用户名: 密码: 验证码:
生物分级构造二氧化钛及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境危机是21世纪人类面临的巨大挑战,充分利用太阳能是应对这一挑战的有效方法。蝶类在几千万年的自然选择中进化出了非常精美的鳞片微结构来与太阳光相互作用。通过借鉴大自然中蝶翅鳞片的精妙结构,将其与半导体光催化剂所具有的光催化性能巧妙的相互耦合,可以得到光催化性能更好的生物分级构造光催化剂,从而为充分利用太阳能解决能源与环境问题提供新的设计思路。
     本文选取了凤蝶科的玉斑凤蝶(Papilio helenus Linnaeus)、绿带翠凤蝶(Papilio maackii)以及斑蝶科的异型紫斑蝶(Euploea mulciber)共三种不同宏观和微观形貌的蝴蝶,以三氯化钛溶液作为前躯体,使用“浸渍-煅烧”法制备了三种不同蝶翅模板的生物分级构造二氧化钛。
     通过XRD、FESEM、TEM、氮吸附以及UV-Vis等方法对所得产物进行了晶相与晶粒度、微观结构、孔径与孔分布以及光捕获性能等一系列表征,结果表明产物均为晶粒细小均匀的单一锐钛矿相二氧化钛,具有适当缩小的蝶翅模板的脊-孔介孔分级结构,同时产物还具有均匀分布的微孔结构,微孔孔径约为8 nm左右、分布集中,相比无模板二氧化钛,玉斑凤蝶模板生物分级构造二氧化钛和异型紫斑蝶模板生物分级构造二氧化钛在波长小于380 nm的紫外光区光捕获性能分别提高了35%左右,绿带翠凤蝶模板生物分级构造二氧化钛在波长小于380 nm的紫外光区光捕获性能提高了20%左右。
     对三种不同蝶翅模板的生物分级构造二氧化钛进行了光催化降解结晶紫实验,并在此基础上以光催化降解结晶紫效果最好的玉斑凤蝶蝶翅结构二氧化钛为例进行了光解水制氢性能研究光催化分解水制氢实验,从而测试其光催化性能,结果表明所得生物分级构造二氧化钛可以成功的将结晶紫大分子共轭体系破坏,将其降解为水、二氧化碳及其他无污染性的有机小分子;相比无模板二氧化钛,三种生物分级构造二氧化钛光催化降解结晶紫的效率分别提高了4.3倍、2.6倍和1.9倍;相比无模板二氧化钛,同样的条件下,生物分级构造二氧化钛的光催化分解水效率提高了7倍左右;沉积1.5% Pt的生物分级构造二氧化钛的产氢效率是沉积1.5% Pt的无模板二氧化钛的2.24倍左右。
     本研究巧妙的借鉴了大自然中蝶翅的精细结构并加以利用,实现了天然生物结构与半导体光催化剂所具有的光催化性能的巧妙耦合,为探索新型功能材料提供了新的设计思路。
The world’s energy crisis and environmental problems continue to grow as civilization continues. Using photocatalyst to make use of solar energy seems to be a promising solution. Butterfly wings have a lot of periodical submicrometer structures in their scales coming from millions of years of evolution. Here we put forward a general strategy of borrowing nature’s butterfly wing hierarchical architecture to get better photocatalytic performance of TiO2, a typical sunlight water splitting photocatalyst. This concept is of certain potential to be extended to many other relative species, thus give a broad scope of building prototypes to exploit solar energy for sustainable energy resources.
     Three kinds of butterflies: Papilio helenus Linnaeus、Papilio maackii&Euploea mulciber were chosen as bio-template. Bio-inspired hierarchical TiO2 samples were synthesized by a immersing-calcine method using TiCl3 solutions as precursor.
     Several kinds of characterizing methods like XRD, FESEM, TEM, UV-Vis Absorption were employed to characterize the products. The products are identified as being due to the anatase phase of TiO2, and their average grain size is about 10 nm. The mesoporous architectures from original butterfly wing scales were well borrowed with a proper size shrank. The products also have nanoporous architectures and the average pore size is about 8 nm. Compared to TiO2 made by the same method but without template, light harvesting efficiency of bio-inspired hierarchical TiO2 was enhanced by about 20 -35percent in wave range of about 380nm to 200nm.
     Experiments of organic dyes degradation under a 500W Xe lamp indicate that the photocatalytic activity of bio-inspired hierarchical TiO2 samples are 4.3, 2.6, and 1.9 times superior than that of TiO2 made by the same method but without template respectively. And H2 production performance in sunlight driven water splitting indicate that the photocatalytic activity of bio-inspired hierarchical TiO2 is 7 times superior than that of TiO2 made by the same method but without template, 2.24 times when both samples were loaded with 1.5wt.% Pt.
引文
[1]杨术命.染料敏化纳米晶太阳能电池.河南:郑州大学出版社
    [2] Hart D. The Hydrogen Economy. Imperial college center for energy policy and technology, UK hydrogen energy network, 2000
    [3] J. H. Carey, J. Lawrence, H. M. Tosine, Photodechlorination of PCB in the presence of titanium dioxide in aqueous suspension[J], Bulletin of Environment Contamination and Toxicology, 1976, 16, 697-701.
    [4] Steven N. Frank, Allen J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J], J. Am. Chem. Soc., 1977, 99 (1), pp 303–304
    [5] Hagfeldt, A. and Gratzel, M. Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev. 1995, 95: 49-68
    [6] Linsebigler, L., Lu, G. Q. and Yates, J. T. Photocatalysis on TiO2 surface: Principles, mechanisms, and selected results[J]. Chem. Rev. 1995,95: 735-758
    [7] Hoffmann, M. R., Martin, S. T., Choi, W. Y. and Bahnemann, D. W. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev. 1995,95: 69-96
    [8] Gratzel M, Heterogeneous Photochemical Electron Transfer. CRC Press, Baton Rouge, FL 1998
    [9] A. A. Nada, M. H. Barakat, H. A. Hamed, Studies on the photocatalytic hydrogen production using suspended modified photocatalysts[J], Int. J. Hydrogen Energy, 2005, 30, 687-691.
    [10] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J], Water Res. 2004, 38, 3001.
    [11] J. Zou, C. Liu, and Y. Zhang. Control of the Metal? Support Interface of NiO-Loaded Photocatalysts via Cold Plasma Treatment[J], Langmuir 2006, 22: 2334-2339
    [12] W.Y. Choi, A. Termin, M.R. Hoffmann, Romote bleaching of methylene blue by UV irradiated TiO2 in the gas phase [J], J Phys Chem, 1994, 84, 13669.
    [13] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides[J], Science 2001, 293, 269-271.
    [14] K.B. Dhanalakshmi, S. Latha, S. Anandan, P. Maruthamuthu, Dye sensitized hydrogen evolution from water[J], Int J Hydrogen Energy. 2001, 26(7): 669-674
    [15] R.A. Doong, C.H. Chen, R.A. Maithreepala, S.M. Chang, The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions[J], Water Res, 2001, 35, 2873-2880
    [16] Gratian R. Bamwenda1, Susumu Tsubota, Toshiko Nakamura and Masatake Haruta. Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au---TiO2 and Pt---TiO2[J], Journal of Photochemistry and Photobiology A: Chemistry, 1995, 89(2):177-189
    [17]尹京花,赵莲花,崔胜云等.掺铁Ti02纳米微粒的制备及光催化活性[J].延边大学学报(自然科学版),2004,30(3):178-181
    [18]毕怀庆,袁文辉,韦朝海.掺锆纳米Ti02制备表征及其对光催化活性的影响[J].材料科学与工程学报,2004,22(1):98-101
    [19] Hitoki G, Ishikawa A, Takata T, et al. Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm) [J], Chem. Lett ., 2002, (7): 736-737
    [20] M Guo, P Diao, YJ Ren, F Meng, H Tian, S Cai. Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes[J]. Solar Energy Materials and Solar Cells, 2005, 880: 23一35.
    [21] C Ingrosso, A Petrella, ML Curri, M Striccoli. Photoelectrochemical properties of Zn(II) phthalocyanine/ZnO nanocrystals heterojunctions: nanocrystal surface chemistry effect[J].Appl.Surf .Sci.,2005,246(4): 367-371
    [22]XF Wang, J Xiang, P Wang, Y Koyama. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers[J].Chem.P hys. Len., 2005(408): 409一414.
    [23]乔大勇,孙磊,苑伟政.纯有机染料共敏化纳米晶太阳能电池的性能研究[J],感光科学与光化学,2005, 23 (5):327一332.
    [24] Vera F ,Scherbler R ,MuAAoz E,e tal Preparation and characterization of Eosin B-and Erythrosin J-sensitized nanostructured NiO thin film photocathodes[J].Thin Solid Films,2005,490 (2):182一188.
    [25]王智宇,高春梅,毛卫平,赵彬,陈海锋,樊先平,钱国栋,酞菁敏化纳米Ti02的水热法原位合成及其可见光催化性能[J],稀有金属材料与工程,2008年5月,37,468-472
    [26]D. Bikiaris, J. Aburto, I. Alric, E. Borredon, M. Botev, C. Betchev, C. Panayiotou. Mechanical properties and biodegradability of LDPE blends with fatty‐acid esters of amylose and starch[J].Journalof Applied Polymer Science, 1999, 71: 1089-1100.
    [27]郭新斌,乔庆东,太阳能光解水制氢催化剂研究进展[J],化工进展,2006, 25(7): 729-732
    [28] Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y. Synthesis of nanosized nitrogen-containing MOx–ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition[J], Catal Today 2004; 93: 895–901.
    [29]Bryan W. Wolf, Thomas M. S. Wolever, Claudia Bolognesi, Bradley A. Zinker, Keith A. Garleb, and Jeffrey L. Firkins. Glycemic Response to a Food Starch Esterified by 1-Octenyl Succinic Anhydride in Humans[J ].J. Agric.Food Chem., 2001, 49(5): 2674一2678.
    [30] Yasser A. Shaban, Shahed U.M. Khan, Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water[J], Chemical Physics 339 (2007) 73–85
    [31] Yoshiaki Sakatani, David Grosso, Lionel Nicole, Ce′dric Boissie`re, Galo J. de A. A. Soler-Illia and Cle′ment Sanchez, Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility[J], Journal of Materials Chemistry, DOI: 10.1039/b512824m
    [32] Jing Tang, Yiying Wu, Eric W. McFarlandc and Galen D. Stucky, Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films[J], Chem. Commun . , 2004, 1670–1671
    [33] Marianna Kemell, Viljami Pore, Jere Tupala, Mikko Ritala, and Markku Leskela, Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach[J], Chem. Mater. 2007, 19, 1816-1820
    [34] Thompson, D. W. On the Growth and Form. Cambridge, UK: Cambridge Univ. Press, 1942
    [35] Stevens, P. S. Patterns in Nature. Boston: Atlantic Monthly, 1974
    [36] Hebant C, Lee D W, Ultrastructural basis and developmental control of blue iridescence in Selaginella leaves[J], Amer. J. Bot. 1984, 71(2): 216-219
    [37] Gerwick W H, Lang N J, Structural color, chemical and ecological studies on iridescence in Iridaea (Rhodophyta) [J], J. Phycol. 1977, 13:121-127
    [38] Pederson M, Roomans G M, Hofsten A, Blue iridescence and bromine in the cuticle of the red alga Chondrus crispus Stackh[J], 1980, Bot. Mar. 23: 193-196
    [39] Lee D W, Unusual strategies of light absorption in rain forest herbs., In T. Givnish [ed.], On the economy of plant form and function, Cambridge: Cambridge University Press, 1986: 105-131.
    [40] Lee D W, Lowry J B, Physical basis and ecological significance in blue plants[J], 1975, Nature 254: 50-51
    [41] Mark Hildebrand, Diatoms, Biomineralization Processes, and Genomics[J], Chem. Rev., 2008, 108 (11): 4855–4874
    [42] H Zhou, X Li, T Fan, F E. Osterloh, J Ding, E M. Sabio, D Zhang, Q Guo, Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis[J], Advanced Materials, 2010, 22(9): 951–956
    [43] P. Vukusic, R. Kelly and I. Hooper, A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves[J], J. R. Soc. Interface, 2009, 6: S193–S201
    [44] Jeremy W. Galusha, Lauren R. Richey, Matthew R. Jorgensen, John S. Gardner and Michael H. Bartl, Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol–gel bio-templating route[J], J. Mater. Chem., 2010, 20: 1277-1284
    [45] Ha, Y. H., Vaia, R. A., Lynn, W. F., Costantino, J. P., Shin, J., Smith, A. B., Matsudaira, P. T. and Thomas, E. L. Three-dimensional network photoniccrystals via cyclic size reduction/infiltration of sea urchin exoskeleton[J]. Adv. Mater. 2004, 16: 1091-1094
    [46] Kim, Y., Small structures fabricated using ash-forming biological materials as templates[J]. Biomacromolecules 2003,4: 908-913
    [47] Li, N., Li, X. T., Wang, W. and Qiu, S. L. Mesoporous silica tubes fabricated with human hair as template[J]. Mater. Chem. Phys. 2005, 91: 223-226
    [48] Imai, H., Matsuta, M. and Shimi, K. Preparation of TiO2 fibers with well-organized structures[J]. J. Mater. Chem. 2000, 10: 2005-2006
    [49] J Li, X Shi, L Wang, F Liu, Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2[J], Journal of Colloid and Interface Science, 2007, 315: 230–236
    [50] D Zhang and L Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes[J], DOI: 10.1039/b501933h
    [51] Srinivasarao, M. Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths[J]. Chemical Reviews. 1999, 99: 1935-1961.
    [52] Ghiradella, H.,Radigan, W. Development of butterfly scales:Ⅱ.Struts, lattices and surface tension[J]. Journal of Morphology. 1976, (150): 279-296.
    [53] Chen, G., Cong, Q., Feng, Y.,Ren, L. Study on the wettability and self-cleaning of butterfly wing surfaces[J]. Design and Nature II. 2004, 6: 245-251.
    [54] Wong, T. H., Gupta, M. C., Robins, B.,Levendusky, T. L. Colour generation in butterfly wings and fabrication of such structures[J]. Optics Letters. 2003, 28(23): 2342-2344.
    [55] Cook, G., Timms, P. L.,Spickermann, C. G. Exact Replication of Biological Structures by Chemical Vapor Deposition of Silica[J]. Angewandte Chemie International Edition. 2003, 42(5): 557-559.
    [56] W. Zhang, D. Zhang, T. X. Fan, J. Ding, J. J. Gu, Q. X. Guo, H. Ogawa,Biomimetic zinc oxide replica with structural colour using butterfly (Ideopsis similis) wings as template[J], Bioinspiration and Biomimetics, 2006, 1: 89–95
    [57] Seshadri, R.,Meldrum, F. C. Bioskeletons as templates for ordered, macroporous structures[J]. Advanced Materials. 2000, 12(15): 1149-1151.
    [58] Yang, D., Qi, L. M.,Ma, J. M. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes[J]. Advanced Materials. 2002, 14(21): 1543-1547.
    [59]周尧.中国蝴蝶志.郑州:河南科学技术出版社. 1994: 1-21.
    [60] GK Williamson, WH Hall. X-ray line broadening from filed aluminium and wolfram[J], Act. Metall. 1953, 1: 22-31
    [61]J. Nowotny,* T. Bak, M. K. Nowotny, and L. R. Sheppard. TiO2 Surface Active Sites for Water Splitting[J]. J. Phys. Chem. B, 2006, 110 (37): 18492-18495
    [62] L. K. Randeniya, A. Bendavid, P. J. Martin, E. W. Preston, Photoelectrochemical and Structural Properties of TiO2 and N-Doped TiO2 Thin Films Synthesized Using Pulsed Direct Current Plasma-Activated Chemical Vapor Deposition[J], J. Phys. Chem. C, 2007, 111: 18334-18340
    [63] Y. Zhang, S. G. Ebbinghaus, A. Weidenkaff, T. Kurz, H. A. K. von Nidda, P. J. Klar, M. Güngerich, A. Reller, Controlled iron-doping of macrotextured nanocrystalline titania: Chem. Mater. 2003, 15: 4028-4033
    [64]余锋俊,施来顺.二氧化锰催化二氧化氯氧化酸性铬蓝K模拟废水[J].山东大学学报(工学版), 2010,40(2):88-94
    [65]李霞,李玉江,吴涛,等.利用白泥浸出液处理阴离子染料废水[J].山东大学学报(工学版), 2010,40(2):99-104
    [66]郑冀鲁,范娟,阮复昌.印染废水混凝脱色技术的分子结构基础[J].环境污染与防治.2002,24(1):23-25
    [67]F Abdelmalek, MR Ghezzar, M Belhadj.Bleaching and Degradation of Textile Dyes by Nonthermal Plasma Process at Atmospheric Pressure[J]. Ind. Eng. Chem. Res., 2006, 45 (1): 23–29
    [68]李宏,李晓红,彭德军,等.多环芳烃结晶紫的光助芬顿降解脱色研究[J].光谱学与光谱分析, 2007,27(8): 1591-1595.
    [69] Pillai S C, Periyat P, George R, et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst [J].J. Phys. Chem. C 2007,111(4):1605-1611.
    [70] K. Domen, A. Kudo, A. Shinozaki, A. Tanaka, K. Maruya and T. Onishi. J. Photodecomposition of water and hydrogen evolution from aqueous methanolsolution over novel niobate photocatalysts[J]. Chem. Soc. Chem. Commun. 1986, 4: 356-357
    [71] GR Bamwenda, S Tsubota, T Nakamura, M. Haruta, Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au---TiO2 and Pt---TiO2[J]. J Photochem Photobiol A: Chem 1995, 89(2): 177-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700