基于中药资源的计算机辅助药物分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着越来越多的天然产物成功地通过FDA认证而上市,中药(Traditional Chinese Medicines,TCMs)作为天然产物的重要组成部分,在现代药物研发中受到了越来越多的关注和重视。中药用于治疗疾病的主要形式是通过含有多种中草药植物的中药复方来实现的,因此人们普遍认为,中草药可以作为药物研发很好的类药化合物来源。从传统中草药中寻找到相关靶点的潜在活性化合物并确定其药理活性已经成为制药公司药物开发的一个重要途径。人们对基于中草药资源的药物研发已经做过了大量的尝试和研究,但我们对中草药化合物的分子的性质、结构以及成药性特征还缺乏深入的了解。此外,相比较于西药治病理论,大部分中草药治疗疾病的机制都还不够清晰,能否从分子水平阐述中草药治疗相关疾病的作用机制是非常重要的研究课题。最后,如何从中草药化合物中筛选得到相关靶点的潜在活性化合物也是一个热点研究方向。
     本论文系统开展了基于中草药有效成分的计算机辅助药物分子设计研究。首先,我们系统比较了药物数据库MDDR、非药数据库ACD和中草药化合物数据库(TCMCD)中化合物的物理化学性质以及结构特征的差异。结果表明,相比MDDR和ACD,TCMCD中的化合物性质分布更为广泛并且结构更为复杂和新颖。同时,我们发现基于简单性质的类药性预测规则预测能力较差。为了对中草药化合物的类药性进行定量评价,我们用机器学习方法,包括朴素贝叶斯和递归分割方法,构建了精确的类药性定量预测模型。结果表明,基于分子理化性质描述符构建的类药性模型的预测精度较低,而引入了分子指纹描述符后,类药性模型的预测精度有了较大的提升。同时,我们发现类药性模型的预测能力与训练集的大小以及构成有着直接的关系,用所构建的最为可靠的类药性模型对中草药化合物数据库进行了类药性的评价,超过60%的中草药化合物被预测为类药,表明TCMCD从统计上讲是类药的,可以作为药物研发的一个很好的类药化合物来源。
     中药治疗疾病主要是通过由多种中草药植物所组成的中药复方的形式发挥作用,因此,由大量中药有效成分构成的中药复方的治疗疾病的机制很不清晰。为了从分子水平阐述中草药复方治疗疾病的机制,我们以治疗Ⅱ型糖尿病中药复方为例进行研究。首先,收集已知治疗Ⅱ型糖尿病的中药复方中含有的有效成分化合物以及与Ⅱ型糖尿病相关的靶点。随后采用分子对接、药效团映射以及机器学习的方法筛选出各靶点的潜在活性化合物。通过构建潜在活性化合物和靶点的相互作用网络,从一定程度上揭示了中草药复方治疗Ⅱ型糖尿病的机制:中药复方中的大部分有效成分只能跟单一靶点形成相互作用,构成治疗Ⅱ型糖尿病的主要作用力,其次,中药复方中的少部分化合物能和多个Ⅱ型糖尿病相关靶点作用,发挥治疗糖尿病的次要作用,协同增强治疗糖尿病的效果,最后,中草药中的部分化合物不与Ⅱ型糖尿病相关靶点形成直接的相互作用,而是通过其他的一些药理活性,如去自由基功能/抗氧化能力、抗菌能力来协助治疗糖尿病及其并发症。所得到的这些结论能够较好的与经典中医药治病理论“君臣佐使”相吻合。
     为了从中草药化合物数据库TCMCD中筛选得到相关靶点理想的潜在活性化合物,我们以激酶靶点ROCK1为例展开研究。考虑到蛋白柔性对虚拟筛选结果的影响,我们用机器学习方法整合ROCK1靶点多个复合物结构所得到的分子对接和药效团模型的预测结果,构建了新颖的并行虚拟筛选策略并对其预测能力进行了评测。研究结果表明,相比较于基于单个复合物结构的分子对接或药效团模型的预测结果,整合的虚拟筛选策略更为可靠。随后,用构建的并行虚拟筛选策略对中草药化合物数据库进行了虚拟筛选,得到了53个结构新颖的ROCK1潜在活性化合物。这些化合物可以作为理想的ROCK1潜在活性化合物来进行后续的研究。所构建的并行虚拟筛选策略也可以作为一个可靠的工具用于药物筛选。
In recent years, many drugs approved by the Food and Drug Administration (FDA)directly come from natural products. As an important source of natural products,traditional Chinese medicines (TCMs) are gaining more and more attention in moderndrug discovery pipelines. The classic TCMs are primarily based on a large number ofherbal formulae that are used for the treatment of a wide variety of diseases. It isbelieved that TCMs are a good source of drug-like compounds. Discovery of newbioactive compounds from herbs used in TCMs and identification of theirpharmacological effects are becoming a promising way for finding new drugs in thepharmaceutical industry. However, until now the in-depth analyses of compoundsidentified in TCMs are still lacking. For example, we do not have in-depthunderstanding about the characteristics of the physicochemical properties, structures anddrug-likeness of the compounds in TCMs. Besides, compared with theory of westernmedicine treatment, the mechanism of TCMs for curing disease is not clear. Uncoveringthe underlying action mechanisms of TCMs for combating diseases at the molecularlevel is an important topic. At last, how to identify promising active compounds moreeffective for targets of interest is also a research hotspot.
     In order to promote the development and modernization of TCMs, the systematicalstudies on the computer-aided drug design (CADD) based on the compounds in TMCswere reported in our thesis. First, the molecular properties and structural features amongthe drug-like compounds in MDDR, the non-drug-like compounds in ACD and thenatural compounds in TCMCD were investigated systematically. The resultsdemonstrated that, compared with the compounds in MDDR and ACD, the naturalcompounds in TCMCD had more diverse property distribution, novel and morecomplex structural features. In addition, the drug-likeness filters based on simplemolecular properties and/or structural features are unreliable and have low predictionaccuracy. In order to construct more reliable theoretical models for drug-likeness andevaluate the drug-likeness of TCMCD, machine learning techniques, including na ve Bayesian classification and recursive partitioning methods were used. The drug-likenessmodels based on molecular physicochemical properties cannot give satisfactoryprediction accuracy. By adding molecular fingerprints, the prediction power can beimproved substantially. Besides, it can be found that the prediction accuracy of thedrug-likeness model is closely related to the size and the balance degree of the trainingset. Then, the best drug-likeness model to employed to evaluate the drug-likeness of thecompounds in TCMCD and found that more than60%compounds were predicted to bedrug-like. The results indicated that the TCMCD is drug-like statistically and believedto be a good source of drug-like compounds.
     It is well known that basic form of TCMs for curing diseases is TCM formulae (orprescriptions), which is a mixture of special herbs. Therefore, it is not clear that how alarge number of chemical compounds of TCM formulae combat diseases. In order tounderstand the interaction mechanism of TCM formulae at the molecular level, weinvestigated the theory of TCM formulae for treating type2diabetes (T2DM). First, wecollected the T2DM related targets and the chemical compounds in TCM formulae fortreating T2DM. By employing structure-based virtual screening approaches includingmolecular docking, pharmacophore mapping, and machine learning approaches toidentify potential active compounds for T2DM targets. Then, we built the interactionnetwork between the potential active compounds and T2DM related targets. Byanalyzing the compound-target network, we can conclude the mechanism of TCMformulae for curing T2DM as follows: most chemical compounds in TCM formulae canonly interact with an individual target, forming the leading fighting force to combatT2DM. Then, those potential multi-target compounds may influence the T2DM-relatedtargets, forming additional forces to enhance the therapeutic effects. At last, a portion ofthe compounds are responsible for remedying the other related symptoms that areproved to be related to T2DM, such as free radical scavenging/antioxidant andantibacterial activities. All of these observations can be seen as a proper way to revealthe classical theory “Monarch, Minster, Assistant, and Guide” in TCM prescriptions atthe molecular level.
     In order to identify potential active compounds from TCMCD for targets ofinterest and considering the influence of protein flexibility in virtual screening, we havedesigned and evaluated a parallel virtual screening protocol by integrating the predictionresults from molecular docking and complex-based pharmacophore searching based onmultiple protein structures of ROCK1. It is encouraging to find that the integrated classifiers illustrate much better performance than molecular docking or complex-basedpharmacophore searching based on any single ROCK1structure. Then, the most reliableclassifier was utilized to identify potential inhibitors of ROCK1from TCMs. Thepotential active compounds are novel compared with the known ROCK1inhibitors, andthey can be served as promising starting points for the development of ROCK1inhibitors. The novel parallel VS strategy developed here is quite reliable and can beused as a powerful tool in drug screening.
引文
1. Dobson, C. M. Chemical space and biology. Nature2004,432,824-828.
    2. Hou, T. J.; Xu, X. J. Recent development and application of virtual screening indrug discovery: An overview. Current Pharmaceutical Design2004,10,1011-1033.
    3. Anson, B. D.; Ma, J. Y.; He, J. Q. Identifying Cardiotoxic Compounds. GeneticEngineering&Biotechnology News2009,29,34-35.
    4. Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? NatureReviews Drug Discovery2004,3,711-715.
    5. Prentis, R. A.; Lis, Y.; Walker, S. R. Pharmaceutical innovation by the sevenUK-owned pharmaceutical companies (1964-1985). British Journal of ClinicalPharmacology1988,25,387-396.
    6. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental andcomputational approaches to estimate solubility and permeability in drugdiscovery and development settings. Adv Drug Deliver Rev1997,23,3-25.
    7. Leeson, P. D.; Empfield, J. R. Reducing the Risk of Drug Attrition Associated withPhysicochemical Properties. In Annual Reports in Medicinal Chemistry, Vol45,Macor, J. E., Ed. Vol.45, pp393-407.
    8. Ajay; Walters, W. P.; Murcko, M. A. Can we learn to distinguish between"drug-like" and "nondrug-like" molecules? Journal of Medicinal Chemistry1998,41,3314-3324.
    9. Sadowski, J.; Kubinyi, H. A scoring scheme for discriminating between drugs andnondrugs. Journal of Medicinal Chemistry1998,41,3325-3329.
    10. Frimurer, T. M.; Bywater, R.; Naerum, L.; Lauritsen, L. N.; Brunak, S. Improvingthe odds in discriminating "Drug-like" from "Non Drug-like" compounds. Journalof Chemical Information and Computer Sciences2000,40,1315-1324.
    11. Cortes, C.; Vapnik, V. Support-vector networks. Machine learning1995,20,273-297.
    12. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of supportvector machine and artificial neural network systems for drug/nondrugclassification. Journal of Chemical Information and Computer Sciences2003,43,1882-1889.
    13. Zernov, V. V.; Balakin, K. V.; Ivaschenko, A. A.; Savchuk, N. P.; Pletnev, I. V.Drug discovery using support vector machines. The case studies of drug-likeness,agrochemical-likeness, and enzyme inhibition predictions. Journal of ChemicalInformation and Computer Sciences2003,43,2048-2056.
    14. Muller, K. R.; Ratsch, G.; Sonnenburg, S.; Mika, S.; Grimm, M.; Heinrich, N.Classifying 'drug-likeness' with kernel-based learning methods. Journal ofChemical Information and Modeling2005,45,249-253.
    15. Li, Q. L.; Bender, A.; Pei, J. F.; Lai, L. H. A large descriptor set and a probabilistickernel-based classifier significantly improve druglikeness classification. Journal ofChemical Information and Modeling2007,47,1776-1786.
    16. Young, S. S.; Hawkins, D. M. Using recursive partitioning to analyze a large sardata set. Sar and Qsar in Environmental Research1998,8,183-193.
    17. Wagener, M.; van Geerestein, V. J. Potential drugs and nondrugs: Prediction andidentification of important structural features. Journal of Chemical Informationand Computer Sciences2000,40,280-292.
    18. Walters, W. P.; Murcko, M. A. Prediction of 'drug-likeness'. Adv Drug Deliver Rev2002,54,255-271.
    19. Ertl, P.; Roggo, S.; Schuffenhauer, A. Natural product-likeness score and itsapplication for prioritization of compound libraries. Journal of ChemicalInformation and Modeling2008,48,68-74.
    20. Tian, S.; Li, Y.; Wang, J.; Xu, X.; Xu, L.; Wang, X.; Chen, L.; Hou, T.Drug-likeness analysis of traditional Chinese medicines:2. Characterization ofscaffold architectures for drug-like compounds, non-drug-like compounds, andnatural compounds from traditional Chinese medicines. Journal ofCheminformatics2013,5.
    21. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A knowledge-based approachin designing combinatorial or medicinal chemistry libraries for drug discovery.1.A qualitative and quantitative characterization of known drug databases. Journal ofCombinatorial Chemistry1999,1,55-68.
    22. Wenlock, M. C.; Austin, R. P.; Barton, P.; Davis, A. M.; Leeson, P. D. Acomparison of physiochemical property profiles of development and marketed oraldrugs. Journal of Medicinal Chemistry2003,46,1250-1256.
    23. Bhal, S. K.; Kassam, K.; Peirson, I. G.; Pearl, G. M. The rule of five revisited:Applying log D in place of log p in drug-likeness filters. Molecular Pharmaceutics2007,4,556-560.
    24. Leeson, P. D.; Davis, A. M. Time-related differences in the physical propertyprofiles of oral drugs. Journal of Medicinal Chemistry2004,47,6338-6348.
    25. Vieth, M.; Siegel, M. G.; Higgs, R. E.; Watson, I. A.; Robertson, D. H.; Savin, K.A.; Durst, G. L.; Hipskind, P. A. Characteristic physical properties and structuralfragments of marketed oral drugs. Journal of Medicinal Chemistry2004,47,224-232.
    26. Proudfoot, J. R. The evolution of synthetic oral drug properties. Bioorganic&Medicinal Chemistry Letters2005,15,1087-1090.
    27. Bemis, G. W.; Murcko, M. A. The properties of known drugs.1. Molecularframeworks. Journal of Medicinal Chemistry1996,39,2887-2893.
    28. Bemis, G. W.; Murcko, M. A. Properties of known drugs.2. Side chains. Journal ofMedicinal Chemistry1999,42,5095-5099.
    29. Wang, J.; Ramnarayan, K. Toward designing drug-like libraries: A novelcomputational approach for prediction of drug feasibility of compounds. Journalof Combinatorial Chemistry1999,1,524-533.
    30. Wang, J.; Hou, T. Drug and drug candidate building block analysis. Journal ofMedicinal Chemistry2010,50,55-67.
    31. Wang, J. M.; Lai, L. H.; Tang, Y. Q. Structural features of toxic chemicals forspecific toxicity. Journal of Chemical Information and Computer Sciences1999,39,1173-1189.
    32. Muegge, I. Selection criteria for drug-like compounds. Medicinal ResearchReviews2003,23,302-321.
    33. Lawrence, R. N. Rediscovering natural product biodiversity. Drug DiscoveryToday1999,4,449-451.
    34. Newman, D. J.; Cragg, G. M. Natural Products As Sources of New Drugs over the30Years from1981to2010. Journal of Natural Products2012,75,311-335.
    35. Wetzel, S.; Schuffenhauer, A.; Roggo, S.; Ertl, P.; Waldmann, H. Cheminformaticanalysis of natural products and their chemical space. Chimia2007,61,355-360.
    36. Boldi, A. M. Libraries from natural product-like scaffolds. Current Opinion inChemical Biology2004,8,281-286.
    37. Feher, M.; Schmidt, J. M. Property distributions: Differences between drugs,natural products, and molecules from combinatorial chemistry. Journal ofChemical Information and Computer Sciences2003,43,218-227.
    38. Zheng, S. X.; Luo, X. M.; Chen, G.; Zhu, W. L.; Shen, J. H.; Chen, K. X.; Jiang, H.L. A new rapid and effective chemistry space filter in recognizing a druglikedatabase. Journal of Chemical Information and Modeling2005,45,856-862.
    39. Lee, M. L.; Schneider, G. Scaffold architecture and pharmacophoric properties ofnatural products and trade drugs: Application in the design of naturalproduct-based combinatorial libraries. Journal of Combinatorial Chemistry2001,3,284-289.
    40. Grabowski, K.; Schneider, G. Properties and architecture of drugs and naturalproducts revisited. Current Chemical Biology2007,1,115-127.
    41. Newman, D. J.; Cragg, G. M.; Snader, K. M. The influence of natural productsupon drug discovery. Natural Product Reports2000,17,215-234.
    42. Ji, H.-F.; Li, X.-J.; Zhang, H.-Y. Natural products and drug discovery Canthousands of years of ancient medical knowledge lead us to new and powerfuldrug combinations in the fight against cancer and dementia? Embo Reports2009,10,194-200.
    43. Zhao, J.; Jiang, P.; Zhang, W. Molecular networks for the study of TCMPharmacology. Briefings in Bioinformatics2009,11,417-430.
    44. Lukman, S.; He, Y.; Hui, S.-C. Computational methods for Traditional ChineseMedicine: A survey. Computer Methods and Programs in Biomedicine2007,88,283-294.
    45. Chen, X.; Ung, C. Y.; Chen, Y. Z. Can an in silico drug-target search method beused to probe potential mechanisms of medicinal plant ingredients? NaturalProduct Reports2003,20,432-444.
    46. Ehrman, T. M.; Barlow, D. J.; Hylands, P. J. In silico search for multi-targetanti-inflammatories in Chinese herbs and formulas. Bioorganic&MedicinalChemistry2010,18,2204-2218.
    47. Harvey, A. L.; Clark, R. L.; Mackay, S. P.; Johnston, B. F. Current strategies fordrug discovery through natural products. Expert Opinion on Drug Discovery2010,5,559-568.
    48. Schuster, D.; Wolber, G. Identification of Bioactive Natural Products byPharmacophore-Based Virtual Screening. Current Pharmaceutical Design2010,16,1666-1681.
    49. Chen, K.-C.; Chang, K.-W.; Chen, H.-Y.; Chen, C. Y.-C. Traditional Chinesemedicine, a solution for reducing dual stroke risk factors at once? MolecularBiosystems2011,7,2711-2719.
    50. Gu, J.; Zhang, H.; Chen, L.; Xu, S.; Yuan, G.; Xu, X. Drug-target network andpolypharmacology studies of a Traditional Chinese Medicine for type II diabetesmellitus. Computational Biology and Chemistry2011,35,293-297.
    51. Tou, W. I.; Chen, C. Y.-C. In Silico Investigation of Potential Src Kinase Ligandsfrom Traditional Chinese Medicine. PLoS One2012,7.
    52. Zhang, S.; Lu, W.; Liu, X.; Diao, Y.; Bai, F.; Wang, L.; Shan, L.; Huang, J.; Li, H.;Zhang, W. Fast and effective identification of the bioactive compounds and theirtargets from medicinal plants via computational chemical biology approach.Medchemcomm2011,2,471-477.
    53. Rollinger, J. M.; Schuster, D.; Danzl, B.; Schwalger, S.; Markt, P.; Schmidtke, M.;Gertsch, J.; Raduner, S.; Wolber, G.; Langer, T.; Stuppner, H. In silico TargetFishing for Rationalized Ligand Discovery Exemplified on Constituents of Rutagraveolens. Planta Medica2009,75,195-204.
    54. Shen, M.; Tian, S.; Li, Y.; Li, Q.; Xu, X.; Wang, J.; Hou, T. Drug-likeness analysisof traditional Chinese medicines:1. property distributions of drug-like compounds,non-drug-like compounds and natural compounds from traditional Chinesemedicines. Journal of Cheminformatics2012,4,31.
    55. Tian, S.; Wang, J.; Li, Y.; Xu, X.; Hou, T. Drug-likeness Analysis of TraditionalChinese Medicines: Prediction of Drug-likeness Using Machine LearningApproaches. Molecular Pharmaceutics2012,9,2875-2886.
    1. Hou, T. J.; Xu, X. J. Recent development and application of virtual screening indrug discovery: An overview. Current Pharmaceutical Design2004,10,1011-1033.
    2. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental andcomputational approaches to estimate solubility and permeability in drugdiscovery and development settings. Advanced Drug Delivery Reviews1997,23,3-25.
    3. Oprea, T. I. Property distribution of drug-related chemical databases. Journal ofComputer-Aided Molecular Design2000,14,251-264.
    4. Walters, W. P.; Namchuk, M. Designing screens: how to make your hits a hit.Nature Reviews Drug Discovery2003,2,259-266.
    5. Muegge, I.; Heald, S. L.; Brittelli, D. Simple selection criteria for drug-likechemical matter. Journal of Medicinal Chemistry2001,44,1841-1846.
    6. Zheng, S. X.; Luo, X. M.; Chen, G.; Zhu, W. L.; Shen, J. H.; Chen, K. X.; Jiang, H.L. A new rapid and effective chemistry space filter in recognizing a druglikedatabase. Journal of Chemical Information and Modeling2005,45,856-862.
    7. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A knowledge-based approachin designing combinatorial or medicinal chemistry libraries for drug discovery.1.A qualitative and quantitative characterization of known drug databases. Journal ofCombinatorial Chemistry1999,1,55-68.
    8. Feher, M.; Schmidt, J. M. Property distributions: Differences between drugs,natural products, and molecules from combinatorial chemistry. Journal ofChemical Information and Computer Sciences2003,43,218-227.
    9. Biswas, D.; Roy, S.; Sen, S. A simple approach for indexing the oral druglikenessof a compound: Discriminating druglike compounds from nondruglike ones.Journal of Chemical Information and Modeling2006,46,1394-1401.
    10. Xu, J.; Stevenson, J. Drug-like index: A new approach to measure drug-likecompounds and their diversity. Journal of Chemical Information and ComputerSciences2000,40,1177-1187.
    11. Bemis, G. W.; Murcko, M. A. Properties of known drugs.1. Molecular frameworks.Journal of Medicinal Chemistry1996,39,2887-2893.
    12. Bemis, G. W.; Murcko, M. A. Properties of known drugs.2. Side chains. Journal ofMedicinal Chemistry1999,42,5095-5099.
    13. Wang, J. M.; Hou, T. J. Drug and Drug Candidate Building Block Analysis.Journal of Chemical Information and Modeling2010,50,55-67.
    14. Ajay; Walters, W. P.; Murcko, M. A. Can we learn to distinguish between"drug-like" and "nondrug-like" molecules? Journal of Medicinal Chemistry1998,41,3314-3324.
    15. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of supportvector machine and artificial neural network systems for drug/nondrugclassification. Journal of Chemical Information and Computer Sciences2003,43,1882-1889.
    16. Hutter, M. C. Separating drugs from nondrugs: A statistical approach using atompair distributions. Journal of Chemical Information and Modeling2007,47,186-194.
    17. Li, Q. L.; Bender, A.; Pei, J. F.; Lai, L. H. A large descriptor set and a probabilistickernel-based classifier significantly improve druglikeness classification. Journal ofChemical Information and Modeling2007,47,1776-1786.
    18. Zernov, V. V.; Balakin, K. V.; Ivaschenko, A. A.; Savchuk, N. P.; Pletnev, I. V.Drug discovery using support vector machines. The case studies of drug-likeness,agrochemical-likeness, and enzyme inhibition predictions. Journal of ChemicalInformation and Computer Sciences2003,43,2048-2056.
    19. Corson, T. W.; Crews, C. M. Molecular understanding and modern application oftraditional medicines: Triumphs and trials. Cell2007,130,769-774.
    20. Normile, D. Asian medicine: The new face of traditional Chinese medicine.Science2003,299,188-190.
    21. Wang, S.; Li, Y.; Devinsky, O.; Schachter, S. C.; Pacia, S. Traditional chinesemedicine. Demos Medical Pub.: New York, NY, USA:2005; p177-182.
    22. Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over thelast25years. Journal of Natural Products2007,70,461-477.
    23. Qiao, X. B.; Hou, T. J.; Zhang, W.; Guo, S. L.; Xu, S. J. A3D structure database ofcomponents from Chinese traditional medicinal herbs. Journal of ChemicalInformation and Computer Sciences2002,42,481-489.
    24. MOE.2009.10; Chemical Computing Group www.chemcomp.com: Montreal,2009.
    25. Sadowski, J.; Kubinyi, H. A scoring scheme for discriminating between drugs andnondrugs. Journal of Medicinal Chemistry1998,41,3325-3329.
    26. Wagener, M.; van Geerestein, V. J. Potential drugs and nondrugs: Prediction andidentification of important structural features. Journal of Chemical Informationand Computer Sciences2000,40,280-292.
    27. Csizmadia, F.; TsantiliKakoulidou, A.; Panderi, I.; Darvas, F. Prediction ofdistribution coefficient from structure.1. Estimation method. Journal ofPharmaceutical Sciences1997,86,865-871.
    28. Kier, B. B.; Hall, L. H. Molecular Connectivity Indices in Chemistry and DrugResearch. Academic Press: New York, NY, USA: New York,1976; Vol.14.
    29. Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.; Freidinger, R. M.; Whitter,W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.;Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J.Methods for Drug Discovery-Development of Potent, Selective, Orally EffectiveCholecystokinin Antagonists. Journal of Medicinal Chemistry1988,31,2235-2246.
    30. Hou, T. J.; Xu, X. J. ADME evaluation in drug discovery.3. Modeling blood-brainbarrier partitioning using simple molecular descriptors. Journal of ChemicalInformation and Computer Sciences2003,43,2137-2152.
    31. Hou, T. J.; Zhang, W.; Xia, K.; Qiao, X. B.; Xu, X. J. ADME evaluation in drugdiscovery.5. Correlation of Caco-2permeation with simple molecular properties.Journal of Chemical Information and Computer Sciences2004,44,1585-1600.
    32. Hou, T. J.; Wang, J. M.; Zhang, W.; Wang, W.; Xu, X. Recent advances incomputational prediction of drug absorption and permeability in drug discovery.Current Medicinal Chemistry2006,13,2653-2667.
    33. Hou, T. J.; Wang, J. M.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery.7. Prediction of oral absorption by correlation and classification. Journal ofChemical Information and Modeling2007,47,208-218.
    34. Hou, T.; Wang, J. Structure-ADME relationship: still a long way to go? ExpertOpinion on Drug Metabolism&Toxicology2008,4,759-770.
    35. Hou, T. J.; Li, Y. Y.; Zhang, W.; Wang, J. M. Recent Developments of In SilicoPredictions of Intestinal Absorption and Oral Bioavailability. CombinatorialChemistry&High Throughput Screening2009,12,497-506.
    36. Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery.4.Prediction of aqueous solubility based on atom contribution approach. Journal ofChemical Information and Computer Sciences2004,44,266-275.
    1. Lawrence, R. N. Rediscovering natural product biodiversity. Drug Discovery Today1999,4,449-451.
    2. Newman, D. J.; Cragg, G. M.; Snader, K. M. Natural products as sources of newdrugs over the period1981-2002. Journal of Natural Products2003,66,1022-1037.
    3. Boldi, A. M. Libraries from natural product-like scaffolds. Current Opinion inChemical Biology2004,8,281-286.
    4. Wetzel, S.; Schuffenhauer, A.; Roggo, S.; Ertl, P.; Waldmann, H. Cheminformaticanalysis of natural products and their chemical space. Chimia2007,61,355-360.
    5. Newman, D. J.; Cragg, G. M. Natural products as sources of new drugs over thelast25years. Journal of Natural Products2007,70,461-477.
    6. Breinbauer, R.; Manger, M.; Scheck, M.; Waldmann, H. Natural product guidedcompound library development. Current Medicinal Chemistry2002,9,2129-2145.
    7. Grabowski, K.; Schneider, G. Properties and architecture of drugs and naturalproducts revisited. Current Chemical Biology2007,1,115-127.
    8. Krier, M.; Bret, G.; Rognan, D. Assessing the scaffold diversity of screeninglibraries. Journal of Chemical Information and Modeling2006,46,512-524.
    9. Lee, M. L.; Schneider, G. Scaffold architecture and pharmacophoric properties ofnatural products and trade drugs: Application in the design of naturalproduct-based combinatorial libraries. Journal of Combinatorial Chemistry2001,3,284-289.
    10. Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.; Freidinger, R. M.; Whitter,W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.;Cerino, D. J.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J.Methods for Drug Discovery-Development of Potent, Selective, Orally EffectiveCholecystokinin Antagonists. Journal of Medicinal Chemistry1988,31,2235-2246.
    11. Ertl, P.; Jelfs, S.; Muhlbacher, J.; Schuffenhauer, A.; Selzer, P. Quest for the rings.In silico exploration of ring universe to identify novel bioactive heteroaromaticscaffolds. Journal of Medicinal Chemistry2006,49,4568-4573.
    12. Bohm, H. J.; Flohr, A.; Stahl, M. Scaffold hopping. Drug discovery today:Technologies2004,1,217-224.
    13. Bemis, G. W.; Murcko, M. A. The properties of known drugs.1. Molecularframeworks. Journal of Medicinal Chemistry1996,39,2887-2893.
    14. Bemis, G. W.; Murcko, M. A. Properties of known drugs.2. Side chains. Journal ofMedicinal Chemistry1999,42,5095-5099.
    15. Broughton, H. B.; Watson, I. A. Selection of heterocycles for drug design. Journalof Molecular Graphics&Modelling2004,23,51-58.
    16. Koch, M. A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt,A.; Ertl, P.; Waldmann, H. Charting biologically relevant chemical space: Astructural classification of natural products (SCONP). Proceedings of the NationalAcademy of Sciences of the United States of America2005,102,17272-17277.
    17. Lipkus, A. H. Exploring chemical rings in a simple topological-descriptor space.Journal of Chemical Information and Computer Sciences2001,41,430-438.
    18. Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M. A.; Waldmann, H. Thescaffold tree-Visualization of the scaffold universe by hierarchical scaffoldclassification. Journal of Chemical Information and Modeling2007,47,47-58.
    19. Agrafiotis, D. K.; Wiener, J. J. M. Scaffold Explorer: An Interactive Tool forOrganizing and Mining Structure-Activity Data Spanning Multiple Chemotypes.Journal of Medicinal Chemistry2010,53,5002-5011.
    20. Wetzel, S.; Klein, K.; Renner, S.; Rauh, D.; Oprea, T. I.; Mutzel, P.; Waldmann, H.Interactive exploration of chemical space with Scaffold Hunter. Nature ChemicalBiology2009,5,581-583.
    21. Wang, J.; Hou, T. Drug and drug candidate building block analysis. Journal ofMedicinal Chemistry2009,50,55-67.
    22. Qiao, X. B.; Hou, T. J.; Zhang, W.; Guo, S. L.; Xu, S. J. A3D structure database ofcomponents from Chinese traditional medicinal herbs. Journal of ChemicalInformation and Computer Sciences2002,42,481-489.
    23. Langdon, S. R.; Brown, N.; Blagg, J. Scaffold Diversity of Exemplified MedicinalChemistry Space. Journal of Chemical Information and Modeling2011,51,2174-2185.
    24. MOE.2009.10; Chemical Computing Group www.chemcomp.com: Montreal,2009.
    25. Shneiderman, B. Tree Visualization with Tree-Maps-2-D Space-Filling Approach.Acm Transactions on Graphics1992,11,92-99.
    26. TreeMap v.1.9.21; Macrofocus, http://www.macrofocus.com,2011.
    27. Rogers, D.; Brown, R. D.; Hahn, M. Using extended-connectivity fingerprints withLaplacian-modified Bayesian analysis in high-throughput screening follow-up.Journal of Biomolecular Screening2005,10,682-686.
    1. Dobson, C. M. Chemical space and biology. Nature2004,432,824-828.
    2. Anson, B. D.; Ma, J. Y.; He, J. Q. Identifying Cardiotoxic Compounds. GeneticEngineering&Biotechnology News2009,29,34-35.
    3. Leeson, P. D.; Springthorpe, B. The influence of drug-like concepts ondecision-making in medicinal chemistry. Nature Reviews Drug Discovery2007,6,881-890.
    4. Muegge, I. Selection criteria for drug-like compounds. Medicinal ResearchReviews2003,23,302-321.
    5. Clark, D. E.; Pickett, S. D. Computational methods for the prediction of'drug-likeness'. Drug Discovery Today2000,5,49-58.
    6. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental andcomputational approaches to estimate solubility and permeability in drug discoveryand development settings. Advanced Drug Delivery Reviews2001,46,3-26.
    7. Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A knowledge-based approachin designing combinatorial or medicinal chemistry libraries for drug discovery.1. Aqualitative and quantitative characterization of known drug databases. Journal ofCombinatorial Chemistry1999,1,55-68.
    8. Oprea, T. I. Property distribution of drug-related chemical databases. Journal ofComputer-Aided Molecular Design2000,14,251-264.
    9. Bemis, G. W.; Murcko, M. A. Properties of known drugs.1. Molecular frameworks.Journal of Medicinal Chemistry1996,39,2887-2893.
    10. Bemis, G. W.; Murcko, M. A. Properties of known drugs.2. Side chains. Journal ofMedicinal Chemistry1999,42,5095-5099.
    11. Wang, J. M.; Lai, L. H.; Tang, Y. Q. Structural features of toxic chemicals forspecific toxicity. Journal of Chemical Information and Computer Sciences1999,39,1173-1189.
    12. Lee, M. L.; Schneider, G. Scaffold architecture and pharmacophoric properties ofnatural products and trade drugs: Application in the design of naturalproduct-based combinatorial libraries. Journal of Combinatorial Chemistry2001,3,284-289.
    13. Siegel, M. G.; Vieth, M. Drugs in other drugs: a new look at drugs as fragments.Drug Discovery Today2007,12,71-79.
    14. Wang, J. M.; Hou, T. J. Drug and Drug Candidate Building Block Analysis.Journal of Chemical Information and Modeling2010,50,55-67.
    15. Cortes, C.; Vapnik, V. Support-vector networks. Machine learning1995,20,273-297.
    16. Ajay; Walters, W. P.; Murcko, M. A. Can we learn to distinguish between"drug-like" and "nondrug-like" molecules? Journal of Medicinal Chemistry1998,41,3314-3324.
    17. Sadowski, J.; Kubinyi, H. A scoring scheme for discriminating between drugs andnondrugs. Journal of Medicinal Chemistry1998,41,3325-3329.
    18. Young, S. S.; Hawkins, D. M. Using recursive partitioning to analyze a large sardata set. Sar and Qsar in Environmental Research1998,8,183-193.
    19. Wagener, M.; van Geerestein, V. J. Potential drugs and nondrugs: Prediction andidentification of important structural features. Journal of Chemical Informationand Computer Sciences2000,40,280-292.
    20. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G. Comparison of supportvector machine and artificial neural network systems for drug/nondrugclassification. Journal of Chemical Information and Computer Sciences2003,43,1882-1889.
    21. Zernov, V. V.; Balakin, K. V.; Ivaschenko, A. A.; Savchuk, N. P.; Pletnev, I. V. Drugdiscovery using support vector machines. The case studies of drug-likeness,agrochemical-likeness, and enzyme inhibition predictions. Journal of ChemicalInformation and Computer Sciences2003,43,2048-2056.
    22. Muller, K. R.; Ratsch, G.; Sonnenburg, S.; Mika, S.; Grimm, M.; Heinrich, N.Classifying 'drug-likeness' with kernel-based learning methods. Journal ofChemical Information and Modeling2005,45,249-253.
    23. Vieth, M.; Sutherland, J. J. Dependence of molecular properties on proteomicfamily for marketed oral drugs. Journal of Medicinal Chemistry2006,49,3451-3453.
    24. Li, Q. L.; Bender, A.; Pei, J. F.; Lai, L. H. A large descriptor set and a probabilistickernel-based classifier significantly improve druglikeness classification. Journal ofChemical Information and Modeling2007,47,1776-1786.
    25. Hou, T. J.; Qiao, X. B.; Xu, X. J. Research and development of3D molecularstructure database of traditional Chinese drugs. Acta Chimica Sinica2001,59,1788-1792.
    26. Qiao, X. B.; Hou, T. J.; Zhang, W.; Guo, S. L.; Xu, S. J. A3D structure database ofcomponents from Chinese traditional medicinal herbs. Journal of ChemicalInformation and Computer Sciences2002,42,481-489.
    27. Hou, T.; Wang, J. Structure-ADME relationship: still a long way to go? ExpertOpinion on Drug Metabolism&Toxicology2008,4,759-770.
    28. Hou, T. J.; Li, Y. Y.; Zhang, W.; Wang, J. M. Recent Developments of In SilicoPredictions of Intestinal Absorption and Oral Bioavailability. CombinatorialChemistry&High Throughput Screening2009,12,497-506.
    29. Discovery Studio2.5Guide, Accelrys Inc., San Diego,2012,http://www.accelrys.com.
    30. Rogers, D.; Brown, R. D.; Hahn, M. Using extended-connectivity fingerprints withLaplacian-modified Bayesian analysis in high-throughput screening follow-up.Journal of Biomolecular Screening2005,10,682-686.
    31. Chen, L.; Li, Y. Y.; Zhao, Q.; Peng, H.; Hou, T. J. ADME Evaluation in DrugDiscovery.10. Predictions of P-Glycoprotein Inhibitors Using RecursivePartitioning and Naive Bayesian Classification Techniques. MolecularPharmaceutics2011,8,889-900.
    32. Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMETEvaluation in Drug Discovery.12. Development of Binary Classification Modelsfor Prediction of hERG Potassium Channel Blockage. Molecular Pharmaceutics2012,9,996-1010.
    33. Hou, T. J.; Wang, J. M.; Zhang, W.; Xu, X. J. ADME evaluation in drug discovery.7. Prediction of oral absorption by correlation and classification. Journal ofChemical Information and Modeling2007,47,208-218.
    34. Walters, W. P.; Stahl, M. T.; Murcko, M. A. Virtual screening-an overview. DrugDiscovery Today1998,3,160-178.
    35. Charifson, P. S.; Walters, W. P. Filtering databases and chemical libraries.Molecular Diversity2000,5,185-197.
    1. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes-Estimates for the year2000and projections for2030. Diabetes Care2004,27,1047-1053.
    2. Reaven, G. M. Pathophysiology of insulin-resistance in human-disease.Physiological Reviews1995,75,473-486.
    3. Ripsin, C. M.; Kang, H.; Urban, R. J. Management of Blood Glucose in Type2Diabetes Mellitus. American Family Physician2009,79,29-36.
    4. Florez, H. J.; Sanchez, A. A.; Marks, J. B. Type2Diabetes. Diabetes and theBrain2010,33-53.
    5. Pasquier, F. Diabetes and cognitive impairment: how to evaluate the cognitivestatus? Diabetes&Metabolism2010,36, S100-S105.
    6. Morral, N. Novel targets and therapeutic strategies for type2diabetes. Trends inEndocrinology and Metabolism2003,14,169-175.
    7. Marcus, A. O. Safety of drugs commonly used to treat hypertension, dyslipidemia,and type2diabetes (the metabolic syndrome): part1. Diabetes technology&therapeutics2000,2,101-10.
    8. Marcus, A. O. Safety of drugs commonly used to treat hypertension, dyslipidemia,and Type2diabetes (the metabolic syndrome): part2. Diabetes technology&therapeutics2000,2,275-81.
    9. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery.Nature Chemical Biology2008,4,682-690.
    10. Roth, B. L.; Sheffler, D. J.; Kroeze, W. K. Magic shotguns versus magic bullets:selectively non-selective drugs for mood disorders and schizophrenia. NatureReviews Drug Discovery2004,3,353-359.
    11. Winzeler, E. A.; Shoemaker, D. D.; Astromoff, A.; Liang, H.; Anderson, K.; Andre,B.; Bangham, R.; Benito, R.; Boeke, J. D.; Bussey, H.; Chu, A. M.; Connelly, C.;Davis, K.; Dietrich, F.; Dow, S. W.; El Bakkoury, M.; Foury, F.; Friend, S. H.;Gentalen, E.; Giaever, G.; Hegemann, J. H.; Jones, T.; Laub, M.; Liao, H.;Liebundguth, N.; Lockhart, D. J.; Lucau-Danila, A.; Lussier, M.; M'Rabet, N.;Menard, P.; Mittmann, M.; Pai, C.; Rebischung, C.; Revuelta, J. L.; Riles, L.;Roberts, C. J.; Ross-MacDonald, P.; Scherens, B.; Snyder, M.; Sookhai-Mahadeo,S.; Storms, R. K.; Veronneau, S.; Voet, M.; Volckaert, G.; Ward, T. R.; Wysocki,R.; Yen, G. S.; Yu, K. X.; Zimmermann, K.; Philippsen, P.; Johnston, M.; Davis, R.W. Functional characterization of the S-cerevisiae genome by gene deletion andparallel analysis. Science1999,285,901-906.
    12. Kitano, H. Towards a theory of biological robustness. Molecular Systems Biology2007,3.
    13. Kitano, H. Innovation-A robustness-based approach to systems-oriented drugdesign. Nature Reviews Drug Discovery2007,6,202-210.
    14. Goh, K.-I.; Cusick, M. E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.-L. Thehuman disease network. Proceedings of the National Academy of Sciences of theUnited States of America2007,104,8685-8690.
    15. Yildirim, M. A.; Goh, K.-I.; Cusick, M. E.; Barabasi, A.-L.; Vidal, M. Drug-targetnetwork. Nature Biotechnology2007,25,1119-1126.
    16. Berger, S. I.; Iyengar, R. Network analyses in systems pharmacology.Bioinformatics2009,25,2466-2472.
    17. Newman, D. J.; Cragg, G. M. Natural Products As Sources of New Drugs over the30Years from1981to2010. Journal of Natural Products2012,75,311-335.
    18. Newman, D. J.; Cragg, G. M.; Snader, K. M. The influence of natural productsupon drug discovery. Natural Product Reports2000,17,215-234.
    19. Ji, H.-F.; Li, X.-J.; Zhang, H.-Y. Natural products and drug discovery Canthousands of years of ancient medical knowledge lead us to new and powerful drugcombinations in the fight against cancer and dementia? Embo Reports2009,10,194-200.
    20. Zhao, J.; Jiang, P.; Zhang, W. Molecular networks for the study of TCMPharmacology. Briefings in Bioinformatics2009,11,417-430.
    21. Lukman, S.; He, Y.; Hui, S.-C. Computational methods for Traditional ChineseMedicine: A survey. Computer Methods and Programs in Biomedicine2007,88,283-294.
    22. Chen, X.; Ung, C. Y.; Chen, Y. Z. Can an in silico drug-target search method beused to probe potential mechanisms of medicinal plant ingredients? NaturalProduct Reports2003,20,432-444.
    23. Ehrman, T. M.; Barlow, D. J.; Hylands, P. J. In silico search for multi-targetanti-inflammatories in Chinese herbs and formulas. Bioorganic&MedicinalChemistry2010,18,2204-2218.
    24. Harvey, A. L.; Clark, R. L.; Mackay, S. P.; Johnston, B. F. Current strategies fordrug discovery through natural products. Expert Opinion on Drug Discovery2010,5,559-568.
    25. Schuster, D.; Wolber, G. Identification of Bioactive Natural Products byPharmacophore-Based Virtual Screening. Current Pharmaceutical Design2010,16,1666-1681.
    26. Chen, K.-C.; Chang, K.-W.; Chen, H.-Y.; Chen, C. Y.-C. Traditional Chinesemedicine, a solution for reducing dual stroke risk factors at once? MolecularBiosystems2011,7,2711-2719.
    27. Gu, J.; Zhang, H.; Chen, L.; Xu, S.; Yuan, G.; Xu, X. Drug-target network andpolypharmacology studies of a Traditional Chinese Medicine for type II diabetesmellitus. Computational Biology and Chemistry2011,35,293-297.
    28. Tou, W. I.; Chen, C. Y.-C. In Silico Investigation of Potential Src Kinase Ligandsfrom Traditional Chinese Medicine. PLoS One2012,7.
    29. Li, W. L.; Zheng, H. C.; Bukuru, J.; De Kimpe, N. Natural medicines used in thetraditional Chinese medical system for therapy of diabetes mellitus. Journal ofEthnopharmacology2004,92,1-21.
    30. Herrick, T. M.; Million, R. P. Tapping the potential of fixed-dose combinations.Nature Reviews Drug Discovery2007,6,513-514.
    31. Zhu, F.; Shi, Z.; Qin, C.; Tao, L.; Liu, X.; Xu, F.; Zhang, L.; Song, Y.; Liu, X.;Zhang, J.; Han, B.; Zhang, P.; Chen, Y. Therapeutic target database update2012: aresource for facilitating target-oriented drug discovery. Nucleic Acids Research2012,40, D1128-D1136.
    32. Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.;Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actionsand drug targets. Nucleic Acids Research2008,36, D901-D906.
    33. Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG forintegration and interpretation of large-scale molecular data sets. Nucleic AcidsResearch2012,40, D109-D114.
    34. Moller, D. E. New drug targets for type2diabetes and the metabolic syndrome.Nature2001,414,821-827.
    35. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research2000,28,235-242.
    36. Qiao, X. B.; Hou, T. J.; Zhang, W.; Guo, S. L.; Xu, S. J. A3D structure databaseof components from Chinese traditional medicinal herbs. Journal of ChemicalInformation and Computer Sciences2002,42,481-489.
    37. Tian, S.; Wang, J.; Li, Y.; Xu, X.; Hou, T. Drug-likeness Analysis of TraditionalChinese Medicines: Prediction of Drug-likeness Using Machine LearningApproaches. Molecular pharmaceutics2012,9,2875-86.
    38. Chen, C. Y.-C. TCM Database@Taiwan: The World's Largest Traditional ChineseMedicine Database for Drug Screening In Silico. PLoS One2011,6.
    39. Discovery Studio3.1Guide, Accelrys Inc., San Diego,2012,http://www.accelrys.com.
    40. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. BindingDB: aweb-accessible database of experimentally determined protein-ligand bindingaffinities. Nucleic Acids Research2007,35, D198-D201.
    41. Schr dinger, version9.0, Schr dinger, LLC, New York, NY,2009,http://www.schrodinger.com.
    42. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.;Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: Dockingand scoring incorporating a model of hydrophobic enclosure for protein-ligandcomplexes. Journal of Medicinal Chemistry2006,49,6177-6196.
    43. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluationand reparametrization of the OPLS-AA force field for proteins via comparisonwith accurate quantum chemical calculations on peptides. Journal of PhysicalChemistry B2001,105,6474-6487.
    44. Sutter, J.; Li, J.; Maynard, A. J.; Goupil, A.; Luu, T.; Nadassy, K. New Featuresthat Improve the Pharmacophore Tools from Accelrys. Current Computer-AidedDrug Design2011,7,173-180.
    45. Rogers, D.; Hopfinger, A. J. Application of genetic function approximation toquantitative structure-activity-relationships and quantitative structure-propertyrelationships. Journal of Chemical Information and Computer Sciences1994,34,854-866.
    46. Meslamani, J.; Li, J.; Sutter, J.; Stevens, A.; Bertrand, H.-O.; Rognan, D.Protein-Ligand-Based Pharmacophores: Generation and Utility Assessment inComputational Ligand Profiling. Journal of Chemical Information and Modeling2012,52,943-955.
    47. Chen, L.; Li, Y.; Zhao, Q.; Peng, H.; Hou, T. ADME Evaluation in DrugDiscovery.10. Predictions of P-Glycoprotein Inhibitors Using RecursivePartitioning and Naive Bayesian Classification Techniques. Molecularpharmaceutics2011,8,889-900.
    48. Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMETEvaluation in Drug Discovery.12. Development of Binary Classification Modelsfor Prediction of hERG Potassium Channel Blockage. Molecular pharmaceutics2012,9,996-1010.
    49. Breitkreutz, B. J.; Stark, C.; Tyers, M. Osprey: a network visualization system.Genome Biology2003,4.
    50. Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative Assessment of ScoringFunctions on a Diverse Test Set. Journal of Chemical Information and Modeling2009,49,1079-1093.
    51. Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.;Humblet, C. Comparison of Several Molecular Docking Programs: Pose Predictionand Virtual Screening Accuracy. Journal of Chemical Information and Modeling2009,49,1455-1474.
    52. Bemis, G. W.; Murcko, M. A. The properties of known drugs.1. Molecularframeworks. Journal of Medicinal Chemistry1996,39,2887-2893.
    53. Yang, L.; Wang, K.; Chen, J.; Jegga, A. G.; Luo, H.; Shi, L.; Wan, C.; Guo, X.;Qin, S.; He, G.; Feng, G.; He, L. Exploring Off-Targets and Off-Systems forAdverse Drug Reactions via Chemical-Protein Interactome-Clozapine-InducedAgranulocytosis as a Case Study. Plos Computational Biology2011,7.
    54. Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. Reoptimization of MDLkeys for use in drug discovery. Journal of Chemical Information and ComputerSciences2002,42,1273-1280.
    55. Wang, F.-R.; Yang, X.-W.; Zhang, Y.; Liu, J.-X.; Yang, X.-B.; Liu, Y.; Shi, R.-B.Three new isoflavone glycosides from Tongmai granules. Journal of Asian NaturalProducts Research2011,13,319-329.
    56. Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirementsof flavonoids and related compounds for aldose reductase inhibitory activity.Chemical&Pharmaceutical Bulletin2002,50,788-795.
    57. Ha, D. T.; Tran Minh, N.; Lee, I.; Lee, Y. M.; Kim, J. S.; Jung, H.; Lee, S.; Na, M.;Bae, K. Inhibitors of Aldose Reductase and Formation of Advanced GlycationEnd-Products in Moutan Cortex (Paeonia suffruticosa). Journal of NaturalProducts2009,72,1465-1470.
    58. Srivastava, S. K.; Ansari, N. H. Prevention of sugar-induced cataractogenesis inrats by butylated hydroxytoluene. Diabetes1988,37,1505-1508.
    59. Kannel, W. B.; McGee, D. L. Diabetes and cardiovascular risk-factors-framingham study. Circulation1979,59,8-13.
    60. Paller, M. S.; Hoidal, J. R.; Ferris, T. F. Oxygen free-radicals in ischemicacute-renal-failure in the rat. Journal of Clinical Investigation1984,74,1156-1164.
    61. Nishimura, C.; Kuriyama, K. Alteration of lipid peroxide and endogenousantioxidant contents in retina of streptozotocin-induced diabetic rats-effect ofvitamin-a administration. Japanese Journal of Pharmacology1985,37,365-372.
    62. Mohora, M.; Virgolici, B.; Paveliu, F.; Lixandru, D.; Muscurel, C.; Greabu, M.Free radical activity in obese patients with type2diabetes mellitus. Romanianjournal of internal medicine=Revue roumaine de medecine interne2006,44,69-78.
    63. Funke, I.; Melzig, M. F. Effect of different phenolic compounds on alpha-amylaseactivity: screening by microplate-reader based kinetic assay. Pharmazie2005,60,796-797.
    64. He, Z. D.; Lau, K. M.; But, P. P. H.; Jiang, R. W.; Dong, H.; Ma, S. C.; Fung, K.P.; Ye, W. C.; Sun, H. D. Antioxidative glycosides from the leaves of Ligustrumrobustum. Journal of Natural Products2003,66,851-854.
    65. Jang, D. S.; Lee, Y. M.; Jeong, I. H.; Kim, J. S. Constituents of the Flowers ofPlatycodon grandiflorum with Inhibitory Activity on Advanced Glycation EndProducts and Rat Lens Aldose Reductase In Vitro. Archives of PharmacalResearch2010,33,875-880.
    66. Wang, N.; Yang, X.-W. Two new flavonoid glycosides from the whole herbs ofHyssopus officinalis. Journal of Asian Natural Products Research2010,12,1044-1050.
    67. Mei, R.-Q.; Lu, Q.; Hu, Y.-F.; Liu, H.-Y.; Bao, F.-K.; Zhang, Y.; Cheng, Y.-X.Three new polyyne (=polyacetylene) glucosides from the edible roots ofCodonopsis cordifolioidea. Helvetica Chimica Acta2008,91,90-96.
    68. Ilango, K.; Chitra, V.; Kanimozhi, P.; Balaji, G. Antidiabetic, antioxidant andantibacterial activities of leaf extracts of Adhatoda zeylanica. Medic (Acanthaceae).Journal of Pharmaceutical Sciences and Research2009,1,67-73.
    1. Anson, B. D.; Ma, J.; He, J.-Q. Identifying Cardiotoxic Compounds. GeneticEngineering&Biotechnology News2009,29,34-35.
    2. Bajorath, F. Integration of virtual and high-throughput screening. Nature ReviewsDrug Discovery2002,1,882-894.
    3. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. DrugDiscovery Today2006,11,580-594.
    4. Walters, W. P.; Stahl, M. T.; Murcko, M. A. Virtual screening-an overview. DrugDiscovery Today1998,3,160-178.
    5. Hou, T. J.; Xu, X. J. Recent development and application of virtual screening indrug discovery: An overview. Current Pharmaceutical Design2004,10,1011-1033.
    6. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental andcomputational approaches to estimate solubility and permeability in drug discoveryand development settings. Advanced Drug Delivery Reviews1997,23,3-25.
    7. Meslamani, J.; Li, J.; Sutter, J.; Stevens, A.; Bertrand, H.-O.; Rognan, D.Protein-Ligand-Based Pharmacophores: Generation and Utility Assessment inComputational Ligand Profiling. Journal of Chemical Information and Modeling2012,52,943-955.
    8. Drwal, M. N.; Griffith, R. Combination of ligand-and structure-based methods invirtual screening. Drug Discovery Today: Technologies2013.
    9. Ferrara, P.; Gohlke, H.; Price, D. J.; Klebe, G.; Brooks, C. L. Assessing scoringfunctions for protein-ligand interactions. Journal of Medicinal Chemistry2004,47,3032-3047.
    10. Warren, G. L.; Andrews, C. W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert,M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.;Woolven, J. M.; Peishoff, C. E.; Head, M. S. A critical assessment of dockingprograms and scoring functions. Journal of Medicinal Chemistry2006,49,5912-5931.
    11. Wang, R. X.; Lu, Y. P.; Wang, S. M. Comparative evaluation of11scoringfunctions for molecular docking. Journal of Medicinal Chemistry2003,46,2287-2303.
    12. Teramoto, R.; Fukunishi, H. Supervised consensus scoring for docking and virtualscreening. Journal of Chemical Information and Modeling2007,47,526-534.
    13. Houston, D. R.; Walkinshaw, M. D. Consensus Docking: Improving the Reliabilityof Docking in a Virtual Screening Context. Journal of Chemical Information andModeling2013,53,384-390.
    14. Sheridan, R. P.; Kearsley, S. K. Why do we need so many chemical similaritysearch methods? Drug Discovery Today2002,7,903-911.
    15. Tanrikulu, Y.; Kruger, B.; Proschak, E. The holistic integration of virtual screeningin drug discovery. Drug Discovery Today2013,18,358-64.
    16. Sperandio, O.; Miteva, M. A.; Villoutreix, B. O. Combining ligand-andstructure-based methods in drug design projects. Current Computer-Aided DrugDesign2008,4,250-258.
    17. Wilson, G. L.; Lill, M. A. Integrating structure-based and ligand-based approachesfor computational drug design. Future Medicinal Chemistry2011,3,735-750.
    18. Holliday, J. D.; Kanoulas, E.; Malim, N.; Willett, P. Multiple search methods forsimilarity-based virtual screening: analysis of search overlap and precision.Journal of Cheminformatics2011,3.
    19. Krueger, D. M.; Evers, A. Comparison of Structure-and Ligand-Based VirtualScreening Protocols Considering Hit List Complementarity and EnrichmentFactors. Chemmedchem2010,5,148-158.
    20. Chen, Z.; Tian, G.; Wang, Z.; Jiang, H.; Shen, J.; Zhu, W. Multiple PharmacophoreModels Combined with Molecular Docking: A Reliable Way for EfficientlyIdentifying Novel PDE4Inhibitors with High Structural Diversity. Journal ofChemical Information and Modeling2010,50,615-625.
    21. Feher, M. Consensus scoring for protein-ligand interactions. Drug Discovery Today2006,11,421-428.
    22. Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.; Humblet,C. Comparison of Several Molecular Docking Programs: Pose Prediction andVirtual Screening Accuracy. Journal of Chemical Information and Modeling2009,49,1455-1474.
    23. Bergner, A.; Parel, S. P. Hit Expansion Approaches Using Multiple SimilarityMethods and Virtualized Query Structures. Journal of Chemical Information andModeling2013,53,1057-1066.
    24. Willett, P. Combination of Similarity Rankings Using Data Fusion. Journal ofChemical Information and Modeling2013,53,1-10.
    25. Svensson, F.; Karlen, A.; Skold, C. Virtual Screening Data Fusion Using BothStructure-and Ligand-Based Methods. Journal of Chemical Information andModeling2012,52,225-232.
    26. Klon, A. E.; Glick, M.; Davies, J. W. Combination of a naive Bayes classifier withconsensus scoring improves enrichment of high-throughput docking results.Journal of Medicinal Chemistry2004,47,4356-4359.
    27. Cozzini, P.; Kellogg, G. E.; Spyrakis, F.; Abraham, D. J.; Costantino, G.; Emerson,A.; Fanelli, F.; Gohlke, H.; Kuhn, L. A.; Morris, G. M.; Orozco, M.; Pertinhez, T.A.; Rizzi, M.; Sotriffer, C. A. Target Flexibility: An Emerging Consideration inDrug Discovery and Design. Journal of Medicinal Chemistry2008,51,6237-6255.
    28. B-Rao, C.; Subramanian, J.; Sharma, S. D. Managing protein flexibility in dockingand its applications. Drug Discovery Today2009,14,394-400.
    29. Zhou, S.; Li, Y.; Hou, T. Feasibility of using molecular docking-based virtualscreening for searching dual target kinase inhibitors. Journal of ChemicalInformation and Modeling2013,53,982-996.
    30. Ma, D.-L.; Chan, D. S.-H.; Leung, C.-H. Drug repositioning by structure-basedvirtual screening. Chemical Society Reviews2013,42,2130-2141.
    31. Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptorconformations: a practical alternative. Current Opinion in Structural Biology2008,18,178-184.
    32. Rueda, M.; Bottegoni, G.; Abagyan, R. Consistent Improvement of Cross-DockingResults Using Binding Site Ensembles Generated with Elastic Network NormalModes. Journal of Chemical Information and Modeling2009,49,716-725.
    33. Rueda, M.; Bottegoni, G.; Abagyan, R. Recipes for the Selection of ExperimentalProtein Conformations for Virtual Screening. Journal of Chemical Information andModeling2010,50,186-193.
    34. Leung, T.; Manser, E.; Tan, L.; Lim, L. A novel serine/threonine kinase binding theRas-related RhoA GTPase which translocates the kinase to peripheral membranes.Journal of Biological Chemistry1995,270,29051-29054.
    35. Dong, M.; Yan, B. P.; Liao, J. K.; Lam, Y.-Y.; Yip, G.; Yu, C.-M. Rho-kinaseinhibition: a novel therapeutic target for the treatment of cardiovascular diseases.Drug Discovery Today2010,15,622.
    36. Liu, S.; Goldstein, R. H.; Scepansky, E. M.; Rosenblatt, M. Inhibition ofrho-associated kinase signaling prevents breast cancer metastasis to human bone.Cancer research2009,69,8742-8751.
    37. Kubo, T.; Yamaguchi, A.; Iwata, N.; Yamashita, T. The therapeutic effects ofRho-ROCK inhibitors on CNS disorders. Therapeutics and clinical riskmanagement2008,4,605.
    38. Mueller, B. K.; Mack, H.; Teusch, N. Rho kinase, a promising drug target forneurological disorders. Nature Reviews Drug Discovery2005,4,387-398.
    39. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Research2000,28,235-242.
    40. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. BindingDB: aweb-accessible database of experimentally determined protein-ligand bindingaffinities. Nucleic Acids Research2007,35, D198-D201.
    41. Rogers, D.; Brown, R. D.; Hahn, M. Using extended-connectivity fingerprints withLaplacian-modified Bayesian analysis in high-throughput screening follow-up.Journal of Biomolecular Screening2005,10,682-686.
    42. Discovery Studio3.1Guide, Accelrys Inc., San Diego,2012,http://www.accelrys.com.
    43. Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.;Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra precision glide: Docking andscoring incorporating a model of hydrophobic enclosure for protein-ligandcomplexes. Journal of Medicinal Chemistry2006,49,6177-6196.
    44. Schr dinger, version9.0, Schr dinger, LLC, New York, NY,2009,http://www.schrodinger.com.
    45. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation andreparametrization of the OPLS-AA force field for proteins via comparison withaccurate quantum chemical calculations on peptides. Journal of PhysicalChemistry B2001,105,6474-6487.
    46. Sutter, J.; Li, J.; Maynard, A. J.; Goupil, A.; Luu, T.; Nadassy, K. New Featuresthat Improve the Pharmacophore Tools from Accelrys. Current Computer-AidedDrug Design2011,7,173-180.
    47. Rogers, D.; Hopfinger, A. J. Application of genetic function approximation toquantitative structure-activity-relationships and quantitative structure-propertyrelationships. Journal of Chemical Information and Computer Sciences1994,34,854-866.
    48. Chen, L.; Li, Y.; Zhao, Q.; Peng, H.; Hou, T. ADME Evaluation in Drug Discovery.10. Predictions of P-Glycoprotein Inhibitors Using Recursive Partitioning andNaive Bayesian Classification Techniques. Molecular pharmaceutics2011,8,889-900.
    49. Tian, S.; Wang, J.; Li, Y.; Xu, X.; Hou, T. Drug-likeness Analysis of TraditionalChinese Medicines: Prediction of Drug-likeness Using Machine LearningApproaches. Molecular pharmaceutics2012,9,2875-86.
    50. Wang, S.; Li, Y.; Wang, J.; Chen, L.; Zhang, L.; Yu, H.; Hou, T. ADMETEvaluation in Drug Discovery.12. Development of Binary Classification Modelsfor Prediction of hERG Potassium Channel Blockage. Molecular pharmaceutics2012,9,996-1010.
    51. Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery.7.Prediction of oral absorption by correlation and classification. Journal of ChemicalInformation and Modeling2007,47,208-218.
    52. Qiao, X. B.; Hou, T. J.; Zhang, W.; Guo, S. L.; Xu, S. J. A3D structure database ofcomponents from Chinese traditional medicinal herbs. Journal of ChemicalInformation and Computer Sciences2002,42,481-489.
    53. Shen, M.; Tian, S.; Li, Y.; Li, Q.; Xu, X.; Wang, J.; Hou, T. Drug-likeness analysisof traditional Chinese medicines:1. property distributions of drug-like compounds,non-drug-like compounds and natural compounds from traditional Chinesemedicines. Journal of Cheminformatics2012,4,31.
    54. Tian, S.; Li, Y.; Wang, J.; Xu, X.; Xu, L.; Wang, X.; Chen, L.; Hou, T.Drug-likeness analysis of traditional Chinese medicines:2. Characterization ofscaffold architectures for drug-like compounds, non-drug-like compounds, andnatural compounds from traditional Chinese medicines. Journal ofCheminformatics2012,5,1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700