姜黄素对2型糖尿病模型大鼠及3T3-L1前脂肪细胞PTP1B通路的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:糖尿病(DM)是一种严重危害人类健康的慢性、代谢性疾病,已成为当今中国乃至世界公共卫生的重大问题之一,糖尿病的研究已经越来越受重视。立足肝脾肾,三脏同治辨证论治糖尿病是最能够切合糖尿病病机的中医治疗方法,临床和实验研究均证实其安全有效。郁金是治疗糖尿病调肝治法的常用中药,既往的研究证实其发挥作用的主要物质是其所含的姜黄素。本课题旨在通过观察姜黄素对2型糖尿病模型大鼠、3T3L-1脂肪细胞的降糖、改善胰岛素抵抗的疗效,以及对PTP1B通路各因子的影响,以期明确姜黄素降糖及改善胰岛素抵抗的作用靶点,探讨调肝治法在2型糖尿病治疗中的作用机制,为临床治疗运用调肝法治疗2型糖尿病提供实验依据。
     方法:
     一、将3T3-L1前脂肪细胞诱导分化后,应用XTT法观察姜黄素对其分化及增值的影响,用生化法观察姜黄素对葡萄糖摄取量的影响,用real-time PCR法检测姜黄素对脂肪细胞PPARγ、C/EBPαmRNA、SREBP-1表达、内脏脂肪内脂素、抵抗素及脂联素mRNA表达的影响。
     二、将sd大鼠应用高脂饮食联合小剂量stz造模成功后,按体重、血糖分层随机分为3组,分别为姜黄素、吡格列酮、模型组,8周后处死动物,观察如下指标:(1)糖代谢基本生化指标:体重、葡萄糖耐量、胰岛素耐量、空腹血糖、空腹胰岛素、HOMA-IR,ISI指数、血清总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白、血清FFA、TNF-α及肝肾功变化;(2)用real-time PCR法和western-blot法检测大鼠肝脏组织PTP1B、 IRS-2、IRS-1mRNA表达及PTP1B、IRS-2蛋白表达;(3)用real-time PCR法和western-blot法大鼠肌肉组织PTP1B、IRS-1、GLUT4mRNA及PTP1B、GLUT4蛋白表达。
     结果:
     一、姜黄素能够显著降低高脂饲料联合小剂量STZ诱导的2型糖尿病大鼠血糖、血脂水平、体重;显著降低2型糖尿病大鼠FFA、TNF-a,从而增加2型糖尿病大鼠对胰岛素的敏感性,改善糖尿病大鼠的胰岛素抵抗。姜黄素可以明显降低2型糖尿病大鼠的肝重及肝脏指数,缓解其脂肪肝,降低大鼠肝脏PTP1B、IRS-1mRNA的表达及蛋白表达,增强IRS-2mRNA表达。姜黄素可以明显降低2型糖尿病大鼠肌肉组织的PTP1B、IRS-1mRNA的表达及PTP1B的蛋白表达,增强GLUT4mRNA表达。
     二、姜黄素能够增加脂肪细胞葡萄糖摄取和利用、促进脂肪细胞分化关键因子PPARγ和C/EBP a mRNA的表达其效应与PPARγ激动剂吡格列酮相似。同时,姜黄素可能通过抑制内脂素,抵抗素mRNA的表达,增强脂联素mRNA的表达而低浓度时促进脂肪细胞增殖,高浓度时则抑制其增殖、同时促进前脂肪细胞的分化。
     结论:
     一、体内实验:姜黄素能够通过作用于PTP1B通路而起到降糖及改善胰岛素抵抗的作用。
     二、体外实验:姜黄素能够促进脂肪细胞分化抑制脂肪细胞增殖,促进脂肪细胞葡萄糖摄取和利用而改善脂肪细胞的胰岛素抵抗。
     本实验以姜黄素作为调肝法治疗2型糖尿病研究靶点,初步证实了姜黄素是通过作用于PTP1B通路而起到了改善糖脂代谢的作用,为调肝法治疗2型糖尿病提供了实验依据。
Objective:Diabetes mellitus(DM) is a chronic, metabolic diseases, which cause serious harm to human health. The prevalence of obesity has increased dramatically, it has been a problem about the healthy of world people, so it has become a focus of medicine scientific researcher to find an effect drug to prevent and control obesity. The purpose of our research is to observe the effect on the treatment of curcumin to T2DM.,And to find the mechanism of curcumin.
     Method
     1.After induction of differentiation on3T3-L1preadipocytes, we observeed the effect of curcumin on differentiation and glucose uptake, and detect the effect of curcumin on adipocyte's PPARy, C/EBPamRNA, SREBP-1expression by Real-time PCR..
     2. After induction of differentiation on3T3-L1preadipocytes, we observeed the effect of curcumin on differentiation and glucose uptake, and detected the effect of curcumin on adipocyte's visfatin, resistin and adiponectinexpression by Real-time PCR.
     3. The T2DM rats were divided into3groups. The changes of weight, blood glucose, blood lipid,insulin, HOMA-IR,ISI TNF-α、FFA were detected, respectively.
     4. The T2DM rats were divided into3groups. The changes of Liver weight, liver index, liver pathological, PTP1B. IRS-2、IRS-1mRNA expression and PTP1B, IRS-2protein expression were detected, respectively.
     5. The T2DM rats were divided into3groups. The changes of muscle PTP1B, GLUT4, IRS-1mRNA expression and GLUT4and PTP1B protein expression were detected, respectively.
     RESLUTS
     1. Curcumin can increase glucose uptake and utilization of fat cells, and promote the key factor of adipocyte differentiation---PPARγ and C/EBPamRNA's expression.Its effect is similar as PPARC agonist pioglitazone.
     2. Curcumin can inhibit visfatin, resistin mRNA expression, and enhance expression of adiponectin mRNA. promote adipocyte proliferation at low concentrations, inhibit their proliferation at high concentrations, while promoting the differentiation of preadipocytes.
     3. Curcumin can significantly reduce the glucose and lipid levels, body weight of fat diet combined with low doses of STZ-induced type2diabetic rats. Its also can increase sensitivity to insulin in type2diabetic rats, and improve insulin resistance,.
     4. Curcumin can significantly reduce type2diabetic rats'FFA TNF-a, thereby increasing sensitivity to insulin in type2diabetic rats, and improveing insulin resistance.
     5. Curcumin can significantly reduce liver weight and liver in type2diabetic rats index to ease their fatty liver. Its also can significantly reduce PTP1B expression and protein expression in type2diabetic rat liver, and can enhance IRS-1mRNA IRS-2mRNA expression,thereby improving hepatic insulin resistance in type2diabetic rats.
     6. Curcumin can significantly reduce PTP1B and IRS-1mRNA expression enhance GLUT4mRNA expression and protein expression, thereby improving muscle insulin resistance in type2diabetic rats.
     Conclusion:The treatment of T2DM with curcumin have a good effect. And the mechanism of that may be the herbs can inhibit the expression of PTP1B pathway.
引文
1. Bonora, E., Protection of pancreatic beta-cells:is it feasible? Nutrition, Metabolism and Cardiovascular Diseases,2008.18(1):p.74-83.
    2. Gonz a lez-S a nchez, J. L. and M. Serrano-R i os, Molecular basis of insulin action. Drug News Perspect,2007.20(8):p.527-531.
    3. Bengmark, S., Curcumin, an atoxic antioxidant and natural NF κ B, cyclooxygenase-2, lipooxygenase, and indueible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. Journal of Parenteral and Enteral Nutrition,2006.30(1):p.45-51.
    4. Gonzales, A.M. and R. A. Orlando, Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr Metab (Lond), 2008.5(1):p.17.
    5. Babu, P. S. and K. Srinivasan, Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Molecular and Cellular Biochemistry,1995.152(1):p.13-21.
    6. Mahesh, T., M. M. S. Balasubashini, and V. P. Menon, Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats:effect on lipid peroxidation. Therapie,2004.59(6):p.639-644.
    7. Babu, P. S. and K. Srinivasan, Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Molecular and Cellular Biochemistry,1997.166(1-2):p.169-175.
    8. Jain, S. K., J. Rains, and K. Jones, Effect of curcumin on protein glycosylation, lipid peroxidation, and oxygen radical generation in human red blood cells exposed to high glucose levels. Free Radical Biology and Medicine, 2006.41(1):p.92-96.
    9. Kumar, P. A., et al., Modulation of alpha-cry stall in chaperone activity in diabetic rat lens by curcumin. Mol Vis,2005.11:p.561-568.
    10. Kumar, P. A., et al., Elevated expression of a A-and a B-crystallins in streptozotocin-induced diabetic rat. Archives of biochemistry and biophysics, 2005.444(2):p.77-83.
    11.刘敏,et al.,黄芪多糖对KAy小鼠骨骼矾蛋白激酶B丝氨酸磷酸化的影响.武汉大学学报:医学版,2006.27(2):p.135-139.
    12.毛先睛,欧阳静萍,and吴勇,中药黄芪多糖对糖尿病大鼠心肌GLUT4表达的影响武汉大学学报:医学版,2005.26(4):p.457-459.
    13.吴德红,et al.,黄芪多糖对2型糖尿病大鼠肝脏AMPK苏氨酸磷酸化的影响。微循环学杂志,2009.19(3):p.1-3.
    14.刘毅,et al.,黄芪多糖对3T3-L1前脂肪细胞增殖和分化的影响.中西医结合学报,2007.5(4):p.421-421.
    15.王树海,et al.,黄芪多糖和小檗碱对3T3一L1脂肪细胞糖代谢及细胞分化的影响.中国中西医结合杂志,2004.24(10):p.926-928.
    16. Jang, S.-M., et al., Ursolic acid enhances the cellular immune system and pancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. International immunopharmacology,2009.9(1):p.113-119.
    17.罗兰,et al.,人参果总皂苷对高脂饲养大鼠胰岛素敏感指数的影响.中西医结合学报,2005.3(6):p.463-465.
    18. Jung, S., et al., Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem. J,2007.403:p. 243-250.
    19. Stevens, R. J., I.M. Stratton, and R. R. Holman, UKPDS58-modeling glucose exposure as a risk factor for photocoagulation in type 2 diabetes. Journal of Diabetes and its Complications,2002.16(6):p.371-376.
    20.陆在英and钟南山,内科学第七版2008,北京:人民卫生出版社.
    21. Johansen, K., Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes care,1999.22(1):p.33-37.
    22.李东辉and范丽波,大黄及其提取物治疗糖尿病肾病的实验研究进展.中国中西医结合肾病杂志,2007.7(12):p.741-742.
    23. Boden, G., Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes,1997.46(1):p.3-10.
    24.李小英and黄韵,代谢综合征发病机制研究进展.management [J],2007.7(4):p. 259-272.
    25. Howey, D. C., et al., [Lys (B28), Pro (B29)]-human insulin:a rapidly absorbed analogue of human insulin. Diabetes,1994.43(3):p.396-402.
    26. Dresner, A., et al., Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Journal of Clinical Investigation,1999.103(2):p.253-259.
    27. Tanti, J., et al. Alteration in insulin action:role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling, in Annales d'endocrinologie.2004:Elsevier.
    28.贾天柱,谢明,and许韵梅,日本对止血药及炭药研究简介.中国中药杂志,1994.19(9):p.541-542.
    29。周芳,et al.,蒲黄抗鹌鹑高脂血症及动脉辩样硬化的实验研究.中国实验方剂学杂志,2008(8):p.48-49.
    30.张嘉晴,周志泳,and左保华,蒲黄对高脂血症所致内皮损伤的保护作用.中药药理与临床,2004.19(4):p.20-22.
    31.朱铭金,生蒲黄治疗高脂血症60例疗效观察.九江医学,2002.17(4):p.218-218.
    32. Boden, G. and G. Shulman, Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. European journal of clinical investigation,2002.32 (s3):p.14-23.
    33.刘长锁and申竹芳,游离脂肪酸与胰岛素抵抗.中国药理学通报,2005.21(2):p.145-149.
    34.杨生and岳桂英,型糖尿病合并脂肪肝患者血清肿瘤坏死因子-α水平增高与胰岛素抵抗指数相关分析.世界华人消化杂志,2004.12(6):p.1485-1487.
    35.周婷婷and秦波,脂肪细胞因子与非酒精性脂肪肝和胰岛素抵抗关系的研究进展.世界华人消化杂志,2009.17(29):p.3014-3018.
    36. Miura, A., et al., Effect of tumor necrosis factor-a on insulin signal transduction in rat adipocytes:relation to PKC β and ζ translocation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1999.1449(3):p. 227-238.
    37. Steppan, C. M., et al., The hormone resist in links obesity to diabetes. Nature, 2001.409(6818):p.307-312.
    38.殷峻,et al.,小檗碱对实验大老鼠脂代谢的影响.中国糖尿病杂志,2004.12(3):p.215-218.
    39. Yin, J., et al., Effects of berberine on glucose metabolism in vitro. Metabolism,2002.51(11):p.1439-1443.
    40.周丽斌and杨颖,小檗碱对脂肪细胞糖代谢的影响.上海第二医科大学学报,2002.22(5):p.412-414.
    41.周丽斌,et al.,小檗碱改善高脂饮食大鼠的胰岛素抵抗,放射免疫学杂志,2005.18(3):p.198-200.
    42.周丽斌,et al.,小檗碱对脂肪细胞瘦素和抵抗素基因表达的影。中华内科杂志,2004.43(1):p.56-57.
    43. Leng, S.-h., F.-E. Lu, and L.-j. Xu, Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacologica Sinica,2004.25(4):p.496-502.
    44.殷峻and胡仁明,//小蘖碱的体外降糖作用.上海第二医科大学学报,2001.21(5):p.425-427.
    45.陈其明and谢明智,//小檗碱对正常小鼠血糖调节的影响.药学学报,1987.22(3):p.161-165.
    46.倪艳霞,et al.,黄连素治疗Ⅱ型糖尿病60例疗效观察及实验研究.中国中西医结合杂志,1998.8:p.711-713.
    47. Colagiuri, R., J. Brown, and K. Dain, Global Diabetes Plan 2011-2021.2011: International Diabetes Federation.
    48. Yang, W., et al., Prevalence of diabetes among men and women in China. New England Journal of Medicine,2010.362(12):p.1090-1101.
    49. Xu, Y., et al., Prevalence and control of diabetes in Chinese adults. JAMA, 2013.310(9):p.948-959.
    50. Sharma, A. and V. Chetty, Obesity, hypertension and insulin resistance. Acta Diabetologica,2005.42(1):p. s3-s8.
    51. Ahmad, F. and B. J. Goldstein, Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. Journal of Biological Chemistry,1997.272(1):p.448-457.
    52. Klupa, T., et al., Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13. 1-q13.2. Diabetes,2000.49(12):p.2212-2216.
    53. Tonks, N., et al. Protein tyrosine phosphatases:the problems of a growing family, in Cold Spring Harbor symposia on quantitative biology.1992:Cold Spring Harbor Laboratory Press.
    54. Schinner, S., et al., Molecular mechanisms of insulin resistance. Diabetic Medicine,2005.22(6):p.674-682.
    55. Withers, D. J. and M. White, Perspective:the insulin signaling system--a common link in the pathogenesis of type 2 diabetes. Endocrinology,2000.141(6): p.1917-1921.
    56. Ide, T., et al., SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nature cell biology,2004.6(4):p.351-357.
    57.程汉桥and马启明,糖尿病从痰湿论治的理论探讨.中国中医基础医学杂志,1999.5(4):p.49-50.
    58.周仲瑛,中医内科学[M].2002,北京:中国中医药出版社.
    59.龚燕冰,et al.,运用因子分析方法探索2型糖尿病证侯要素及其靶位特征.中医 杂志,2011.52(13):p.1100-1102.
    60.高思华,以中西医结合理论为指导,立足肝脾肾辨治糖尿病.中国中西医结合杂志,1994.14(10):p.622-623.
    61. Romero, R., et al., Stimulation of glucose transport by thyroid hormone in 3T3-L1 adipocytes:increased abundance of GLUTl and GLUT4 glucose transporter proteins. Journal of endocrinology,2000.164(2):p.187-195.
    62. Gimeno, R. E. and L. D. Klaman, Adipose tissue as an active endocrine organ: recent advances. Current opinion in pharmacology,2005.5(2):p.122-128.
    63. Tilg, H. and A. R. Moschen, Adipocytokines:mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology,2006.6(10):p.772-783.
    64. Kim, C. Y., et al., Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. The Journal of nutritional biochemistry, 2011.22(10):p.910-920.
    65.陈奇,中药药理研究方法学.2006:人民卫生出版社.
    66.叶华,2型糖尿病患者及其一级亲属和非糖尿病者骨骼肌的胰岛素信号传导.中国糖尿病杂志,2003.11(2):p.151-152.
    67. Klaman, L. D., et al., Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyros ine phosphatase IB-deficient mice. Molecular and cellular biology,2000.20(15):p.5479-5489.
    68. Katz, E., et al., The metabolic consequences of altered glucose transporter expression in transgenic mice. Journal of molecular medicine,1996.74(11):p. 639-652.
    69. Watson, R. T. and J. E. Pessin, Intracellular organization of insulin signaling and GLUT4 translocation. Recent progress in hormone research,2001. 56(1):p.175-194.
    70. Das, S. K. and S. C. Elbein, The genetic basis of type 2 diabetes. Cellscience, 2006.2(4):p.100.
    71. Kahn, B. B. and J. S. Flier, Obesity and insulin resistance. Journal of Clinical Investigation,2000.106(4):p.473-481.
    72. Zhang, S. Q., et al., Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Molecular cell,2004.13(3):p. 341-355.
    73. Kennedy, B. P. and C. Ramachandran, Protein tyrosine phosphatase-1B in diabetes. Biochemical pharmacology,2000.60(7):p.877-883.
    74. Ramachandran, C. and B. P. Kennedy, Protein tyrosine phosphatase IB:a novel target for type 2 diabetes and obesity. Current topics in medicinal chemistry, 2003.3(7):p.749-757.
    75. Xie, L., et al., Cellular effects of small molecule PTP1B inhibitors on insulin signaling. Biochemistry,2003.42(44):p.12792-12804.
    76. Pessin, J. E. and A. R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin resistance. Journal of Clinical Investigation,2000. 106(2):p.165-169.
    77. Yuan, L., R. Ziegler, and A. Hamann, Metformin modulates insulin post-receptor signaling transduction in chronically insulin-treated Heps G2 cells. Acta Pharmacologica Sinica,2003.24(1):p.55-60.
    78. Srinivasan, K., et al., Combination of high-fat diet-fed and low-dose streptozotocin-treated rat:a model for type 2 diabetes and pharmacological screening. Pharmacological Research,2005.52(4):p.313-320.
    79. Peterson, R. G., The Zucker diabetic fatty (ZDF) rat. Animal Models of Diabetes:a primer,2001:p.109-128.
    80.杨李,et al.,链脲佐菌素和高脂高糖饲料在大鼠体内的相互作用及造模应用.实用医学杂志,2007.23(18):p.2845-2846.
    81. Huang, B. W., et al., The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes, Obesity and Metabolism,2004.6(2):p.120-126.
    82. Lameloise, N., et al., Uncoupling protein 2:a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes,2001. 50(4):p.803-809.
    83. Haffner, S. M., et al., Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors:the Insulin Resistance Atherosclerosis Study. Diabetes care,1999.22(4):p.562-568.
    84.李秀钧,胰岛素抵抗及胰岛素抵抗综合征研究展望.中华内分泌代谢杂志,2000.16(5):p.274-276.
    85.郭啸华and刘志红,高糖高脂饮食诱导的2型糖尿病大鼠模型及其肾病特点,中国糖尿病杂志,2002.10(5):p.290-294.
    86. Reaven, G. M., Role of insulin resistance in human disease. Diabetes,1988. 37(12):p.1595-1607.
    87. Brindley, D. N., et al., Tumor necrosis factor-α and ceramides in insulin resistance. Lipids,1999.34(1):p. S85-S88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700