry of the Human Na+/Glucose Transporter (hSGLT1) in Bacterial Membrane Vesicles[J]. Biochemistry,2003,42(30):9147-9152.
    Reuss L. One-hundred years of inquiry:the mechanism of glucose absorption in the intestine[J]. Annual review of physiology,2000.62(1):939-946.
    Rhoads J M, Chen W, Chu P, et al. L-glutamine and L-asparagine stimulate Na+-H+ exchange in porcine jejunal enterocytes[J]. American Journal of Physiology, 1994,266(5):G828-G838.
    Rhyu M E, Nishimura T, Kato Y, et al. Purification and properties of aminopeptidase H from chicken skeletal muscle[J]. European Journal of Biochemistry,1992, 208(1):53-59.
    Ricklefs R E, Starck J M. Embryonic growth and development[J]. Oxford Ornithology Series,1998,8:31-58.
    Romanoff A L. Biochemistry and biophysics of the developing hen's egg. I. Influence of humidity[J]. Memoirs of the Cornell Agricultural Experiment Station,1930, 132:1-27.
    Sales J, Janssens G P J. Nutrition of the domestic pigeon (Columba livia domestica) [J]. World's Poultry Science Journal,2003,59(2):221-232.
    Sell J L, Angel C R, Piquer F J, et al. Developmental patterns of selected characteristics of the gastrointestinal tract of young turkeys[J]. Poultry Science, 1991,70(5):1200-1205.
    Sell J L, Koldovsky O, Reid, B L. Intestinal disaccharidases of young turkeys: temporal development and influence of diet composition[J]. Poultry Science, 1989,68(2):265-277.
    Shen W H, Liechiy E A. Digestion and absorption. In:R J Xu and P Cranwell. (ed.) The Neonatal Pig:Gastrointestinal Physiology and Nutrition. Nottingham University Press, Nottingham, UK.2003:157-184.
    Shetty S, Bharathi L, Shenoy K B, et al. Biochemical properties of pigeon milk and its effect on growth[J]. Journal of Comparative Physiology,1992,162(7): 632-636.
    Shetty S and Hedge S N. Pigeon milk:a new source of growth factor. Cellular and Molecular Life Sciences,1993,49(10):925-928.
    Siddons R C. Effect of diet on disaccharidase activity in the chick[J]. British Journal of Nutrition,1972,27(2):343-352.
    Sim J S, Hickman A M R, Nwokolo E. Nutrient composition of squabs crop contents during the first 8days post hatch[J]. Poultry Science,1986,65(suppl 1): 126.(Abstr.)
    Siwicki A K, Fuller J C, Nissen S, et al. In vitro effects of β-hydroxy-β-methylbutyrate (HMB) on cell-mediated immunity in fish[J]. Veterinary Immunology and Immunopathology,2000,76(3-4):191-197.
    Sklan D. Development of the digestive tract of poultry[J]. World Poultry Science Journal,2001,57(4):415-428.
    Sklan D, Geyra A, Tako E, et al. Ontogeny of brush border carbohydrate digestion and uptake in the chick[J]. British Journal of Nutrition,2003,89(6):747-753.
    Smirnov A, Tako E, Ferket P R, et al. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates [J]. Poultry Science,2006,85(4):669-673.
    Smith C D, Hirayama B A, Wright E M. Baculovirus-mediated expression of the Na/glucose cotransporter in Sf9 cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1992,1104(1):151-159.
    Speake B K. Transport and transformation of yolk lipids during development of the avian embryo[J]. Progress in Lipid Research,1998,37:1-32.
    Speake B K, Deans E A, Powell K A. Differential incorporation of docosahexaenoic and arachidonic acids by the yolk sac membrane of the avian embryo[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2003,136(2):357-367.
    Starck J M, Ricklefs R E. Avian growth and development. Oxford University Press, New York.1998.
    Tako E, Ferket P R, Uni Z. Effects of In Ovo Feeding of Carbohydrates and β-Hydroxy-β-Methylbutyrate on the Development of Chicken Intestine[J]. Poultry Science,2004,83(12):2023-2028.
    Tako E, Ferket P R, Uni Z. Changes in chicken intestinal zinc exporter mRNA expression and small intestinal functionality following intra-amniotic zinc-methionine administration[J]. Journal of Nutritional Biochemistry,2005, 16(6):339-346.
    Tangara M, Chen W, Xu J, et al. Effects of in ovo feeding of carbohydrates and arginine on hatchability, body weight, energy metabolism and perinatal growth in duck embryos and neonates[J]. British Poultry Science,2010,51(5):602-608.
    Thorens B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1996,270(4):G541-G553.
    Thwaites D T, Brown C D, Hirst B H, et al. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes[J]. The Journal of Biological Chemistry,1993,268: 7640-7642.
    Torras-Llort M, Soriano-Garcia J F, Ferrer R, et al. Effect of a lysine-enriched diet on L-lysine transport by the brush-border membrane of the chicken jejunum[J]. American Journal of Physiology,1998,274(1):R69-R75.
    Traber P G, Gumucio D L, Wang W. Isolation of intestinal epithelial cells for the study of differential gene expression along the crypt-villus axis[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,1991,260(6): G895-G903.
    Tsat S S, Yeh W S, Chi Y G, et al. Force-feeding and candidiasis in pigeons[J]. Avian Pathology,1994,23(3):569-574.
    Uauy R D, Birch D G, Birch E E, et al. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates[J]. Pediatr Res,1990,28(5): 485-492.
    Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters[J]. Pflugers Archiv,2004,447(5):480-489.
    Uni Z, Ferket P R. Enhancement of development of oviparous species by in ovo feeding. US Patent 6,592,878. North Carolina State University, Raleigh, NC; and Yissum Research Development Company of the Hebrew University of Jerusalem, Jerusalem (Israel), assignees.2003.
    Uni Z, Ferket R P. Methods for early nutrition and their potential[J]. World's Poultry Science Journal,2004,60(1):101-111.
    Uni Z, Ferket P R, Tako E, et al. In Ovo Feeding Improves Energy Status of Late-Term Chicken Embryos[J]. Poultry Science,2005,84(5):764-770.
    Uni Z, Ganot S, Sklan D. Posthatch Development of Mucosal Function in the Broiler Small Intestine[J]. Poultry Science,1998a,77(1):75-82.
    Uni Z, Geyra A, Ben-Hur H, et al. Small intestinal development in the young chick: crypt formation and enterocyte proliferation and migration[J]. British Poultry Science,2000,41(5):544-551.
    Uni Z, Noy Y, Sklan D. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks[J]. Poultry Science,1995,74(10): 1622-1629.
    Uni Z, Noy Y, Sklan D. Developmental parameters of the small intestine in heavy and light strain chicks, before and after hatching[J]. British Poultry Science,1996,37: 63-71.
    Uni Z, Noy Y, Sklan D. Posthatch development of small intestinal function in the poult[J]. Poultry Science,1999,78(2):215-222.
    Uni Z, Platin R, Sklan D. Cell proliferation in chicken intestinal epithelium occurs both in the crypt and along the villus[J]. Journal of Comparative Physiology B, 1998b,168(4):241-247.
    Noy Y, Sklan D. Post hatch development in poultry[J]. The Journal of Applied Poultry Research,1997,6(3):344-354.
    Uni Z, Smirnov A, Sklan D. Pre- and posthatch development of goblet cells in the broiler small intestine:Effect of delayed access to feed. Poultry Science,2003a, 82(2):320-327.
    Uni Z, Tako E, Gal-Garber O, et al. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo[J]. Poultry Science,2003b, 82(11):1747-1754.
    Vandeputte-Poma J.1980. Feeding, growth and metabolism of the pigeon, Columba livia domestica:Duration and role of crop milk feeding. Journal of comparative physiology,135(2):97-99.
    Watt V M, Cecil C Y. Amino acid sequence deduced fromrat kidney cDNA suggested it encodes the Zn peptidase aminopeptidase N[J]. Journal of Biological Chemistry,1989,264(10):5480-5487.
    Weiser M M. Intestinal epithelial cell surface membrane glycoprotein synthesis[J]. Journal of Biological Chemistry,1973,248(7):2536-2541.
    Whittow G C. Sturkie's Avian Physiology,5th Edition. Beijing:Academic Press, 1999.
    Wilson J H. Bone strength of caged layers as affected by dietary calcium and phosphorus concentrations, reconditioning, and ash content[J]. British Poultry Science,1991,32(3):501-508.
    Wright E M. Renal Na+-glucose cotransporters[J]. American Journal of Physiology Renal Physiology,2001,280(1):F10-F18.
    Xu G., Kwon G., Marshall C A, et al. Branched-chain amino acids are essential in the regulation of PHAS-Ⅰ and p70 S6 kinase by pancreatic β-cells[J]. The Journal of Biological Chemistry,1998,273(43):28178-28184.
    Yadgary L, Cahaner A, Kedar O, et al. Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder hens[J]. Poultry Science,2010,89(11):2441-2452.
    Yadgary L, Yair R, Uni Z. The chick embryo yolk sac membrane expresses nutrient transporter and digestive enzyme genes[J]. Poultry Science,2011,90(2): 410-416.
    Yang M C, and Vohra P. Protein and metabolizable energy requirements of hand-fed squabs from hatching to 28 days of age[J]. Poultry Science,1987,66(12): 2017-2023.
    Yamauchi K, Kamisoyama H, Isshiki Y. Effects of fasting and refeeding on structures of the intestinal villi and epithelial cells in White Leghorn hens[J]. British Poultry Science,1996,37(5):909-921.
    Yasutake H, Goda T, Takase S. Dietary regulation of sucrase-isomaltase gene expression in rat jejunum[J]. Biochimica et Biophysica Acta,1995,1243(2): 270-276.
    Yen T J. Anatomy of the digestive system and nutritional physiology. In:A J Lewis and L L Southern. (ed.) Swine Nutrition (2th Ed.). CRC Press, LLC.2001,31-64.
    Zhai W, Neuman S, Latour M A, et al. The of in ovo injection of L-caraitine on hatchability of White Leghorns[J]. Poultry. Science,2008,87(3):569-572.
    Zhai W, Rowe D E, Peebles E D. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis[J]. Poultry Science,2011,90(6): 1295-1301.
    陈益填.我国肉鸽业养殖现状、投资效益及发展趋势分析[J].中国家禽,2012,34(4):8-11.
    冯定远,谭会泽,邹仕庚,等.不同品种肉鸡肠道rBAT和y+LAT2 mRNA表达的发育性变化[J].畜牧兽医学报,2009,40(1):52-58.
    江米足,叶瑞云.婴幼儿腹泻时空肠黏膜纹状缘肽酶和蛋白质代谢的研究[J].中华儿科杂志,1996,34(1):32-36.
    刘梅英,陈伟,彭鹏,等.胚蛋注射在家禽营养中的研究进展[J].中国家禽,2007,29(21):40-42.
    刘明宝,庞年.乳鸽的营养需要和人工代乳料研究进展[J].饲料博览,1992,6:16-17.
    潘雪男译.肉鸡营养生理研究进展及今后的研究方向[J].国外畜牧学-猪与禽,2005,25(6):10-17.
    王萨任图雅.赛鸽人工孵化与哺育技术的研究[D].呼和浩特,内蒙古农业大学,2009.
    王修启,谭会泽,冯定远,等.鸡肠道SGLTI和GLUT2 mRNA表达的组织特异性研究[J].畜牧兽医学报,2006,37(1):12-17.
    翁梅倩.肠发育与糖消化、吸收的分子学研究进展[J].国外医学儿科学分册,1999,26(3):155-157.
    周顺伍.动物生物化学[M].第三版.北京:中国农业出版社.1999.
    邹仕庚,王恬,郑春田,等.胰岛素和酶解配方乳对初生仔猪胃肠道生长发育影响的研究[J].动物营养学报,2001,13(1):19-24.
    邹仕庚,谭会泽,王修启,等.不同基因型肉鸡肠道CAT1和CAT4 mRNA表达的发育性变化[J].华北农学报,2008,23(2):55-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700