稀土掺杂M-Si-Al-O-N材料的合成及其发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从以GaN蓝色发光二极管(Light Emitting Diode,简称LED)为基础开发出白光LED照明器件以来,白光LED逐渐发展成一种重要的固态照明光源。白光LED相对于传统白炽灯和荧光灯具有节能、环保、体积小、响应快、寿命长等突出优点。实现白光LED的一种主流方式是紫外或蓝光LED芯片与荧光材料组合,即称为“荧光转换”技术。荧光材料是白光LED必不可少的部分,它直接影响到白光LED的光效、色温、显色指数、光衰和寿命等。传统荧光材料主要是由硫化物、硅酸盐、铝酸盐等构成。近年来,稀土掺杂氮化物和氮氧化物作为一类新型荧光材料,受到人们的密切关注。相对于传统荧光材料来说,在氮化物和氮氧化物基质材料中,氮元素具有相对较小的电负性和较大的电子云膨胀效应,能有效促进稀土离子5d能级在晶体场中的霹裂,使5d-4f之间的能级差减小,导致激发和发射波长红移,能够更好的与紫外或蓝光LED芯片匹配。另外,还具有稳定的化学性质和优良的高温发光性能。但是,目前氮化物和氮氧化物荧光材料存在着制备难度大,以至于对其发光机理研究不够完善的问题。本文主要针对上述问题,在几种氮氧化物荧光材料的合成及其稀土掺杂发光机理研究方面做了一些工作,主要内容有:
     (1)结合高温固相和碳热还原法,用低成本的原料,常压下1600℃合成了Ca-a-SiAlON:Eu2+橙黄色荧光材料。最终获得的样品是结晶性很好的单相。由光谱分析可知,它在近紫外和蓝光区域有强吸收,发射谱是500~700nm的宽带,与蓝光LED芯片结合可实现暖白光发射(色温3270~2260K)
     (2)通过调整MxV+Si12-(m+n)Alm+nOnN16-n通式中O的含量,制备了Ca1.8Si8.2Al3.7N16:Eu2+荧光材料。单相样品的激发谱与近紫外或蓝光LED芯片相匹配,发射峰在580~601nm之间,对比发现Ca1.8Si8.2Al3.7N16:Eu2+的发光性能要优于Ca-a-SiAlON:Eu2+。
     (3)以纳米Si3N4和A1203为原料,常压下,1600℃制备得到了P-SiAlON,在此基础上分别考察Ce3+、Tb3+、Sm2+、Dy3+的发光特性。发现Ce3+和Tb3+共掺时,Ce3+对Tb3+有能量传递;Sm2+的发射谱由锐锋和宽带共同组成,前者属于Sm2+的5Dj→7Fj跃迁,后者是4f55d1→4f6跃迁;Dy3+在P-SiAlON中的发光颜色接近白光。另外,发现Yb/Ho和Yb/Er在P-SiAlON中有上转换现象。
     (4)通过高温固相法制备了Ce3+掺杂的Y4S12O7N2荧光材料。在合成单相样品的基础上,详细论述了Y4Si2O7N2的晶体结构。研究发现随着掺杂浓度的改变,样品的发射光可实现从蓝色(-450nm)到绿色(~515nm)的可调,发射光谱的红移主要可以从两方面理解,即晶体场劈裂和再吸收。
Since the first white light-emitting diode (LED) based on the InGaN chip was developed, white LED technique has gradually developed into an important kind of solid-state illumination, In comparison with conventional incandescent and fluorescent lamps, the white LEDs show many projecting advantages such as energy saving, environment friendly, small volume, short response time, long life time and so on. The most commonly method is to combine a phosphor with a GaN LED chip, and this is called as phosphor-conversion method. As an essential part, phoshphors strongly affect the quality of LEDs, such as luminous efficiency, color temperature, color rendering index, life time and so on. So the phosphor is very important in white light LED. Traditional phosphors usually based on the sulfide, aluminate and silicate. In recent years, the rare-earth doped (oxy)nitride phosphors have attracted much attention. In (oxy)nitride phosphors, the nephelauxetic effect and the relative low electronegativity value of N3-ion cause the large splitting of5d energy levels, which makes the redshift of the excitation and emission band, so it makes them as a potential candidate for the UV-LED and blue LED. The (oxy)nitride phosphors also have the advantages of better flexibility, composition-tunability and higher thermal and chemical stability. But the preparation of (oxy)nitride phosphors is very difficult and the luminescence mechanism have not been studied deeply.So this thesis focuses on the preparation of several oxynitride phosphors and the luminescence mechanism. The main works were contained as below:
     (l)Yellow-orange oxynitride Ca-a-SiAlON:Eu2+phosphors with the compositions of Cao.8Si9.2Al2.8O1.2N14.8:xEu2+(x=0-0.24) were obtained via carbothermal reduction and nitridation method. The XRD analysis indicated the high purity and crystalline of sample, and no residual carbon existed. The resulting phosphors can absorb light in the range of300~500nm efficiently and show a single intense broad emission band in the wavelength range of500-700nm. It reveals that Ca-a-SiAlON:Eu2+is a good candidate for warm white-LEDs (color temperatures,3270-2260K).
     (2)Cai.8Si8.2Al3.7N16:Eu2+phosphor was abtained by changing the oxygen content of general formula Mxv+Si12-(m+n)Alm+OnnN16-n. The samples could efficiently excited by near ultraviolet or blue LED chip, and show a single intense broad emission band at580~601nm. By contrast, the luminescence properties of Ca1.8Si8.2Al3.7Ni6:Eu2+are better than Ca-a-SiA1ON:Eu2+.
     (3)Rare-earth-doped P-SiAlON phosphors, with the compositions of Si6-zAlzOzN8-z:Re (z=1, Re=Ce3+, Tb3+, Sm2+and Dy3+), were prepared by a solid-state reaction at1600℃under atmospheric pressure. The energy transfer from Ce3+to Tb3+ions in Si5A1ON7:Ce3+,Tb3+has been studied. The emission spectra consist of broad band and line peaks at room temperature, which are ascribed to the4f55d1→4f6and5Do→7FJ transitions of Sm2+respectively. Dy3+doped β-SiA1ON emits approximate white light. In addition, the up-conversion luminescence properties have been studied firstly in β-SiAlON:Ln3+(Ln=Yb/Ho, Yb/Er)
     (4)Y4Si2O7N2:Ce3+was synthesized using a solid-state reaction and its crystal structure was introduced in detail. Ce3+-doped Y4Si2O7N2exhibited a broad emission band and the maximum emission wavelength could be tuned from blue (λem=450nm) to green (λem=515nm) by increasing the concentration of Ce3+. The red-shifting behavior is mainly attributed to two factors:crystal field strengthening and radiation re-absorption of the high energy emission.
引文
1.徐叙瑢;苏勉曾,发光学与发光材料.化学工业出版社:2004.
    2. Kitai, A., Luminescent materials and applications. Wiley:2008; Vol.24.
    3. Kuo, C; Fletcher, R; Osentowski, T.; Lardizabal, M.; Craford, M.; Robbins, V., High performance AlGaInP visible light-emitting diodes. Applied physics letters 1990,57 (27), 2937-2939.
    4. Sugawara, H.; Ishikawa, M.; Hatakoshi, G., High-efficiency InGaAlP/GaAs visible light-emitting diodes. Applied physics letters 1991, 58(10),1010-1012.
    5. Deopura, M.; Ullal, C.; Temelkuran, B.; Fink, Y., Dielectric omnidirectional visible reflector. Optics Letters 2001, 26 (15),1197-1199.
    6. Nakamura, S.; Mukai, T.; Senoh, M., Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters 1994,64 (13), 1687-1689.
    7. Nakamura, S.; Senoh, M.; Iwasa, N.; Nagahama, S.-L, High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Japanese journal of applied physics 1995,34(7), L797-L799.
    8. Nakamura, S.; Fasol, G., GaN based light emitters and lasers. The blue laser diode 1997,15, 1-8.
    9. Taguchi, T. In Overview:present status and future prospect of system and design in white LED lighting technologies, Optical Science and Technology, the SPIE 49th Annual Meeting, International Society for Optics and Photonics:2004; pp 7-16.
    10. Taguchi, T., Present status of white LED lighting technologies in Japan. Journal of Light & Visual Environment 2003,27(3),131-139.
    11. Uchida, Y.; Setomoto, T.; Taguchi, T.; Nakagawa, Y.; Miyazaki, K. Characteristics of high-efficient InGaN-based white LED lighting, DTIC Document:2000.
    12. Sheu, J.-K.; Pan, C.-J.; Chi, G.-C.; Kuo, C.; Wu, L.; Chen, C;. Chang, S.-J.; Su, Y.-K., White-light emission from InGaN-GaN multiquantum-well light-emitting diodes with Si and Zn codoped active well layer. Photonics Technology Letters, IEEE2002,14 (4),450-452.
    13.方志烈;叶其春;李学勇,白色LED照明光源.功能材料与器件学报2000,6(4),406-407.
    14.刘行仁,照明光源用白光LED的发展方向.海峡两岸第九届照明科技与营销研讨会专题报告文集2002.
    15. Murota, R.; Kobayashi, T.; Mita, Y., Solid state light source fabricated with YAG:Ce single crystal. Japanese journal of applied physics 2002,41 (8A), L887-L888.
    16. Narukawa, Y.; Niki, I.; Izuno, K; Yamada, M.; Murazaki, Y.; Mukai, T.,Phosphor-conversion white light emitting diode using InGaN near-ultraviolet chip. Japanese journal of applied physics 2002,41,371.
    17. Yam, F.; Hassan, Z., Innovative advances in LED technology. Microelectronics Journal 2005, 36(2),129-137.
    18. Xu, Y.; Chen, L.; Li, Y.; Song, G.; Wang, Y.; Zhuang, W; Long, Z., Phosphor-conversion white light using InGaN ultraviolet laser diode. Applied Physics Letters 2008,92 (2), 021129-021129-3.
    19. Setlur, A A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V., Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting. Chemistry of materials 2006,18(14),3314-3322.
    20. Hirosaki, N.; Xie, R.-J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M., Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes. Applied Physics Letters 2005,86(21),211905-211905-3.
    21. Neeraj, S.; Kijima, N.; Cheetham, A., Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+(Ln=Y, Gd). Solid state communications 2004,131 (1),65-69.
    22. Mueller-Mach, R.; Mueller, G.; Krames, M. R.; Hoppe, H A.; Stadler, F.; Schnick, W.; Juestel, T.; Schmidt, P., Highly efficient all-nitride phosphor-converted white light emitting diode. physica status solidi (a) 2005,202 (9),1727-1732.
    23. Park, W.; Jung, M.; Kang, S.; Masaki, T.; Yoon, D., Synthesis and photoluminescence characterization of Ca3SiO7:Eu2+ as a potential green-emitting white LED phosphor. The Journal of physics and chemistry of solids 2008,69(5-6),1505-1508.
    24. Lee, K.; Cheah, K.; An, B.; Gong, M.; Liu, Y. L., Emission characteristics of inorganic/organic hybrid white-light phosphor. Applied Physics A:Materials Science & Processing 2005,80(2),337-339.
    25. Radkov, E.; Bompiedi, R.; Srivastava, A M.; Setlur, A A.; Becker, C. A. In White light with UV LEDs, Optical Science and Technology, SPIE's 48th Annual Meeting, International Society for Optics and Photonics:2004; pp 171-177.
    26.张思远;毕宪章,稀土光谱理论.吉林科学技术出版社:1991.
    27.李建宇,稀土发光材料及其应用.化学工业出版社材料科学与工程出版中心:2003.
    28.徐光宪,稀土.冶金工业出版社:1995.
    29.苏锵,稀土化学.河南科学技术出版社:1993.
    30.张洪杰;洪广言;李德谦;牛春吉;倪嘉缵,我国稀土化学的进展.化学通报2001,6(325.331).
    31. Newman, D. J.; Ng, B., Crystal field handbook. Cambridge University Press:2007.
    32. Xie, R.-J., Nitride phosphors and solid-state lighting. CRC/Taylor & Francis:2011
    33. Gauglitz, G.; Vo-Dinh, T., Handbook ofspectroscopy. Wiley-VCH:2006.
    34. Blasse, G.; Grabmaier, B., Luminescent materials. Springer-Verlag Berlin:1994; VoL 44.
    35. Setlur, A A.; Srivastava, A. M.; Comanzo, H. A; Doxsee, D. D., Phosphor blends for generating white light from near-UV/blue light-emitting devices. Google Patents:2004.
    36.刘如熹;石景仁,白光发光二极管用钇铝石榴石萤光粉配方与机制研究.中国稀土学报2002,20(6),495-501.
    37. Zhang, S.; Zhuang, W.; Zhao, C.; Hu, Y.; He, H.; Huang, X., Study on (Y, Gd)3(Al, Ga)5O12: Ce3+phosphor. Journal of Rare Earths2004,22 (1),118-121.
    38. Pan, Y.; Wu, M.; Su, Q., Tailored photoluminescence of YAG:Ce phosphor through various methods. Journal of Physics and Chemistry of Solids 2004,65(5),845-850.
    39. Saradhi, M. P.; Varadaraju, U., Photoluminescence Studies on Eu2+-Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting. Chemistry of materials 2006,18(22), 5267-5272.
    40. He, H.; Fu, R.; Wang, H.; Song, X.; Pan, Z.; Zhao, X.; Zhang, X.; Cao, Y., Li2SrSiO42+ phosphor prepared by the Pechini method and its application in white light emitting diode. J. Mater. Res 2008,23 (12),3288-3294.
    41. Levshov, S.; Berezovskaya, I.; Efryushina, N.; Zadneprovskii, B.; Dotsenko, V., Synthesis and luminescence properties of Eu2+-doped Li2SrSiO4. Inorganic Materials2011,47(3),285-289.
    42. Park, J. K.; Kim, C. H.; Park, S. H.; Park, H.D.; Choi, S. Y., Application of strontium silicate yellow phosphor for white light-emitting diodes. Applied physics letters 2004,84(10),1647-1649.
    43. Kang, H. G.; Park, J. K.; Kim, J. M.; Kim, C. H.; Choi, S. C., Embodiment and Luminescence Properties of Sr3SiO5:Eu (yellow-orange phosphor) by co-doping lanthanide. Solid State Phenomena2007,124,511-514.
    44. LI, P.-L; YANG, Z.-p.; WANG, Z.-j.; ZHANG, Z.-c; GUO, Q.-L; LI, X.; LIU, H.-y., Spectrum characteristics of Sr3SiO5:Eu2+ phosphor. Acta Photonica Sinica 2008,37 (10), 2001-2004.
    45. Duan, C; Chen, J.; Deng, S.; Xu, N.; Liang, H.; Su, Q. In Cathodoluminescent Properties of SrGa2S4.Eu2+ Phosphor for Field Emission Display Application, Vacuum Nanoelectronics Conference,2006 and the 2006 50th International Field Emission Symposium., IVNC/IFES 2006. Technical Digest.19th International, IEEE:2006; pp 483-484.
    46. Aidaev, F. S., Synthesis and Luminescent Properties of Eu-Activated CaGa2S4 and SrGa2S4. Inorganic materials 2003,39(2),96-98.
    47. Do, Y. R.; Ko, K.-Y; Na, S.-H; Huh, Y.-D., Luminescence Properties of Potential Sr1-xCaxGa2S4:Eu Green-and Greenish-Yellow-Emitting Phosphors for White LED. Journal of The ElectrochemicalSociety 2006,153 (7),H142-H146.
    48. Shimomura, Y.; Honma, T.; Shigeiwa, M.; Akai, T.; Okamoto, K; Kijima, N., Photoluminescence and crystal structure of green-emitting Ca3Sc2Si3O12:Ce3+phosphor for white light emitting diodes. Journal of The Electrochemical'Society2007,154(1), J35-J38.
    49. Shimomura, Y.; Kurushima, T.; Shigeiwa, M.; Kijima, N., Redshift of Green Photoluminescence of Ca3Sc2Si3O12:Ce3+Phosphor by Charge Compensatory Additives. Journal of the electrochemical society 2008,155(2), J45-J49.
    50. Hu, Y.; Zhuang, W.; Ye, H; Zhang, S.; Fang, Y.; Huang, X., Preparation and luminescent properties of (Cai-X, Srx)SEu2+red-emitting phosphor for white LED. Journal of luminescence 2005,111(1),139-145.
    51. Guo, C; Huang, D.; Su, Q., Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Materials Science and Engineering:B 2006,130 (1), 189-193.
    52. Jia, D.; Wang, X.-j., Alkali earth sulfide phosphors doped with Eu2+and Ce3+for LEDs. Optical Materials 2007,30 (3),375-379.
    53. Wang, Z.; Cheah, K.; Tam, H; Gong, M., Near-ultraviolet light excited deep blue-emitting phosphor for solid-state lighting. Journal of Alloys and Compounds 2009,4S2(1),437-439.
    54. Shen, C; Yang, Y.; Jin, S.; Ming, J., Luminous characteristics and thermal stability of BaMgAl10O17:Eu2+phosphor for white light-emitting diodes. PhysicaB:CondensedMatter 2010, 405(4),1045-1049.
    55. Chen, L.-T.; Sun, I.-L.; Hwang, C.-S.; Chang, S.-J., Luminescence properties of BAM phosphor synthesized by TEA coprec ipitation method. Journal of luminescence 2006,118 (2), 293-300.
    56. Kang, Y.; Sohn, J.; Yoon, H; Jung, K.; Park, H., Improved Photoluminescence of Sr5(PO4)3Cl:Eu2+Phosphor Particles Prepared by Flame Spray Pyrolysis. Journal of the ElectrochemicalSociety2003,150(2), H38-H42.
    57. Noetzold, D.; Wulff, H.; Herzog, G., Structural and Optical Properties of the System (Ca,Sr,Eu)5(PO4)3CI. physica status solidi (b) 1995,191 (1),21-30.
    58. Kottaisamy, M.; Jagannathan, R.; Jeyagopal, P.; Rao, R.; Narayanan, R., Eu2+luminescence in M5(PO4)3X apatites, where M is Ca2+, Sr2+and Ba2+, and X is F-, Cl-, Brand OHs. Journal of Physics D:Applied Physics 1999,27(10),2210.
    59. Zawisza, B.; Sitko, R., Determination of trace elements in ZnS-Ag+and ZnS-Cu+type luminophore materials by X-ray fluorescence spectrometry following trace-matrix separation and co-precipitation. Journal of Analytical Atomic Spectrometry 2004,79 (8),995-999.
    60. Karar, N., Photoluminescence from doped ZnS nanostructures. solid state communications 2007,142(5),261-264.
    61. Liu, H.; He, D.; Shen, F., Luminescence Properties of Green-Emitting Phosphor (Bai-x, Srx)2SiO4:Eu2+for White LEDS. Journal of rare earths 2006,24(1),121-124.
    62. Wu, Z.; Shi, J.; Wang, J.; Wu, H.; Su, Q.; Gong, M., Synthesis and luminescent properties of SrAl2O4:Eu2+ green-emitting phosphor for white LEDs. Materials Letters 2006,60 (29), 3499-3501.
    63. Shafia, E.; Bodaghi, M; Tahriri, M., The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl2O4Eu2+,Dy3+ nanoparticle pigments synthesized by combustion technique. Current Applied Physics 2010,10(2),596-600.
    64. Nakazawa, E.; Murazaki, Y.; Saito, S., Mechanism of the persistent phosphorescence in Sr4Ali4O2s:Eu and SrAl2O4:Eu codoped with rare earth ions. Journal of applied physics 2006,100 (11),113113-113113-7.
    65. da Vila, L. D.; Stucchi, E. B.; Davolos, M. R., Preparation and characterization of uniform, spherical particles ofY2O2S and Y2O2S:Eu. J. Mater. Chem.1997,7(10),2113-2116.
    66. Jean, J. H; Yang, S. M., Y2O2S:EU red phosphor powders coated with silica. Journal of the American Ceramic Society 2000,83(8),1928-1934.
    67. Kuang, J.; Liu, Y.; Yuan, D., Preparation and Characterization of Y2O2S:Eu3+Phosphor via One-Step Solvothermal Process. Electrochemical and Solid-State Letters 2005,8(9),H72-H74.
    68. Xia, Z; Chen, D.; Yang, M.; Ying, T., Synthesis and luminescence properties of YVO4:Eu3+,Bi3+phosphor with enhanced photoluminescence by Bi3+doping. Journal of Physics and Chemistry ofSolids2010,71(3),175-180.
    69. Choi, S.; Moon, Y.-M.; Jung, H.-K., Enhanced luminescence by charge compensation in red-emitting Eu3+-activated Ca3Sr3(VO4)4.Materials ResearchBulletin 2010,45(2),118-120.
    70. Rao, B. V.; Jang, K.; Lee, H. S.; Yi, S.-S.; Jeong, J.-H, Synthesis and photoluminescence characterization of RE3+(= Eu3+, Dy3+)-activated Ca3La(VO4)3 phosphors for white light-emitting diodes. Journal of Alloys and Compounds2010,496(1),251-255.
    71. Liang, Z. H; Lu, F. Q.; Zhang, H. L; Peng, G. H. In Preparation ofYVO4.Eu3+, Ln (Ln= Bt3+, La3+, Li+) Red Phosphors by Combustion Synthesis and their Luminescence Properties, Materials
    Science Forum, Trans Tech Publ:2011; pp 162-165.
    72. Neeraj, S.; Kijima, N.; Cheetham, A., Novel red phosphors for solid-state lighting:the system NaM (WO4)2-x (MoO4)x:Eu3+(M= Gd, Y, Bi). Chemical physics letters 2004,387(1),2-6.
    73. Chiu, C.-H; Liu, C.-H; Huang, S.-B.; Chen, T.-M., White-Light-Emitting Diodes Using Red-Emitting LiEu(W04)2-x(MoO4)x Phosphors. Journal of The Electrochemical Society 2007, 154(7),J181-J184.
    74. Guo, C; Gao, F.; Xu, Y.; Liang, L.; Shi, F. G.; Yan, B., Efficient red phosphors Na5Ln(MoO4)43+(Ln= La, Gd and Y) for white LEDs. Journal of Physics D:Applied Physics 2009,42(9),095407.
    75. Zhao, X.; Wang, X.; Chen, B.; Meng, Q.; Di, W.; Ren, G.; Yang, Y, Novel Eu3+-doped red-emitting phosphor Gd2MosO9 for white-light-emitting-diodes (WLEDs) application. Journal of alloys and compounds 2007,433(1),352-355.
    76. Zhao, X.; Wang, X.; Chen, B.; Meng, Q.; Yan, B.; Di, W., Luminescent properties of Eu3+ doped a-Gd2(MoO4)3 phosphor for white light emitting diodes. Optical materials 2007,29 (12), 1680-1684.
    77. YANG, Y.-L.; LI, X.-M; FENG, W.-L.; LI, W.-L.; TAO, C.-Y, Synthesis and characteristic of CaMoO4:Eu3+Red Phosphor for W-LED by co-precipitation. Journal of Inorganic Materials 2010,10(25),1015-1019.
    78. Sohn, K.-S.; Park, D. H.; Cho, S. H.; Kwak, J. S.; Kim, J. S., Computational evolutionary optimization of red phosphor for use in tricolor white LEDs. Chemistry of materials 2006,18(7), 1768-1772.
    79. Zhang, X.; Zhang, J.; Zhang, X.; Wang, M.; Zhao, H.; Lu, S.; Wang, X.-j., Size manipulated photoluminescence and phosphorescence in CaTiO3:Pr3+nanoparticles. The Journal of Physical Chemistry C 2007 111(49),18044-18048.
    80. Tang, W.; Chen, D., Enhanced red emission in CaTiO3:Pr3+, Bi3+, B3+phosphors, physica status solidi (a) 2009,206(2),229-232.
    81. Li, Y. Q.; Van Steen, J.; Van Krevel, J.; Botty, G.; Delsing, A.; DiSalvo, F.; Hintzen, H., Luminescence properties of red-emitting M2Si5N8:Eu2+ (M= Ca, Sr, Ba) LED conversion phosphors. Journal of alloys and compounds 2006,417 (1),273-279.
    82. Zeuner, M.; Hintze, F.; Schnick, W., Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu2+ (M= Eu, Sr, Ba). Chemistry of Materials 2008, 27(2),336-342.
    83. Zeuner, M.; Schmidt, P. J.; Schnick, W., One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8Eu2+ (M= Sr, Ba). Chemistry of Materials 2009, 21(12), 2467-2473.
    84. Li, H. L.; Xie, R. J.; Hirosaki, N.; Takeda, T.; Zhou, G. H, Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8Eu2+ (M= Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2 International Journal of Applied Ceramic rechnology 2009,6(4),459-464.
    85. Chen, C; Chen, W.; Rainwater, B.; Liu, L.; Zhang, H.; Liu, Y.; Guo, X.; Zhou, J.; Xie, E., M2Si5N8:Eu2+-based (M= Ca, Sr) red-emitting phosphors fabricated by nitrate reduction process. Optical Materials 2011,33(11),1585-1590.
    86. Kim, Y.-I; Kim, K. B.; Lee, Y.-H; Kim, K.-B., Structural Chemistry of M2Si5N8:Eu2+(M= Ca, Sr, Ba) Phosphor via Structural Refinement. Journal of Nanoscience and Nanotechnology 2012,12(4),3443-3446.
    87. Yeh, C.-W.; Chen, W.-T.; Liu, R.-S.; Hu, S.-F.; Sheu, H.-S.; Chen, J.-M.; Hintzen, H. T., The Origin of Thermal Degradation in Sr2-xSi5N8:Eux Phosphors in air for Light-emitting Diodes. Journal of the American Chemical Society 2012.
    88. Chen, W.-T.; Sheu, H.-S.; Liu, R.-S.; Attfield, J. P, Cation-Size-Mismatch Tuning of Photoluminescence in Oxynitride Phosphors. Journal of the American ChemicalSociety 2012,134 (19),8022-8025.
    89. Uheda, K.; Hirosaki, N.; Yamamoto, H.; Yamane, H.; Yamamoto, Y.; Inami, W.; Tsuda, K. In The Crystal Structure and Photoluminescence Properties of a New Red Phosphor, Calcium Aluminum Silicon Nitride Doped With Divalent Euroium,206th Meeting of the Electro Chemical Society,2004.
    90. Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochemical and solid-state letters 2006,9(4), H22-H25.
    91. Piao, X.; Machida, K.-L; Horikawa, T.; Hanzawa, H; Shimomura, Y.; Kijima, N., Preparation of CaAlSiN3:Eu2+phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chemistry of Materials2007,19(18),4592-4599.
    92. Lei, B.; Machida, K.-L; Horikawa, T.; Hanzawa, H., Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+Nanocrystals. Chemistry Letters2010,39(2),104-105.
    93. Kim, H S.; Horikawa, T.; Hanzawa, H; Machida, K.-L In Luminescence properties of CaAlSiN3.Eu2+ mixed nitrides prepared by carbothermal process, Journal of Physics:Conference Series, IOP Publishing:2012; p 012016.
    94. Li, Y. Q.; Delsing, A.; G. de With, a.; Hintzen, H., Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M= Ca, Sr, Ba):a promising class of novel LED conversion phosphors. Chemistry of materials 2005, 17(12),3242-3248.
    95. Bachmann, V.; Ronda, G; Oeckler, O.; Schnick, W.; Meijerink, A., Color point tuning for (Sr, Ca, Ba) Si2O2N2Eu2+for white light LEDs. Chemistry of Materials 200%,21(2),316-325.
    96. Song, Y.; Park, W.; Yoon, D., Photoluminescence properties of Sr1-xSi2O2N2:Eu2+x as green to yellow-emitting phosphor for blue pumped white LEDs. The Journal of physics and chemistry of solids2010,71(4),473-475.
    97. Yang, X.; Song, H.; Yang, L; Xu, X., Reaction Mechanism of SrSi2O2N2:Eu2+Phosphor Prepared by a Direct Silicon Nitridation Method. Journal of the American Ceramic Society 2011, 94(1),164-171.
    98. Botterman, J.; Van den Eeckhout, K.; Bos, A.; Dorenbos, P.; Poelman, D.; Smet, P. In Persistent luminescence and mechanoluminescence in BaSi2O2N2.Eu,8th International conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR 2012),2012.
    99. Jack, K.; Wilson, W., Ceramics based on the Si-Al-ON and related systems. Nature 1972,238 (80),28-29.
    100. Lewis, M.; Powell, B.; Drew, P.; Lumby, R.; North, B.; Taylor, A., The formation of single-phase Si-Al-ON ceramics. Journal of Materials Science 1977,12(1),61-74.
    101. Mackenzie, K.; Meinhold, R.; White, G.; Sheppard, C; Sherriff, B., Carbothermal formation of β'-sialon fromkaolinite and halloysite studied by 29Si and 27A1 solid state MAS NMR. Journal of materials science 1994,29 (10),2611-2619.
    102. Zhou, Y; Vleugels, J.; Laoui, T.; Ratchev, P.; Van der Biest, O., Preparation and properties of X-sialon. Journal of materials science 1995,30(18),4584-4590.
    103. Cao, G.; Metselaar, R., a'-Sialon ceramics:a review. Chemistry of Materials 1991,3 (2), 242-252.
    104. Ekstroem, T.;Nygren, M., SiAION ceramics. Journal of the American Ceramic Society 2005, 75(2),259-276.
    105. Karunaratne, B.; Lumby, R.; Lewis, M., Rare-earth-doped a'-Sialon ceramics with novel optical properties.1996.
    106. Shen, Z.; Nygren, M.; Halenius, U., Absorption spectra of rare-earth-doped a-sialon ceramics. Journal of materials science letters 1997,16(4),263-266.
    107. Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Mitomo, M., Powder synthesis of Ca-a'-SiAlON as a host material for phosphors. Chemistry of materials 2005,17 (2),308-314.
    108. Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Sakuma, K.; Mitomo, M.; Ibukiyama, M.; Yamada, S., One-step preparation of Ca-a-SiAlON:Eu2+ fine powder phosphors for white light-emitting diodes. Applied Physics Letters 2008,92 (19),191904-191904-3.
    109. PIAO, X.; Machida, K.-i.; Horikawa, T.; Hanzawa, H, Synthesis and luminescent properties of low oxygen contained Eu2+-doped Ca-a-SiAlON phosphor from calcium cyanamide reduction. Journal of Rare Earths 2008,26(2),198-202.
    110. Liu, L.; Xie, R. J.; Hirosaki, N.; Takeda, T.; Li, J.; Sun, X., Temperature Dependent Luminescence of Yellow-Emitting a-Sialon:Eu2+Oxynitride Phosphors for White Light-Emitting Diodes. Journal of the American Ceramic Society 2009,92(11),2668-2673.
    111. Park, W; Song, Y.; Moon, J.; Kang, S.; Yoon, D., Synthesis and luminescent properties of Eu2+doped nitrogen-rich Ca-a-SiAlON phosphor for white light-emitting diodes. Solid State Sciences2010, 12(11),1853-1856.
    112. Kimoto, K.; Xie, R.-J.; Matsui, Y.; Ishizuka, K.; Hirosaki, N., Direct observation of single dopant atom in light-emitting phosphor of β-SiA1ON:Eu2+. Applied Physics Letters 2009,94 (4), 041908-041908-3.
    113. Ho RYU, J.; Park, Y.-G.; Won, H S.; Suzuki, H.; Kim, S. H.; Yoon, C, Luminescent properties of.β-SiA1ON:Eu2+green phosphors synthesized by gas pressured sintering. Journal of the Ceramic Society of Japan 2008,116(1351),389-394.
    114. Ryu, J. H.; Won, H. S.; Park, Y.-G.; Kim, S. H.; Song, W. Y.; Suzuki, H.; Yoon, C, Synthesis of EuxSi6-zAlzOzN8-z green phosphor and its luminescent properties. Applied Physics A:Materials Science& Processing 2009,95(3),747-752.
    115. Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Sato, T., Blue-emitting LaSiN:Ce fine powder phosphor for UV-converting white light-emitting diodes. Applied Physics Letlers2009,95,051903.
    116. HIROSAKI, N.; XIE, R.-J.; SAKUMA, K., Recent Progress in Ceramic Photonics for Display and Lighting Development of New Nitride Phosphors for White LEDs. Ceramics Japan 2006,41 (8),602-606.
    117. Takahashi, K; Harada, M.; Yoshimura, K.-i; Fukunaga, H.; Tomomura, Y.; Hirosaki, N.; Xie, R.-J., Improved Photoluminescence of Ce3+Activated LaAl(Si6-zAlz)(Nio-zOz)(z~l) Blue Oxynitride Phosphors by Calcium Co-Doping. ECS Journal of Solid State Science and Technology 2012,7(4), R109-R112.
    118. Fukuda, Y, Luminescence of Eu-doped Sr-SiAlON Phosphor. Proc. Phosphor Global Summit 2007.
    119. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y; Suehiro, T.; Ohashi, N., Photoluminescence of Cerium-Doped a-SiAlON Materials. Journal of the American Ceramic Society2005,87(1),1368-1370.
    120. Uheda, K.; Shimooka, S.; Mikami, M.; Imura, H.; Kijima, N. In Synthesis and Characterization of New Green Oxonitridosilicate Phosphor.(Ba, Eu)3Si6O12N2, for White LED, Meeting Abstracts, The Electrochemical Society:2008; pp 3195-3195.
    121.Oeckler, O.; Kechele, J. A.; Koss, H; Schmidt, P. J.; Schnick, W., Sr5Al5+xSi2i-xN35-xO2+x:Eu2+(x≈0)—A Novel Green Phosphor for White-Light pcLEDs with Disordered Intergrowth Structure. Chemistry-A European Journal 2009,15(21),5311-5319.
    122. Shioi, K.; Michiue, Y.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Matsushita, Y.; Tanaka, M.; Li, Y. Q., Synthesis and photoluminescence of a novel Sr-SiAlON:Eu2+blue-green phosphor (Sri4Si68-sAl6+sOsN106-s:Eu2+(s≈7)). Journal of alloys and compounds 2001,509(2),332-337.
    123. Xie, R.-J.; Hirosaki, N.; Mitomo, M.; Uheda, K.; Suehiro, T.; Xu, X.; Yamamoto, Y.; Sekiguchi, T., Strong green emission from α-SiAlON activated by divalent ytterbium under blue light irradiation. The Journal of Physical Chemistry B2005,109 (19),9490-9494.
    124. Uheda, K.; Hirosaki, N.; Yamamoto, H, Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode, physica status solidi(a) 2006,203 (11), 2712-2717.
    125. Li, Y.; Hirosaki, N.; Xie, R.; Takeda, T.; Mitomo, M., Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor:structure, photoluminescence, and application in white LEDs. Chemistry of Materials 2008,20(21),6704-6714.
    126. Kijima, N.; Seto, T.; Hirosaki, N., A New Yellow Phosphor La3Si6N11:Ce3+for White LEDs. ECS Transactions 2009,25 (9),247-252.
    127. Hecht, C; Stadler, F; Schmidt, P. J.; auf der Guhne, J. r. S.; Baumann, V.; Schnick, W., SrAlSi4N7:Eu2+ — A Nitridoalumosilicate Phosphor for Warm White Light (pc) LEDs with Edge-Sharing Tetrahedra. Chemistry of Materials 2009,21(8),1595-1601.
    128. Duan, C; Wang, X.; Otten, W; Delsing, A.; Zhao, J.; Hintzen, H., Preparation, Electronic Structure, and Photoluminescence Properties of Eu2+-and Ce3+/Li+-Activated Alkaline Earth Silicon Nitride MSiN2 (M= Sr, Ba). Chemistry of Materials 2008,20(4),1597-1605.
    1. Rietveld, H., Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica1967,22(1),151-152.
    2. Rietveld, H, A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 1969,2 (2),65-71.
    3. Toraya, H., Whole-powder-pattern fitting without reference to a structural model:application to X-ray powder diffraction data. Journal of applied crystallography 1986,19(6),440-447.
    4. Lutterotti, L.; Gialanella, S., X-ray diffraction characterization of heavily deformed metallic specimens. Acta materialia 1998,46 (1),101-110.
    5. Young, R.; Sakthivel, A.; Moss, T.; Paiva-Santos, C, DBWS-9411-an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. Journal of Applied Crystallography 1995,28 (3),366-367.
    6. Rodriguez-Carvajal, J. In FULLPROF:a program for Rietveld refinement and pattern matching analysis, Satellite Meeting on Powder diffraction of the XV Congress of the IUCr, Toulouse, France:[sn]:1990.
    1. Kim, T.-G.; Lee, H.-S.; Lin, C. C.; Kim, T.; Liu, R.-S.; Chan, T.-S.; Im, S.-J., Effects of additional Ce3+doping on the luminescence of Li2SrSiO4:Eu2+yellow phosphor. Applied Physics Letters 2010,96,061904.
    2. Guo, H.; Zhang, H.; Wei, R.; Zheng, M.; Zhang, L., Preparation, structural and luminescent properties of Ba2Gd2Si4O13:Eu3+ for white LEDs. Optics Express 2011,19(102), A201-A206.
    3. Lakshminarayana, G.; Qiu, J.; Brik, M.; Kityk, I., Photoluminescence of Eu3+-, Tb3+, Dy3+-and Tm3+-doped transparent GeO2-TiO2-K2O glass ceramics. Journal of Physics:Condensed Matter 2008,20(33),335106.
    4. Yang, H.-M.; Wang, Z.; Gong, M.-L.; Liang, H., Luminescence properties of a novel red emitting phosphor, Mg2GeO4:Sm3+. Journal of Alloys and Compounds 2009,488(1),331-333.
    5. Song, W.-S.; Kim, Y.-S.; Yang, H., Yellow-emitting phosphor of Sr3B2O6:Eu2+for application to white light-emitting diodes. Materials Chemistry and Physics 2009,117(2),500-503.
    6. Jung, S. H.; Kang, D. S.; Jeon, D. Y., Effect of substitution of nitrogen ions to red-emitting Sr3B2O6-3/2xNx:Eu2+oxy-nitride phosphor for the application to white LED. Journal of Crystal Growth 2011,326(1),116-119.
    7. Im, W. B.; Brinkley, S.; Hu, J.; Mkhailovsky, A.; DenBaars, S. P.; Seshadri, R., Sr2.975-xBaxCe0.025AlO4F:a Highly Efficient Green-Emitting Oxyfluoride Phosphor for Solid State White Lighting. Chemistry of Materials 2010,22 (9),2842-2849.
    8. Denault, K.; Paden, S.; Brinkley, S.; Mikhailovsky, A A.; Neuefeind, J. G.; DenBaars, S. P.; Seshadri, R., A green-yellow emitting oxyfluoride solid solution phosphor Sr2Ba(AlO4F)1-x(SiO5)x:Ce3+for thermally stable, high color rendition solid state white lighting. Journal of Materials Chemistry 2012.
    9. Im, W. B.; George, N.; Kurzman, J.; Brinkley, S.; Mikhailovsky, A.; Hu, J.; Chmelka, B. F.; DenBaars, S. P.; Seshadri, R., Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting. Advanced Materials 2011,23 (20),2300-2305.
    10. Xie, R.-J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y.; Suehiro, T.; Sakuma, K., Optical properties of Eu2+ in α-SiAlON. The Journal of Physical Chemistry B 2004,108 (32), 12027-12031.
    11. Xie, R.-J.; Hirosaki, N.; Li, H.-L.; Li, Y.; Mitomo, M., Synthesis and Photoluminescence Properties of β-sialon:Eu2+(Si6-zAlzOzN8-z:Eu2+) A Promising Green Oxynitride Phosphor for White Light-Emitting Diodes. Journal of The Electrochemical Society 2007,154(10), J314-J319.
    12. Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Mitomo, M., Powder synthesis of Ca-a'-SiAlON as a host material for phosphors. Chemistry of materials 2005,17 (2),308-314.
    13. Park, W.; Song, Y.; Moon, J.; Kang, S.; Yoon, D., Synthesis and luminescent properties of Eu2+doped nitrogen-rich Ca-a-SiAlON phosphor for white light-emitting diodes. Solid State Sciences 2010,12(11),1853-1856.
    14. Choi, S.-W.; Hong, S.-H, Luminescence Properties of Eu2+-Doped Ca-a-SiAlON Synthesized by Spark Plasma Sintering. Journal of The Electrochemical Society 2010,157 (8), J297-J300.
    15. Shioi, K.; Hirosaki, N.; Xie, R.-J.; Takeda, T.; Li, Y. Q., Synthesis, crystal structure and photoluminescence of Eu-a-SiAlON. Journal of Alloys and Compounds 2010,504(2),579-584.
    16. Xu, X.; Tang, J.; Nishimura, T.; Hao, L., Synthesis of Ca-a-SiAlON phosphors by a mechanochemical activation route. Acta Materialia 2011,59(4),1570-1576.
    17. Lee, S. H.; Yi, J. H.; Kim, J. H.; Ko, Y. N.; Kang, Y. C, Characteristics of Eu2+-doped Ca-a-SiAlON phosphor powders prepared by spray pyrolysis process. Optical Materials 2011,33 (3),538-542.
    18. Li, H.-L; Zhou, G.-H; Xie, R.-J.; Hirosaki, N.; Wang, X.-J.; Sun, Z, Optical properties of green-blue-emitting Ca-a-Sialon:Ce3+,Li+phosphors for white light-emitting diodes (LEDs). Journal of Solid State Chemistry2011,184(5),1036-1042.
    19. Cao, G.; Metselaar, R., a'-Sialon ceramics:a review. Chemistry of Materials 1991,3 (2), 242-252.
    20. Xie, R. J.; Mitomo, M.; Uheda, K.; Xu, F. F.; Akimune, Y, Preparation and Luminescence Spectra of Calcium-and Rare-Earth (R= Eu, Tb, and Pr)-Codoped a-SiAlON Ceramics. Journal of the American Ceramic Society2002,85(5),1229-1234.
    21. Yeh, C; Wu, F.; Chen, Y., Effects of a-and β-Si3N4 as precursors on combustion synthesis of (a+P)-SiAlON composites. Journal of Alloys and Compounds 2011,509(9),3985-3990.
    22. PIAO, X.; Machida, K.-i; Horikawa, T.; Hanzawa, H, Synthesis and luminescent properties of low oxygen contained Eu2+-doped Ca-α-SiAlON phosphor from calcium cyanamide reduction. Journal of Rare Earths 2008,26(2),198-202.
    23. Qiu, J.; Miura, K.; Sugimoto, N.; Hirao, K, Preparation and fluorescence properties of fluoroaluminate glasses containing Eu2+ions. Journal of non-crystalline solids 1997,213, 266-270.
    24. Blasse, G., Energy transfer between inequivalent Eu2+ions. Journal of Solid State Chemistry 1986,62(2),207-211.
    25. Dexter, D. L, A theory of sensitized luminescence in solids. The Journal of Chemical Physics 1953,21,836.
    26. Blasse, G.; Grabmaier, B., Luminescent materials. Springer-Verlag Berlin:1994; Vol.44.
    27. Xie, R.-J.; Hirosaki, N.; Kimura, N.; Sakuma, K.; Mitomo, M.,2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Applied physics letters 2007,90 (19), 191101-191101-3.
    1. Oyama, Y.; Kamigaito, O., Solid Solubility of Some Oxides in Si3N4. Japanese Journal of Applied Physics 1971,10(11),1637-1637.
    2. Jack, K.; Wilson, W., Ceramics based on the Si-Al-ON and related systems. Nature 1972,238 (80),28-29.
    3. Jack, K., Solid solubility of alumina in silicon nitride. Trans. J. Br. Ceram. Soc 1973,72, 376-378.
    4. Oyama, Y., Solid Solution in the System Silicon Nitride-Aluminum Nitride-Aluminum Oxide. YogyoKyokaiShi 1974,82(7),351-357.
    5. Hirosaki, N.; Xie, R.-J.; Kimoto, K.; Sekiguchi, T.; Yamamoto, Y.; Suehiro, T.; Mitomo, M., Characterization and properties of green-emitting β-SiAlONEu2+powder phosphors for white light-emitting diodes. Applied Physics Letters 2005,86(21),211905-211905-3.
    6. Kimoto, K.; Xie, R.-J.; Matsui, Y.; Ishizuka, K.; Hirosaki, N., Direct observation of single dopant atom in light-emitting phosphor of P-SiAlON:Eu2+. Applied Physics Letters 2009,94 (4), 041908-041908-3.
    7. Ryu, J. H.; Won, H. S.; Park, Y.-G.; Kim, S. H; Song, W. Y.; Suzuki, H; Yoon, C.-B.; Park, W. J.; Yoon, C, Photoluminescence of Ce3+-Activated β-SiAlON Blue Phosphor for UV-LED. Electrochemical andSolid-State Letters 2010,13(2),H30-H32.
    8. Liu, L.; Xie, R.-J.; Hirosaki, N.; Takeda, T.; Zhang, C.-n.; Li, J.; Sun, X., Photoluminescence properties of P-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes. Science and Technology of Advanced Materials 2011,12 (3),034404.
    9. Liu, T.-C; Cheng, B.-M.; Hu, S.-F.; Liu, R.-S., Highly Stable Red Oxynitride P-SiAlON:Pr3+ Phosphor for Light-Emitting Diodes. Chemistry of Materials 2011,23(16),3698-3705.
    10. Matsukiyo, H.; Yamada, H., the 3rd International Conference on the Science and Technology of Disp. Phos, Extended Abstracts 1997,315.
    11. HSls, J.; Leskel, M., i, and L. NiinistS. J. SoLidState Chem 1981,37,267.
    12. Huang, C.-H; Kuo, T.-W.; Chen, T.-M., Thermally stable green Ba3Y(PO4)3:Ce3+,Tb3+and red Ca3Y(A103)(B03)3+phosphors for white-light fluorescent lamps. Opt. Express 2011,19, A1-A6.
    13. Jose, M.; Lakshmanan, A., Ce3+to Tb3+ energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors. OpticalMaterials 2004,24(4),651-659.
    14. Lin, G; Wang, H; Kong, D.; Yu, M.; Liu, X.; Wang, Z.; Lin, J., Silica Supported Submicron SiO2@Y2SiO5JEu3+and SiO2@Y2SiO5:Ce3+/Tb3+Spherical Particles with a Core-Shell Structure: Sol-Gel Synthesis and Characterization. European journal of inorganic chemistry 2006,2006(18), 3667-3675.
    15. Jiao, H.; Wang, Y., Ca2Al2SiO7:Ce3+Tb3+:A white-light phosphor suitable for white-light-emitting diodes. Journal of The Electrochemical Society 2009,156(5), J117-J120.
    16. Guo, N.; Song, Y.; You, R; Jia, G.; Yang, M.; Liu, K.; Zheng, Y.; Huang, Y.; Zhang, H., Optical Properties and Energy Transfer of NaCaPO4:Ce3+,Tb3+Phosphors for Potential Application in Light-Emitting Diodes. European Journal of Inorganic Chemistry 2010,2010 (29),4636-4642.
    17. Yang, M; You, H; Liu, K; Zheng, Y.; Guo, N.; Zhang, H., Low-Temperature Coprecipitation Synthesis and Luminescent Properties of LaPO4.Ln3+(Ln3+= Ce3+, Tb3+) Nanowires and LaPO4:Ce3+, Tb3+LaPO4 Core/Shell Nanowires. Inorganic chemistry 2010,49(11)4996-5002.
    18. Wang, Z.; Quan, Z.; Jia, P.; Lin, C; Luo, Y.; Chen, Y.; Fang, J.;Zhou, W.; O'Connor, C; Lin, J., A facile synthesis and photoluminescent properties of redispersible CeFs, CeF3:Tb3+, and CeF3:Tb3+(core/shell) nanoparticles. Chemistry of materials 2006,18(8),2030-2037.
    19. Kojima, K.; Kubo, A; Yamashita, M.; Wada, N.; Tsuneoka, T.; Komatsubara, Y., Optical spectra of Sm3+and Sm2+in chloride glass. Journal of Luminescence 2000,87,697-698.
    20. Foster, D. R.; Richardson, F.; Schwartz, R., Optical spectra and crystal field analysis of Sm in the cubic CsNaYCl host. The Journal of Chemical Physics 1985,82,618.
    21. Chen, Y; Wang, J.; Liu, C; Kuang, X.; Su, Q., A host sensitized reddish-orange Gd2MoO6:Sm3+phosphor for light emitting diodes. Applied Physics Letters 2011,98,081917.
    22. Ellens, A.; Zwaschka, F.; Kummer, F.; Meijerink, A.; Raukas, M.; Mishra, K., Sm2+in BAM: fluorescent probe for the number of luminescing sites of Eu2+in BAM. Journal of luminescence 2001,93 (2),147-153.
    23. Mikhail, P.; Hulliger, J.; Schnieper, M.; Bill, H, SrB4O7:Sm2+:crystal chemistry, Czochralski growth and optical hole burning. J. Mater. Chem.2000,10 (4),987-991.
    24. Zeng, Q.; Kilah, N.; Riley, M.; Riesen, H, Luminescence properties of Sm2+-activated barium chloroborates. Journal of luminescence 2003,104(1),65-76.
    25. Su, Q.; Pei, Z.; Lin, J.; Xue, F., Luminescence of Dy3+enhanced by sensitization. Journal of Alloys and Compounds 1995,225 (1),103-106.
    26. Liu, Y.; Lei, B.; Shi, C, Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+. Chemistiy of materials 2005,17(8),2108-2113.
    27. Cavalli, E.; Bovero, E.; Belletti, A., Optical spectroscopy of CaMoO4:Dy3+single crystals. Journal of Physics:Condensed Matter-2002,14(20),5221.
    28. Naccache, R.; Vetrone, F.; Mahalingam, V.; Cuccia, L. A.; Capobianco, J. A., Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+Yb3+nanoparticles. Chemistry of Materials 2009,21 (4),717-723.
    29. Etchart, I.; Hernandez, I.; Huignard, A; Berard, M.; Gillin, W. P.; Curry, R. J.; Cheetham, A. K., Efficient oxide phosphors for light upconversion; green emission from Yb3+and Ho3+ co-doped Ln2BaZnO5 (Ln= Y, Gd). Journal of Materials Chemistry2011, 21(5),1387-1394.
    30. Wang, L; Qin, W.; Liu, Z.; Zhao, D.; Qin, G.; Di, W.; He, C, Improved 800 nm emission of Tm3+sensitized by Yb3+and Ho3+in β-NaYF4 nanocrystals under 980 nm excitation. Optics Express 2012,20 (7),7602-7607.
    31. Singh, S. K.; Kumar, K.; Rai, S., Er3+Yb3+codoped Gd2Os nano-phosphor for optical thermometry. Sensors and Actuators A:Physical 2009,149(1),16-20.
    32. He, F; Yang, P.; Wang, D.; Li, C; Niu, N.; Gai, S.; Zhang, M., Preparation and Up-Conversion Luminescence of Hollow La2O3:Ln (Ln= Yb/Er, Yb/Ho) Microspheres. Langmuir 2011,27(9),5616-5623.
    33. Jin, J.; Gu, Y.-J.; Man, C. W.-Y.; Cheng, J.; Xu, Z.; Zhang, Y; Wang, H; Lee, V. H.-Y; Cheng, S. H.; Wong, W.-T., Polymer-coated NaYF4:Yb3+, Er3+upconversion nanoparticles for charge-dependent cellular imaging. ACSnano 2011,5(10),7838-7847.
    34. Lutterotti, L.; Gialanella, S., X-ray diffraction characterization of heavily deformed metallic specimens. Acta materialia 1998,46(1),101-110.
    35. Shannon, R., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A:Crystal Physics, Diffraction, Theoretical and General Crystallography 1976,32(5),751-767.
    36. Carnell, W.; Fields, P.; Rajnak, K., Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Physl968,49, 4412.
    37. Nugent, L.; Baybarz, R.; Burnett, J.; Ryan, J., Electron-transfer and fd absorption bands of some lanthanide and actinide complexes and the standard (Ⅱ-Ⅲ) oxidation potential for each member of the lanthanide and actinide series. The Journal of Physical Chemistry 1973,77(12), 1528-1539.
    38. Blasse, G.; Grabmaier, B., Luminescent materials. Springer-Verlag Berlin:1994; VoL 44.
    39. Bourcet, J. C; Fong, F. K., Quantum efficiency of diffusion limited energy transfer in LaCeTbPO. The Journal of Chemical Physics 1974,60,34.
    40. Dexter, D. L, A theory of sensitized luminescence in solids. The Journal of Chemical Physics 1953,21,836.
    41. Hsu, C.-H.; Lu, C.-H, Microwave-hydrothermally synthesized (Sr1-x-yCexTby) Si2O2-δN2+μ phosphors:efficient energy transfer, structural refinement and photoluminescence properties. Journal of Materials Chemistry 2011,21 (9),2932-2939.
    42. Duan, C; Zhang, Z.; Rosler, S.;Rosler, S.; Delsing, A; Zhao, J.; Hintzen, H., Preparation, Characterization, and Photoluminescence Properties of Tb3+-, Ce3+-, and Ce3+/Tb3+-Activated RE2Si4N6C (RE= Lu, Y, and Gd) Phosphors. Chemistry of Materials 1011,23(7),1851-1861.
    43. Dexter, D.; Schulman, J. H., Theory of concentration quenching in inorganic phosphors. The Journal of Chemical Physics 1954,22,1063.
    44. Reisfeld, R; Greenberg, E.; Velapoldi, R.; Barnett, B., Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them. The Journal of ChemicalPhysics 1972,56,1698.
    45. Blasse, G., Energy transfer in oxidic phosphors. Physics Letters A1968,28(6),444-445. 46. Verstegen, J.; Sommerdijk, J. L.; Verriet, J., Cerium and terbium luminescence in LaMgAl11O19. Journal of Luminescence 1973,6(5),425-431.
    47. Li, G.; Geng, D.; Shang, M.; Peng, G; Cheng, Z.; Lin, J., Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gdg(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors. Journal of Materials Chemistry 2011,21 (35),13334-13344.
    48. Sommerdijk, J.; Bril, A.; Hoex-Strik, F., EDITED BY THE RESEARCH LABORATORY OP NV PHILIPS'GLOEILAMPENFABRIEKEN. EINDHOVEN. NETHERLANDS. Philips research reports 1911,32 (3),149.
    49. Krupa, J.; Gerard, I.; Martin, P., Vacuum UV excitation of luminescent materials by synchrotron radiation—electronic structure. Journal of alloys and compounds 1992,188,77-81.
    50. Blasse, G.; Bril, A., Characteristic luminescence. Philips technical review 1970,31 (10), 304-334.
    51. Ozawa, L.; Forest, H; Jaffe, P.; Ban, G., The Effect of Exciting Wavelength on Optimum Activator Concentration. Journal of The Electrochemical Society 1971,118(3),482-486.
    52. Leskeld, M, Saakes M and Blasse G. Mater. Res. Bull.1984,1984,19.
    53. Liu, L.; Xie, R. J.; Hirosaki, N.; Takeda, T.; Li, J.; Sun, X., Temperature Dependent Luminescence of Yellow-Emitting a-Sialon:Eu2+Oxynitride Phosphors for White Light-Emitting Diodes. Journal of the American Ceramic Society 2009,92(11)2668-2673.
    54. Glaspell, G.; Anderson, J.; Wilkins, J. R.; El-Shall, M. S., Vapor Phase Synthesis of Upconverting Y2O3 Nanocrystals Doped with Yb3+, Er3+ Ho3+, and Tm3+to Generate Red, Green, Blue, and White Light. The Journal of Physical Chemistry C2008,112(30),11527-11531.
    55. Kong, W.; Shan, J.; Ju, Y., Flame synthesis and effects of host materials on Yb3+/Er3+co-doped upconversion nanophosphors. Materials Letters 2010,64(6),688-691.
    56. Chung, J. H.; Ryu, J. H.; Mhin, S. W.; Kim, K. M.; Shim, K. B., Controllable white upconversion luminescence in Ho3+/Tm3+/Yb3+co-doped CaMoO4. Journal of Materials Chemistry 2012,22 (9),3997-4002.
    57. Xu, W; Gao, X.; Zheng, L.; Zhang, Z.; Cao, W., Short-wavelength upconversion emissions in Ho3+Yb3+codoped glass ceramic and the optical thermometry behavior. Optics Express 2012,20 (16),18127-18137.
    58. Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R., Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+Tm3+microcrystals. Optics express 2008,16 (16), 11907-11914.
    1. Li, G.; Geng, D.; Shang, M.; Peng, C; Cheng, Z; Lin, J., Tunable luminescence of Ce3+Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors. Journal of Materials Chemistry 2011,21 (35),13334-13344.
    2. Liu, W.-R.; Huang, C.-H; Wu, C.-P.; Chhu, Y.-C; Yeh, Y.-T.; Chen, T.-M., High efficiency and high color purity blue-emitting NaSrBO3Ce3+ phosphor for near-UV light-emitting diodes. Journal of Materials Chemistry 2001,21 (19),6869-6874.
    3. Shang, M; Li, G.; Geng, D.; Yang, D.; Kang, X.; Zhang, Y.; Lian, H.; Lin, J., Blue Emitting CagLa2(PO4)6O2:Ce3+Eu2+Phosphors with High Color Purity and Brightness for White LED: Soft-Chemical Synthesis, Luminescence, and Energy Transfer Properties. The Journal of Physical Chemistry C2012,116(18),10222-10231.
    4. Wang, Y; Zhang, J.; Hou, D.; Liang, H.; Dorenbos, P.; Sun, S.; Tao, Y., Luminescence of Ce3+activated NaCaPO4 under VUV-UV and X-ray excitation. Optical Materials 2012,34(1), 1214-1218.
    5. Zhang, Y; Li, G.; Geng, D.; Shang, M.; Peng, C; Lin, J., Color-Tunable Emission and Energy Transfer in Ca3Gd7(PO4)(SiO4)5O2:Ce3+/Tb3+/Mn2+Phosphors. Inorganic chemistry 2012, 51 (21),11655-11664.
    6. Roh, H.-S.; Kim, D. H.; Park, I.-J.; Song, H. J.; Hur, S.; Kim, D.-W.; Hong, K. S., Template-free synthesis of monodispersed Y3Al5O12Ce3+ nanosphere phosphor. Journal of Materials Chemistry2012,22(24),12275-12280.
    7. Kim, H. T.; Kim, J. H.; Lee, J.-K.; Kang, Y. C, Green light-emitting Lu3Al5O12:Ce phosphor powders prepared by spray pyrolysis. Materials Research Bulletin 2012,47(6),1428.
    8. Jang, H. S.; Kim, H. Y; Kim, Y.-S.; Lee, H. M; Young, D., Yellow-emitting γ-Ca2SiO4:Ce3+, Li+phosphor for solid-state lighting:luminescent properties, electronic structure, and white light-emitting diode application. OPTICS EXPRESS 2012,20 (2),2761.
    9. Uheda, K.; Hirosaki, N.; Yamamoto, H, Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode, physica status solidi (a) 2006,203 (11), 2712-2717.
    10. Li, Y.; Hirosaki, N.; Xie, R.; Takeda, T.; Mitomo, M., Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor:structure, photoluminescence, and application in white LEDs. Chemistry of Materials 2008,20(21),6704-6714.
    11. Suehiro, T.; Hirosaki, N.; Xie, R.-J.; Sato, T., Blue-emitting LaSiN:Ce fine powder phosphor for UV-converting white light-emitting diodes. Applied Physics Letters2009,95,051903.
    12. Xie, R. J.; Hirosaki, N.; Mitomo, M.; Yamamoto, Y; Suehiro, T.; Ohashi, N., Photoluminescence of Cerium-Doped α-SiAlON Materials. Journal of the American Ceramic Society 2005,87(7),1368-1370.
    13. Wang, X.-M.; Wang, C.-H; Kuang, X.-J.; Zou, R.-Q.; Wang, Y.-X.; Jing, X.-P., Promising Oxonitridosilicate Phosphor Host Sr3Si2O4N2:Synthesis, Structure, and Luminescence Properties Activated by Eu2+and Ce3+/Li+for pc-LEDs. Inorganic chemistry 2012,51 (6),3540-3547.
    14. MacKenzie, K.; Gainsford, G.; Ryan, M., Rietveld Refinement of the Crystal Structures of the Yttrium Silicon Oxynitrides Y2Si3N4O3 (N-Melilite) and Y4S12O7N2(J-Phase). Chemlnform 1996,27(36), no-no.
    15. Van Krevel, J.; Hintzen, H.; Metselaar, R.; Meijerink, A., Long wavelength Ce3+emission in Y-Si-O-N materials. Journal of alloys and compounds 1998,268(1),272-277.
    16. Yang, H.; Liu, Y.; Ye, S.; Qiu, J., Purple-to-yellow tunable luminescence of Ce3+doped yttrium-silicon-oxide-nitride phosphors. Chemical Physics Letters 2008,451 (4),218-221.
    17. Blasse, G., Repts.1968,23,344.(c) Blasse, G. Philips Res. Repts1969,24,131.
    18. Sakuma, K.; Hirosaki, N.; Xie, R.-J., Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-α-SiAlON ceramic phosphors. Journal of luminescence2007,126(2),843-852.
    19. H6ppe, H; Lutz, H; Morys, P.; Schnick, W.; Seilmeier, A, Luminescence in Eu2+-doped BaiSi5N8:fluorescence, thermoluminescence, and upconversion. Journal of Physics and Chemistry of Solids 2000,61 (12),2001-2006.
    20. Van Krevel, J.; Van Rutten, J.; Mandal, H.; Hintzen, H.; Metselaar, R., Luminescence Properties of Terbium-, Cerium-, or Europium-Doped a-Sialon Materials. Journal of Solid State Chemistry 2002,165(1),19-24.
    21. Xie, R.-J.; Hirosaki, N.; Mitomo, M; Yamamoto, Y.; Suehiro, T.; Sakuma, K., Optical properties of Eu2+in a-SiAlON. The Journal of Physical Chemistry B 2004,108 (32), 12027-12031.
    22. Xie, R.-J.; Hirosaki, N.; Suehiro, T.; Xu, F.-F.; Mitomo, M., A simple, efficient synthetic route to Sr2SisN8:Eu2+-based red phosphors for white light-emitting diodes. Chemistry of materials 2006,18(23),5578-5583.
    23. Blasse, G.; Bril, A, Philips Res. Repts 1968,23,189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700