纳米碲化物的合成及其电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碲化物是Ⅱ-Ⅵ族元素之间形成的一类性能优良的半导体材料,具有特殊的光学性质、热学性质、磁学性质、力学性质、超导电性、声学性能等,可广泛用于太阳能电池、整流器、化学传感器等领域,是当前纳米材料领域的研究热点之一。
     本论文以碲纳米棒或纳米线为模板,分别与不同的金属无机盐反应,采用低温液相反应技术和水热法合成了碲化铅纳米棒、碲化铋纳米线和碲化镉纳米线等一维纳米碲化物,采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)等测试技术对产物的组成和结构进行了表征。初步探讨了产物的形成机理,并且利用循环伏安法研究了产物的电化学性质。
     论文主要内容如下:
     1.碲化铅纳米棒的制备及其电化学性质研究
     以碲纳米棒为碲源和反应模板,Pb(NO3)2为铅源,水热法制备了表面为立方晶形组成的碲化铅纳米棒。分别用SEM、XRD、XPS等测试技术对产物进行了表征。讨论了产物的形成机理及影响因素,测定了碲化铅纳米棒在不同介质中的电化学性质,研究了扫描速度、扫描电位范围以及其它因素对碲化铅纳米棒电化学性质的影响。
     2.碲化铋纳米线的制备及其电化学性质研究
     以超细碲纳米线为碲源和反应模板,Bi(NO3)3为铋源,水热法制备了表面为球形颗粒组成的碲化铋纳米线。分别用SEM、XRD、XPS等测试技术对产物进行了表征。讨论了产物的形成机理及影响因素,测定了碲化铅纳米棒在不同介质中的电化学性质,研究了扫描速度、扫描电位范围以及其它因素对碲化铋纳米棒电化学性质的影响。
     3.碲化镉纳米线的制备及其光电性质研究
     以超细碲纳米线为碲源和反应模板,CdCl2为镉源,水热法制备了碲化镉纳米线。分别用SEM、XRD、XPS等测试技术对产物进行了表征。测定了碲化镉纳米线在不同介质中的电化学性质,研究了扫描速度、扫描电位范围以及其它因素对碲化镉纳米线电化学性质的影响,探讨了碲化镉纳米线的电化学发光(ECL)行为。
The telluride nanomaterials that are made up ofⅡ-Ⅵgroup elements, are a kind of excellent semiconductor materials. They have some characteristic properties, such as optical, thermotic, magnetic, mechanic properties, as well as superconductivity, acoustic performance and so on. In recent years, they have been applied to solar cell, current rectifier, selective electrode and chemical sensors. Therefore, the telluride nanomaterials have attracted much attention in nanomaterial field.
     In this paper, the PbTe nanorods, Bi2Te3 nanowires and CdTe nanowires were respectively prepared by the template-engaged hydrothermal synthesis, in which the as-prepared Te nanorods (or nanowires) were used as templates that reacted with relevant metal ions. The composition and structure of the tellurides as-obtained were characterized by X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS), and the formation mechanism of the tellurides was explored. Furthermore, the electrochemical property of the tellurides nanomaterials were studied by cycle voltammetric technique.
     Our main work as follows:
     1. Synthesis and Electochemical Behavior of PbTe Nanorods
     The PbTe nanorods were prepared by the template-engaged hydrothermal synthesis in which the Te nanorods as-prepared were used as templates and Pb(NO3)2 was used as Pb source. The products as-obtained were characterized by XRD, SEM, XPS and so on. The effect of the reaction temperature and the reaction time on products was discussed, and the forming mechanism of the PbTe nanorods was explored. Besides the synthesis, the electrochemical behavior of the PbTe nanorods was determined in different medium. The effect factors, such as the scan rate and potential region, for the cyclic voltammograms of the PbTe nanorods were also studied.
     2. Synthesis and Electochemical Behavior of Bi2Te3 nanowires
     The Bi2Te3 nanowires with grain-like surface, were prepared by the template-engaged hydrothermal synthesis in which the Te fine nanowires as-prepared were used as templates and Bi(NO3)3 was used as Bi source. The products as-obtained were characterized by XRD, TEM, SEM and so on. The effect of the molar ratio of Bi and Te in precursor and the reaction temperature on products was explored, and the formation mechanism of the Bi2Te3 nanowires was discussed. In addition, the electrochemical behavior of Bi2Te3 nanowires was determined by cyclic voltammetry in different medium. The effect of the scan rate and potential region on the cyclic voltammograms of the Bi2Te3 nanowires was also studied.
     3. Synthesis and Property of CdTe nanowires
     The CdTe nanowires were prepared by the template-engaged hydrothermal synthesis in which the Te fine nanowires as-prepared were used as templates and CdCl2 was used as Cd source. The products as-obtained were characterized by XRD, TEM and SEM analyses. The electrochemical property of the CdTe nanowires was determined by the voltammetric technique in different medium. The effect of the scan rate and potential region on the cyclic voltammograms of the CdTe nanowires was discussed. In addition, the electrogenerated chemiluminescence (ECL) behavior of the CdTe nanowires was studied.
引文
[1]张立德,世界科技研究与发展[J].2001,24,6.
    [2]钱逸泰,谢毅,唐凯斌,中国科学院院刊[J].2001,16,26.
    [3]Paul S. WeissPenelope A. Lewis. Approaches to Uncertainty in Nanomaterials [J]. ACS.Nano,2008,2 (3):393-393.
    [4]R. Dingreville et al. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films [J]. J. Mech. Phys. Solids 53 (2005) 1827-1854
    [5]Trilochan Mishra. Anion supported TiO2-ZrO2 nanomaterial synthesized by reverse microemulsion technique as an efficient catalyst for solvent free nitration of halobenzene [J]. Catalysis Communications 2008,9:21-26.
    [6]A. Jung, A. Jess, T. Schubert, et al. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne [J]. Applied Catalysis A: General 2009,362:95-105.
    [7]Kwangyeol Lee, Yong-Ho Kim, Soo Bong Han, et al. Osmium Replica of Mesoporous Silicate MCM-48:Efficient and Reusable Catalyst for Oxidative Cleavage and Dihydroxylation Reactions [J]. J. Am. Chem. Soc.2003,125: 6844-6845.
    [8]Halperin W P. Quantum size effects in metal particles. [J]. Rev. Modern Phys., 1986,58:532.
    [9]L. Yiping, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde. Magnetic Properties of Fine Cobalt Particles Prepared by Metal Atom Reduction [J]. J. Appl. Phys., 1990,67(9):4502-4504.
    [10]Hongkun P, Jiwoong P, Andrew K L Lim, Erik H A, Alivisatos A P, Mc Euen P L. Nanomechanical oscillations in a single-C60 transistor. [J] Nature,2000,407:57
    [11]A. Hagfeldt, M. Gratzel. Light-Induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95(1):49-68.
    [12]Y. Wang, N. Herron. Nanometer-sized semiconductor clusters:Materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem., 1991,95(2):525-532.
    [13]Tomoya Ohno, Kazunori Numakura, Hidenobu Itoh, et al. Control of the quantum size effect of TiO2-SiO2 hybrid particles [J]. Materials Letters,2009, (63):1737-1739.
    [14]Claire Bouvy, Evgeny Chelnokov, Wladimir Marine, et al. Quantum Size Effect and very localized random laser in ZnO@mesoporous silica nanocomposite following a two-photon absorption process [J]. Journal of Non-Crystalline Solids, 2009,(355):1152-1156.
    [15]A.J. Legget, S. Chakravarty, et al. Dyramics of the Dissipative Two-state System [J]. Rev. Mod. Phys.,1987,59:1.
    [16]D.D.Awschalom, M.A.McCord, G.Grinstein. Observation of macroscopic spin phenomena in nanometer-scale magnets [J]. Phys.Rev.Lett,1990,65:783-786.
    [17]Syozo Takada, Mikiko Fujii, and Shigemi Kohiki. Intraparticle Magnetic Properties of Co3O4 Nanocrystals [J]. Nano.Lett.2001,1(7):379-382.
    [18]Hiroaki Mamiya, Isao Nakatani, Takao Furubayashi. Reexamination of macroscopic quantum tunneling in ferritin—temperature dependence of magnetic relaxation [J]. Physica B,2003, (329-333):1189-1190.
    [19]Jawb I S, Bean C P. Irradiation of graphite at liquid helium temperatures. [J]. Phys. Rev.,1955,100:1060.
    [20]苏武,黄英,闫梨.磁性纳米线阵列的制备与应用[J].化工进展,2008,27,(4):478-482.
    [21]李国栋.2002~2003年磁记录材料新进展[J].信息记录材料,2004,5,(3):40-43.
    [22]Anthony P. Davis. Synthetic molecular motors [J]. Nature,1999,401:120-121.
    [23]Elsa Garmire,N. M. Jokerst,A. Kost,etal. Optical nonlinearities due to carrier transport in semiconductors [J]. J.Opt. Soc. Am.B,1989,6(4):579-587.
    [24]莫引优,符韵林.纳米二氧化硅在涂料中的应用[J].涂料工业,2009,39,(11):63-66.
    [25]张金花,褚道葆.纳米TiO2的性能与应用研究[J].资源开发与市场,2008,24,(1):47-49.
    [26]Hongyan Zhang, Aimin Zhu, Xinkui Wang, et al. Catalytic performance of Ag-Co/CeO2 catalyst in NO-CO and NO-CO-O2 system [J]. Catalysis Communications,2007, (8):612-618.
    [27]C. Macilwain. [J]. Nature 2001,405,730
    [28]龚丽芬,余彬彬,陈曦.光敏剂修饰纳米Ce/TiO2在可见光下光催化降解有机氯农药[J].厦门大学学报(自然科学版),2008,47,(1):79-82.
    [29]Jeng-Kuei Chang, Heng-Yi Tsai, Wen-Ta Tsai. A metal dusting process for preparing nano-sized carbon materials and the effects of acid post-treatment on their hydrogen storage performance [J]. International Journal of Hydrogen Energy,2008, (33):6734-6742.
    [30]Pabitra Choudhury, Sesha S. Srinivasan, Venkat R. Bhethanabotla, et al. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate [J]. International Journal of Hydrogen Energy,2009, (34):6325-6334.
    [31]袁光辉,薛冬峰.硼酸盐晶体的结构特征与新材料设计[J].材料导报,2007,21(5):95-98.
    [32]Hannah K. Edwards, Pamela A. Salyer, Martin J. Roe, et al. Growth and Microstructural Characterization of Single Crystalline Mb3Te4 Nanowires [J]. Cryst. Growth Des.2005,5(4):1633-1637.
    [33]G.S. Fox-Rabinovich, K. Yamamoto, M.H. Aguirre, et al. Multi-functional nano-multilayered AlTiN/Cu PVD coating for machining of Inconel 718 superalloy [J]. Surface and Coatings Technology,2010,204(15):2465-2471
    [34]Ma Yu-tian, Gong Zhu-Qing, Xu Wei-Hong, Huang Jian. Structural and optical properties of tellurium films obtained by chemical vapor deposition(CVD) [J].Trans. Nonferrous Met. SOC. China,2006(16):693-699.
    [35]V. V, J. Rosa, M. V, L. M. Stals, et al. Quantitative study of Raman scattering and defect optical absorption in CVD diamond films [J]. Diamond and Related Materials,1997 (6):704-707.
    [36]S.H. Lee, K.H. Nam, S.C. Hong, J.J. Lee. Low temperature deposition of TiB2 by inductively coupled plasma assisted CVD [J]. Surface & Coatings Technology, 2007,6(201):5211-5215.
    [37]Tevye Kuykendall, Peter Pauzauskie, Sangkwon Lee, et al. Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections [J]. Nano. Lett.2003,3(8):1063-1066.
    [38]Frauke Philipp, Peer Schmidt. The cationic clathrate Si46-2xP2xTex crystal growth by chemical vapour transport [J]. J. Cryst. Growth,2008(310):5402-5408.
    [39]Sung K. Lim, Michael J. Tambe, Megan M. Brewster, et al. Controlled Growth of Ternary Alloy Nanowires Using Metalorganic Chemica Vapor Deposition [J]. Nano. Lett.2008,8(5):1386-1392.
    [40]魏绍东,溶胶-凝胶法制备纳米TiO2技术的研究进展[J].材料导报,2004,18(2):50-53.
    [41]Zhenghua Wang, Lingling Wang, Jiarui Huang, et al. Formation of single-crystal tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature [J]. J. Mater. Chem.,2010,20, 2457-2463.
    [42]Shun Wang, Weipeng Guan, Dekun Ma, et al. Synthesis, characterization and optical properties of flower-like tellurium [J]. CrystEngComm,2010,12,166-171.
    [43]Zhang Bin, Hou Weiyi, Ye Xingchen, et al. Response To Comment On "1D Tellurium Nanostructures:Photothermally Assisted Morphology-Controlled Synthesis and Applications in Preparing Functional Nanoscale Materials" [J]. Advanced Functional Materials,2009,19(20):3193-3194.
    [44]Hai Fan, Yuanguang Zhang, Maofeng Zhang, et al. Glucose-Assisted Synthesis of CoTe Nanotubes in Situ Templated by Te Nanorods [J]. Cryst. Growth Des. 2009,9(1):145-150.
    [45]Guangwei She, Xiaohong Zhang, Wensheng Shi, et al. Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons [J]. Cryst. Growth Des.2008,8(6):1789-1791.
    [46]Jun Li, Xiaosheng Tang, Lixian Song, et al. From Te nanotubes to CoTe2 nanotubes:A general strategy for the formation of 1D metal telluride nanostructures [J]. J. Cryst. Growth,2009, (311):4467-4472.
    [47]Genqiang Zhang, Wei Wang, Xiaoli Lu, et al. Solvothermal Synthesis of Ⅴ Ⅵ Binary and Ternary Hexagonal Platelets:The Oriented Attachment Mechanism [J]. Cryst. Growth Des.2009,9(1):145-150.
    [48]Dinesh O. Shah. Macro-and Microemulsions Theory and Applications [M]. Maple Press Co., York, Pa. Publishers,1985.
    [49]徐时清,赵康,谷臣清.液相沉淀法制备VO_2纳米粉及晶化过程研究[J].稀有金属材料与工程,2003,07.
    [50]韩晓斌,黄丽.微波水解法制备针形α—Fe2O3纳米粒子[J].无机材料学报,1999,14,4.
    [51]张俊松,马娟,周益明,等.低温固相反应法合成水分散性CdS纳米晶[J].无机化学学报,2005,21,(2):295-297.
    [52]Weijun Luoa, Meijun Yangb, Fei Chen, et al. Fabrication and thermoelectric properties of Mg2Sil-xSnx (0≤x≤1.0) solid solutions by solid state reaction and spark plasma sintering [J]. Materials Science and Engineering B,2009, (157): 96-100.
    [53]R.S. Wagner. In Whisker Technology [M]. Levitt A. P.,Ed., Wiley Inter science: New York,1970.47-119.
    [54]R.S. Wagner, W.C. Ellis. Vapor-liquid-solid Mechanism of Single Crystal Growth [J]. Appl. Phys. Lett.,1964,4:89-90.
    [55]K. Kinoshita, S. Miyazawa. Large homogeneous Pb1-xSnxTe single crystal growth by vapor-melt-solid mechanism [J]. J. Cryst. Growth,1982,57(1): 141-144.
    [56]K. Kinoshita, K. Sugii. Vapor-melt-solid mechanism of Pb1-xSnxTe single crystal growth [J]. J. Cryst. Growth,1983,65(1-3):379-383.
    [57]P. Dziawa, J. Sadowski, P. Dluzewski, et al. Defect Free PbTe Nanowires Grown by Molecular Beam Epitaxy on GaAs(111)B Substrates [J]. Cryst. Growth Des., 2010,1(10):109-113.
    [58]Samuel Hoffmann, Ivo Utke, Benedikt Moser, et al. Measurement of the Bending Strength of Vapor-Liquid-Solid Grown Silicon Nanowires [J]. Nano.Lett.2006, 6(4):622-625.
    [59]Yinghui Shan, Stephen J. Fonash. Self-Assembling Silicon Nanowires for Device Applications Using the Nanochannel-Guided "Grow-in-Place" Approach [J]. ACS Nano,2008,2(3):429-434.
    [60]Hemant Adhikari, Ann F. Marshall, Irene A. Goldthorpe, et al. Metastability of AuGe Liquid Nanocatalysts:Ge Vapor-Liquid-Solid Nanowire Growth Far below the Bulk Eutectic Temperature [J]. ACS Nano,2007,1(5):415-422.
    [61]Jia Zhu, Hailin Peng, Candace K. Chan, et al. Hyperbranched Lead Selenide Nanowire Networks [J]. Nano.Lett.2007,7(4):1095-1099.
    [62]S. Shukla, V. Venkatachalapathy, S. Seal. Thermal Evaporation Processing of Nano and Submicron Tin Oxide Rods[J]. J. Phys. Chem. B,2006,110(23): 11210-11216.
    [63]Eric A. Stach, Peter J. Pauzauskie, Tevye Kuykendall, et al. Watching GaN Nanowires Grow [J]. Nano.Lett:2003,3(6):867-869.
    [64]Sunyoung Ham, Soyeon Jeon, Ungki Lee, et al. Compositional Analysis of Electrodeposited Bismuth Telluride Thermoelectric Thin Films Using Combined Electrochemical Quartz Crystal Microgravimetry Stripping Voltammetry [J]. Anal. Chem,2008,80(17):6724-6730.
    [65]Jiayin Yuan, Haitao Gao, Felix Schacher, et al. Alignment of Tellurium Nanorods via a Magnetization-Alignment-Demagnetization ("MAD") Process Assisted by an External Magnetic Field [J]. ACS Nano,2009,3(6):1441-1450.
    [66]Chunxia Fang, Shengyi Zhang, Pengfei Zuo, et al. Nanotube-nanotube transformation synthesis and electrochemistry of crystalline CuAgSe nanotubes [J]. J. Cryst. Growth,2009,311,2345-2351.
    [67]S.Y. Zhang, C.X. Fang, Y.P. Tian, et al. Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes [J]. Cryst. Growth Des.,2006,6 (12):2809-2813.
    [68]左鹏飞,张胜义,张晓娟等.水热模板法合成碲化镍纳米棒[J].化学研究,2008,19(4):89-92.
    [69]Xiaozhu Guo, Shengyi Zhang, Bangtong Jiang, et al. Synthesis, Characterization, and Properties of the Fringy CdSe Wurtzite Nanocrystals [J]. J. Phys. Chem. C, 2008,112(46):17899-17905.
    [70]Sheng-Yi Zhang, Chun-Xia Fang, Wei Wei et al. Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes [J]. J. Phys. Chem. C,2007,111(11): 4168-4174.
    [1]Joseph R. Sootsman, Robert J. Pcionek, Huijun Kong, et al. Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation [J]. Chem. Mater.,2006,18,4993-4995.
    [2]Z.H. Dughaish. Effect of temperature variation on the transport properties of fine-grained heavily doped n-type PbTe [J]. Physica B,2001,299,94-100.
    [3]N. Bouad, L. Chapon, R.-M. Marin-Ayral, F. Bouree-Vigneron, and J.-C. Tedenac. Neutron powder diffraction study of strain and crystallite size in mechanically alloyed PbTe [J]. Journal of Solid State Chemistry,2003,173,189-195.
    [4]Joseph R. Sootsman, Robert J. Pcionek, Huijun Kong, et al. Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation [J]. Chem. Mater.,2006,18,4993-4995.
    [5]Guo'an Tai, Bin Zhou, Wanlin Guo. Structural Characterization and Thermoelectric Transport Properties of Uniform Single-Crystalline Lead Telluride Nanowires [J]. J. Phys. Chem. C,2008,112,11314-11318.
    [6]Michael A. McGuire, Abds-Sami Malik, Francis J. DiSalvo. Effects ofhigh-pressure high-temperature treatment on the thermoelectric properties of PbTe [J]. Journal of Alloys and Compounds,2008,460,8-12.
    [7]Y. Yang, S. C. Kung, D. K. Taggart, C. Xiang, F. Yang, et al. Synthesis of PbTe Nanowire Arrays using Lithographically Patterned Nanowire Electrodeposition [J]. Nano Lett.,2008,8(8):2447-2451.
    [8]Xiaohong Li, Iris S. Nandhakumar. Direct electrodeposition of PbTe thin films on n-type silicon [J]. Electrochemistry Communications,2008,10,363-366.
    [9]ibrahim Y. Erdogan, Tuba Ozniiluer, Ferhat Bulbul, et al. Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method [J]. Thin Solid Films,2009,517(18):5419-5424.
    [10]Feng Xiao, Bongyoung Yoo, Krassimir N. Bozhilov, et al. Electrodeposition of Single-Crystal Cubes of Lead Telluride on Polycrystalline Gold Substrate [J]. J. Phys. Chem. C,2007,111,11397-11402.
    [11]Gao-Ren Li, Chen-Zhong Yao, Xi-Hong Lu, et al. Facile and Efficient Electrochemical Synthesis of PbTe Dendritic Structures [J]. Chem. Mater.2008, 20,3306-3314
    [12]Genqiang Zhang, Xiaoli Lu, Wei Wang, et al. Facile Synthesis of a Hierarchical PbTe Flower-like Nanostructure and Its Shape Evolution Process Guided by a Kinetically Controlled Regime [J]. Chem. Mater.2007,19,5207-5209.
    [13]Bing Qiu, Yonghong Ni, Lei Zhang. Controllable synthesis of X-shaped flowerlike PbTe microcrystals via a simple hydrothermal process [J]. Journal of Crystal Growth,2008,310,4199-4204.
    [14]James E. Murphy, Matthew C. Beard, Andrew G. Norman, et al. PbTe Colloidal Nanocrystals:Synthesis, Characterization, and Multiple Exciton Generation [J]. J. AM. CHEM. SOC.2006,128,3241-3247.
    [15]Yonghong Ni, Bing Qiu, Jianming Hong, et al. Hydrothermal synthesis, characterization, and influence factors of PbTe nanocrystals [J]. Materials Research Bulletin,2008,43,2668-2676.
    [16]Qingyu Yan, Hao Chen, Wenwen Zhou, et al. A Simple Chemical Approach for PbTe Nanowires with Enhanced Thermoelectric Properties [J]. Chem. Mater. 2008,20,6298-6300.
    [17]Guoan Tai, Wanlin Guo, Zhuhua Zhang. Hydrothermal Synthesis and Thermoelectric Transport Properties of Uniform Single-Crystalline Pearl-Necklace-Shaped PbTe Nanowires [J]. Cryst. Growth Des,2008,8 (8): 2906-2911.
    [18]A. Dauscher, M. Dinescu, O.M. Boffoue, et al. Temperature-dependant growth of PbTe pulsed laser deposited films on various substrates [J]. Thin Solid Films, 2006,497,170-176.
    [19]Taleb Mokari, Minjuan Zhang, Peidong Yang. Shape, Size, and Assembly Control of PbTe Nanocrystals [J]. J. Am. Chem. Soc.2007,129,9864-9865.
    [20]G.C. Xi, Y.Y. Peng, W.C. Yu, et al. Synthesis, characterization, and growth mechanism of tellurium nanotubes [J]. Cryst. Growth Des,2006,6:2567-2570.
    [21]Arup Purkayastha, Qingyu Yan, Darshan D. Gandhi, et al. Sequential Organic#Inorganic Templating and Thermoelectric Properties of High-Aspect-Ratio Single-Crystal Lead Telluride Nanorods [J]. Chem. Mater. 2008,20,4791-4793.
    [22]T.S. Zyubina, V.S. Neudachina, L.V. Yashina, et al. XPS and ab initio study of the interaction of PbTe with molecular oxygen [J]. Surface Science,2005,574 52-64.
    [23]V.S. Neudachina, T.B. Shatalova, V.I. Shtanov, L.V. Yashina, et al. XPS study of SnTe(100) oxidation by molecular oxygen [J]. Surface Science,2005,84,77-82.
    [24]T. Ohtani, M. Motoki, K. Koh, et al. Synthesis of Binary Copper Chalcogenides by Mechanical Alloying [J]. Materials Research Bulletin,1995,30(12): 1495-1504.
    [25]T.J. Zhu, Y.Q. Liu, X.B. Zhao. Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes [J]. Materials Research Bulletin,2008,43, 2850-2854.
    [26]S.Y. Zhang, C.X. Fang, Y.P. Tian, et al. Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes [J]. Cryst. Growth Des,2006,6(12):2809-2813.
    [27]Pengfei Zuo, Shengyi Zhang, Baokang Jin, et al. Rapid Synthesis and Electrochemical Property of Ag2Te Nanorods [J]. J. Phys. Chem. C,2008,112 (38):14825-14829.
    [28]Fei-Hui Li, Qing-Hua Huang, Wei Wang. Investigations on the electrodeposition behaviors of Bi0.5Sb1.5Te3 thin film from nitric acid baths [J]. Electrochimica Acta,2009,54,3745-3752.
    [29]Heini Saloniemi, Marianna Kemell, Mikko Ritala, et al. PbTe electrodeposition studied by combined electrochemical quartzcrystal microbalance and cyclic voltammetry [J]. Journal of Electroanalytical Chemistry,2000,482,139-148.
    [1]Zong-Hong Lin, Huan-Tsung Chang. Preparation of Gold-Tellurium Hybrid Nanomaterials for Surface-Enhanced Raman Spectroscopy [J]. Langmuir 2008, 24,365-367.
    [2]Ke-Ji Wang, Kai-Xue Wang, He Zhang, et al. Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route [J]. J. Phys. Chem. C,2010,114 (6):2471-2475.
    [3]Nataliya Piven, Andrei S. Susha, Markus Doblinger, et al. Aqueous Synthesis of Alloyed CdSexTel-x Nanocrystals [J]. J. Phys. Chem. C,2008,112 (39): 15253-15259.
    [4]Angang Dong, Fudong Wang, Tyrone L. Daulton, et al. Solution-Liquid-Solid (SLS) Growth of ZnSe-ZnTe Quantum Wires having Axial Heterojunctions [J]. Nano Lett.,2007,7 (5):1308-1313.
    [5]Bonil Koo, Brian A. Korgel. Coalescence and Interface Diffusion in Linear CdTe/CdSe/CdTe Heterojunction Nanorods [J]. Nano Lett.,2008,8 (8): 2490-2496.
    [6]iayin Yuan, Haitao Gao, Felix Schacher, et al. Alignment of Tellurium Nanorods via a Magnetization-Alignment-Demagnetization ("MAD") Process Assisted by an ExternalMagnetic Field [J]. ACS.Nano,2009,3(6):1441-1450.
    [7]Assaf Avidan, Dan Oron. Korgel. Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots [J]. Nano Lett.,2008,8 (8): 2384-2387.
    [8]Q. Peng, Y.J. Dong, Y.D. Li, etal. Synthesis of Uniform CoTe and NiTe Semiconductor Nanocluster Wires through a Novel Coreduction Method [J]. Inorg Chem,2003,42:2174-2175.
    [9]Feng Xiao, Bongyoung Yoo, Kyu Hwan Lee, et al. Synthesis of Bi2Te3 Nanotubes by Galvanic Displacement [J]. J. Am. Chem. Soc.,2007,129 (33):10068-10069.
    [10]Weigang Lu, Yong Ding, Yuxi Chen, et al. Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth [J]. J. Am. Chem. Soc., 2005,127(28):10112-10116.
    [11]M. S. Sander, R. Gronsky, T. Sands, et al. Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates [J]. Chem. Mater.2003,15 (1):335-339.
    [12]T Chuangui Jin, Xiaoqiang Xiang, Chong Jia, et al. Electrochemical Fabrication of Large-Area, Ordered Bi2Te3 Nanowire Arrays [J]. J. Phys. Chem. B,2004,108 (6):1844-1847.
    [13]Wen-Lin Wang, Chi-Chao Wan, Yung-Yun Wang. Investigation of Electrodeposition of Bi2Te3 Nanowires into Nanoporous Alumina Templates with a Rotating Electrode [J]. J. Phys. Chem. B,2006,110 (26):12974-12980.
    [14]C. M. Ruiz, E. Saucedo, O. Marti'nez, et al. Hexagonal CdTe-Like Rods Prompted from Bi2Te3 Droplets [J]. J. Phys. Chem. C,2007,111 (15): 5588-5591.
    [15]Edward E. Foos, Rhonda M. Stroud, Alan D. Berry. Synthesis and Characterization of Nanocrystalline Bismuth Telluride [J]. Nano Lett.,2001,1 (12):693-695.
    [16]Xing-Hua Li, Bo Zhou, Lin Pu, Jue-Jie Zhul. Electrodeposition of Bi2Te3 and Bi2Te3 Derived Alloy Nanotube Arrays [J]. Cryst. Growth Des,2008,8(3): 771-775.
    [17]Yucheng Lan, Bed Poudel, Yi Ma. Berry, et al. Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride [J]. Nano Lett.,2009, 9(4):1419-1422.
    [18]Y.Y. Zheng, T.J. Zhu, X.B. Zhao, et al. Sonochemical synthesis of nanocrystalline Bi2Te3 thermoelectric compounds [J]. Materials Letters,2005,59,2886-2888.
    [19]Lynn Trahey, Catherine R. Becker, Angelica M. Stacy. Electrodeposited Bismuth Telluride Nanowire Arrays with Uniform Growth Fronts [J]. Nano Lett.,2007,7 (8):2535-2539.
    [20]Genqiang Zhang, Wei Wang, Xiaoli Lu, et al. Solvothermal Synthesis of V VI Binary and Ternary Hexagonal Platelets:The Oriented Attachment Mechanism [J]. Cryst. Growth Des,2009,9(1):145-150.
    [21]Sunyoung Ham, Soyeon Jeon, Ungki Lee, et al. Compositional Analysis of Electrodeposited Bismuth Telluride Thermoelectric Thin Films Using Combined Electrochemical Quartz Crystal Microgravimetry-Stripping Voltammetry [J].Anal. Chem.2008,80(28):6724-6730.
    [22]Shanghua Li, Muhammet S. Toprak, Hesham M. A. Soliman, et al. Fabrication of Nanostructured Thermoelectric Bismuth Telluride Thick Films by Electrochemical Deposition [J]. Chem. Mater.2006,18 (6):3627-3633.
    [23]Hai-Sheng Qian, Shu-Hong Yu, Jun-Yan Gong, et al. High-Quality Luminescent Tellurium Nanowires of Several Nanometers in Diameter and High Aspect Ratio Synthesized by a Poly (Vinyl Pyrrolidone)-Assisted Hydrothermal Process[J]. Langmuir 2006,22,3830-3835.
    [24]Yuan Deng, Ce-Wen Nan, Guo-Dan Wei, et al. Organic-assisted growth of bismuth telluride nanocrystals [J]. Chemical Physics Letters,2003,374, 410-415.
    [25]X.B. Zhao, X.H. Ji, Y.H. Zhang, et al. Effect of solvent on the microstructures of nanostructured Bi2Te3 prepared by solvothermal synthesis [J]. Journal of Alloys and Compounds,2004,368,349-352.
    [26]Yongbin Xu, Zhongming Ren, Guanghui Cao, et al. Synthesis of single crystal Bi2Te3 nanoplates via an inorganic-surfactant-assisted solvothermal route [J]. Materials Letters,2008,62,4525-4528.
    [27]Pengfei Zuo, Shengyi Zhang, Baokang Jin, et al. Rapid Synthesis and Electrochemical Property of Ag2Te Nanorods [J]. J. Phys. Chem. C,2008,112 (38):14825-14829.
    [28]Sunyoung Hama, Soyeon Jeon b, Minsoon Park, et al. Electrodeposition and stripping analysis of bismuth selenide thin films using combined electrochemical quartz crystal microgravimetry and stripping voltammetry [J]. Journal of Electroanalytical Chemistry 2010,638,195-203.
    [29]Gupta, R. P., Iyore, O. D., Xiong, K., et al. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices [J]. Solid-State Lett.,2009,12(10):395-397.
    [1]John H. El Nakat, Ian G. Dance. Keith J. Fisher, et al. Gas phase copper chalcogenide cluster ions, formed by laser-ablation [J]. Inorg. Chem.,1991,30 (15):2957-2958.
    [2]K. Neyvasagam, N. Soundararajan, Ajaysoni, et al. Low-temperature electrical resistivity of cupric telluride (CuTe) thin films [J]. Phys Solid State,1998,40, 217-219.
    [3]J. Zhang, K. Sun, Amar Kumbhar, et al. Shape-Control of ZnTe Nanocrystal Growth in Organic Solution [J]. J. Phys. Chem. C,2008,112(14):5454-5458.
    [4]A.M. Qin, Y.P. Fang,P.F. Tao, et al. Silver Telluride Nanotubes Prepared by the Hydrothermal Method [J]. Inorg. Chem,2007,46(18):7403-7409.
    [5]Q. Peng, Y.J. Dong, Y.D. Li. Synthesis of Uniform CoTe and NiTe Semiconductor Nanocluster Wires through a Novel Coreduction Method [J]. Inorg. Chem.,2003,42(7):2174-2175.
    [6]O. Palchik, R. Kerner, Z. Zhu, et al. Preparation of Cu2-x Te and HgTe by Using Microwave Heating [J]. Journal of Solid State Chemistry,2000,154,530-534.
    [7]X. Wu, J. Zhou, A. Duda a, et al. Phase control of CuxTe film and its effects on CdS/CdTe solar cell [J]. Thin Solid Films,2007,515,5798-5803.
    [8]H. Lee, S.W. Yoon, J.P. Ahn, et al. Synthesis of type Ⅱ CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications [J]. Solar Energy Materials & Solar Cells,2009,93,779-782.
    [9]Bonil Koo, Brian A. Korgel. Coalescence and Interface Diffusion in Linear CdTe/CdSe/CdTe Heterojunction Nanorods [J]. Nano Lett.,2008,8(8): 2490-2496.
    [10]C. M. Ruiz, E. Saucedo, O. Martlnez, et al. Hexagonal CdTe-Like Rods Prompted from Bi2Te3 Droplets [J]. J. Phys. Chem. C,2007,111(15):5588-5591.
    [11]Ragini Raj Singha,c, Diksha Painulyb, R.K. Pandey, et al. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films [J]. Materials Chemistry and Physics,2009,116,261-268.
    [12]Simon K. C. Lee, Yanghai Yu, Oscar Perez, et al. Bismuth-Assisted CdSe and CdTe Nanowire Growth on Plastics [J]. Chem. Mater..2010,22(1):77-84.
    [13]Jie Ding, Xu Wang, Lin-Hai Zhuo, et al. Hierarchical assembly of CdTe nanotubes and nanowires at water-oil interface [J]. J. Mater. Chem.,2009,19, 3027-3032.
    [11]Ragini Raj Singha,c, Diksha Painulyb, R.K. Pandey, et al. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films [J]. Materials Chemistry and Physics,2009,116,261-268.
    [12]Simon K. C. Lee, Yanghai Yu, Oscar Perez, et al. Bismuth-Assisted CdSe and CdTe Nanowire Growth on Plastics [J]. Chem. Mater.,2010,22(1):77-84.
    [13]Jie Ding, Xu Wang, Lin-Hai Zhuo, et al. Hierarchical assembly of CdTe nanotubes and nanowires at water-oil interface [J]. J. Mater. Chem.,2009,19, 3027-3032.
    [14]E. Placzek-Popko, E.Zielony, J.Trzmiel, et al. Capacitance spectroscopy of CdTe self-assembled quantum dots embedded in ZnTe matrix [J].Physica B,2009,404, 5173-5176.
    [15]J. Suela, I. R. B. Ribeiro, S. O. Ferreira, et al. Evolution of crystalline domain size and epitaxial orientation of CdTe/Si(111) quantum dots [J]. J. Appl. Phys. 2010,107(6).
    [16]I. Dancus, V. I. Vlad, A. Petris, et al. Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots [J]. Optics Letters.2010,35(7):1079-1081.
    [17]Sharon Moeno, Edith Antunes, Samson Khene, et al. The effect of substituents on the photoinduced energy transfer between CdTe quantum dots and mercapto substituted zinc phthalocyanine derivatives [J]. Dalton Trans.,2010,39, 3460-3471
    [18]Hai-Sheng Qian, Shu-Hong Yu, Jun-Yan Gong, et al. High-Quality Luminescent Tellurium Nanowires of Several Nanometers in Diameter and High Aspect Ratio Synthesized by a Poly (Vinyl Pyrrolidone)-Assisted Hydrothermal Process[J]. Langmuir 2006,22.3830-3835.
    [19]Hai-Wei Liang, Shuo Liu. Qing-Song, et al. An Efficient Templating Approach for Synthesis of Highly Uniform CdTe and PbTe Nanowires [J]. Inorg. Chem., 2009.48 (11):4927-4933.
    [20]S.Y. Zhang, C.X. Fang, Y.P. Tian, et al. Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes [J]. Cryst. Growth Des,2006,6(12):2809-2813.
    [21]Pengfei Zuo, Shengyi Zhang, Baokang Jin, et al. Rapid Synthesis and Electrochemical Property of Ag2Te Nanorods [J]. J. Phys. Chem. C,2008,112 (38):14825-14829.
    [22]Diychuk, V. V., Voloshchuk, A. G., Nechyporuk, V. V.. Electrochemical and Thermodynamic Investigation of the CdTe Single Crystals in the Na2S-NaOH-H2O Solutions [J]. Polish Jounal of Chemistry,2009,83 (3): 445-454.
    [23]Sergey K. Poznyak, Nikolai P. Osipovich, Alexey Shavel, et al. Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution [J]. J. Phys. Chem. C,2005,109(3):1094-1100.
    [24]Xuan Liu, Hui Jiang, Jianping Lei, et al. Anodic Electrochemiluminescence of CdTe Quantum Dots and Its Energy Transfer for Detection of Catechol Derivatives [J].Anal. Chem.,2007,79(21):8055-8060
    [25]Xuan Liu, Huangxian Ju. Coreactant Enhanced Anodic ECL of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle [J].Anal. Chem.,2008,80(14):5377-5392.
    [26]Ying Wang, Jin Lu, Longhua Tang, et al. Graphene Oxide Amplified Electrogenerated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds [J]. Anal. Chem.,2009, 81(23):9710-9715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700