基于智能虚拟器官的植物建模关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟植物是以计算机仿真技术为基础,融合人工智能、植物学和植物生理学等多学科门类的新兴交叉研究领域,是国家数字农业战略规划的重要组成部分,也是农业信息化的核心研究内容之一,具有重大的理论意义与实用价值。目前的研究在实际应用过程中存在一些不足,如功能和结构模型系统耦合性差、参数配置复杂,植物生长规律难以自动发现和提取,基于L系统的模型难以适应复杂的器官功能和结构等。
     针对现有研究工作的不足,本文围绕虚拟植物建模方式及关键技术进行研究。论文工作的主要贡献是提出了以智能虚拟器官为基础的虚拟植物系统模型,通过建立智能虚拟器官生长推理过程来模拟器官的生理功能和生长形变,建立基于生长控制器的推理过程来实现虚拟植物的生长发育。主要研究成果包括:
     论文通过采集植物生理数据、统计分析和植物生理模糊神经推理等方法自动提取了器官的生长行为规则,获得器官的生理状态参数和生长发育的生理及环境限制条件。采用离散压力流模型和图自动机计算模型实现了智能虚拟器官之间的物质传输与分配。建立了智能虚拟器官的自主化生理过程,实现生理功能。
     论文分别采用Bézier曲面和三维重构技术来建立器官三维几何模型。采用Wang Tiles算法来合成纹理,以获得逼真的三维渲染图像。分别通过调整几何参数、三维Morphing和生长函数来实现虚拟器官的生长形变。通过集成的推理过程,计算新生器官获得最大光照的最佳生长角度。
     论文构造了生长控制器控制植物生长发育。建立由智能虚拟器官构成的分枝网络,来存储虚拟植物拓扑结构、几何形态和生理信息,并可直接解析出三维可视化图像。生长控制器判断各个器官所处的虚拟环境状态,调用分枝控制器控制分生组织的生长发育。分枝控制器解析分枝规则,输出分枝指令。分枝规则采用二维层次自动机描述和表示,可以人工观测提取,也可以通过图像处理和统计分析来自动提取。
     论文在本实验室具有自主知识产权的虚拟植物仿真软件“PlantLab”基础上搭建了仿真平台,以辣椒为仿真对象,研究和模拟其在正常、单向光照、低温、缺水、剪枝等环境条件下的生长发育过程和形态变化,并与实际生长过程的图像和数据进行对比,结果表明本文提出的植物模型能够较为真实、有效地模拟植物的生长发育及形态变化。
As an emerging interdisciplinary field, the research of computer-simulation-based virtual plants combines artificial intelligence, botany and plant physiology as well as other subjects. It is an important part of the national digital agriculture strategic planning, and is the core content of agricultural informationization also, and has great theoretical and practical value. However, there are still some problems and limitations between research and application, such as the function and structure model of poor coupling and difficult to configure complex parameters, being difficult to discover and extract the growth rules automatically, difficult to present complicated functional structure of organs by using the traditional L-system, etc.
     This thesis focuses on the research of plant modeling and its key technologies to solve the limitations of existing research. The most important feature of this thesis is that the model based on Intelligent Virtual Organ (IVO) is proposed, IVO implements the growth reasoning process to simulate the physiological function and growth deformation independently, the Growth Controller (GC) implements the intelligent growth reasoning process to achieve the growth and development of the virtual plant. Main contributions are as follows:
     First, collecting physiology data of plant, statistical analysis and Fuzzy Neuron Inference of Physiological Process (FNI-PP) have been used to automatically extract the growth behaviors rules of organs, the physiological growth status of organ and the physical and environmental restrictions for development. Discrete pressure-flow model and graph automata have been used to simulate the material transport and distribution and information exchange between IVOs. The autonomous physiological processes of IVOs have been established to achieve physiological functions.
     Second, bézier surface and 3D reconstruction technique have been used to create 3D geometric model of organs. Wang Tiles texture synthesis algorithm has been used to obtain 3D rendering vivid images. Adjusting geometrical parameters, 3D Morphing and growth function have been used to implement the growth deformation of virtual organs. IVOs calculate the best angle of new child organ by integrated reasoning process, in which the child organ can maximize light interception.
     Third, the Growth Controller (GC) has been established to control the growth and development of the virtual plant. The branching network composed of IVOs has been established, to store the virtual plant topology, geometry and physical information, and can directly be resolved 3D visualization image. GC checks the physiological and virtual environmental status of every organ, calls Branching Controller (BC) to control the growth and development of the meristems. BC analysis the branching rules and exports the branching instructions. The Two Dimensional Hierarchical Automata (2DHA) has been used to say and store the branching rules. The branching rules can be extracted by manually observation, or be extracted automatically by image processing and statistical analysis.
     Finally, the model has been implemented on the platform based on the virtual plant simulation software‘PlantLab’, which was developed by our laboratory with indigenous intellectual property rights. Several simulations of cayennes’growth and 3D morphological changes under normal, one-way light, lower temperature, water deficit environment and pruning have been conducted using this simulation platform. The comparison between simulated and real growth data shows that the model can effectively and vividly simulate the growth and development of virtual plant and its deformation.
引文
[1] Guo Y. Plant modeling and its applications to agriculture [C]. 2nd International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Beijing, PEOPLES R CHINA: 2006. Ieee Computer Soc; 2006:135-41.
    [2] Martineau Y, Saugier B. Paradoxical behaviour of a process-based model of plant succession [J]. Comptes Rendus Biologies 2006;329(1):21-30.
    [3] Renton M, Kaitaniemi P, Hanan J. Functional-structural plant modelling using a combination of architectural analysis, L-systems and a canonical model of function [J]. Ecological Modelling 2005;184(2-4):277-98.
    [4] Gao F, Wang CZ, Wei CH, Li Y. A branched-chain aminotransferase may regulate hormone levels by affecting KNOX genes in plants [J]. Planta 2009;230(4):611-23.
    [5] Coleman HD, Samuels AL, Guy RD, Mansfield SD. Perturbed Lignification Impacts Tree Growth in Hybrid Poplar-A Function of Sink Strength, Vascular Integrity, and Photosynthetic Assimilation [J]. Plant Physiology 2008;148(3):1229-37.
    [6] Vos J, Marcelis LFM, Evers JB. Functional-structural plant modelling in crop production[C]. Workshop on Functional-Structural Plant Modelling in Crop Production, Wageningen, NETHERLANDS: 2006; 2006:1-12.
    [7] Ren MX, Zhang QG. The relative generality of plant invasion mechanisms and predicting future invasive plants[J]. Weed Research, 2009;49(5):449-60.
    [8] Room PM, Maillette L, Hanan JS. Module and Metamer Dynamics and Virtual Plants[J]. Advances in Ecological Research, 1994,25:105-57.
    [9]杨娟.基于NURBS曲面的棉花器官建模[J].计算机工程与应用,2005:185-188.
    [10] W.T. Reeves, R.Blau. Approximate and probabilististic algorithms for shading and rending structured particle system[J]. Computer Graphics. 1985.19(3):313-322.
    [11] A.Lindenmayer. Mathematical models for cellular interaction in development[J], PartsⅠand PartsⅡ. Journal of Theoretical Biology. 1968, 19:280-315.
    [12] P. Prusinkiewicz, J. Hanan. Visualization of botanical structures and process using parametric L systems[J]. Scientific Visualization and Graphics simulation, 1990:193-201.
    [13] P. Prusinkiewicz, J. Hannan. Lindenmayer Systems, fractals, and plants[M]. New York:Springer-Verlag, 1990:25-30.
    [14] P. Prusinkiewicz, M. Hammel. L-system: From the theory to visual models of plants[C]. Presented at Proceedings of the 2nd CSIRO Symposium on Computational Challenges in LifeSciences 1996:113-146.
    [15] P. Prusinkiewicz, A. Lindenmayer. The Algorithmic Beauty of Plants [M]. New York:Springer, Berlin Heidelberg, 1990.
    [16] Prusinkiewicz. A look at the visual modeling of plant using L-system[J]. Agronomic, 1990, 211-224.
    [17] P. Prusinkiewicz, M. Hammel, E. Mjolsness. Animation of plant development[J]. Computer Graphics, 1993, 27 (3): 351-360.
    [18] Mech, P. Prusinkiewicz. Visual models of plants interacting with their environment[J]. Computer Graphics, 1996, 30:397-410.
    [19] P. Prusinkiewicz. L-Studio. http://algorithmicbotany.org/lstudio/whatis.html[EB/OL]
    [20] P. De Reffye, C. Edelin, J. Francon, M. Jaeger, C. Puech. Plant models faithful to botanical structure and development[J]. Computer Graphics, 1988, 22(4):151-158.
    [21] P. De Reffye, T. Fourcaud,F. Blaise, D. Barthelemy, F. Houllier. A functional model of tree growth and tree architecture [J].Silva Fennica, 1997, 31:297-311.
    [22]赵星.忠实于植物学的虚拟植物生长研究[D].安徽.中国科学与技术大学,博士学位论文,2001.
    [23]雷蕾.黄瓜生长和模拟的可视化研究[硕士学位论文].北京.首都师范大学.2005.
    [24] Chen L H, Huang G K, Splinter W E. Developing a physical chemical model for a plant growth system[J]. ASAE Trans,1969(12): 698-702.
    [25] Jones C A , Kiniry J R. CERES Maize: A simulation model of maize growth and development[J]. College Station, U S: Texas A&M Univ. Press, 1986.
    [26] Ritchie J T, Otter S. Description and performance of CERES Wheat: a user-oriented wheat yield model Willis W O. ARS wheat yield project[J]. U S: U SDA-ARS, ARS-38, 1985. 159-175.
    [27]高亮之,金之庆等.水稻栽培计算机模拟优化决策系统[M].中国农业科技出版社,1992
    [28]严美春,曹卫星,罗卫红等.小表地上部器官建成模拟模型的研究[J].作物学报,2001,27(2):222-229.
    [29]潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [30] Godin C, Sinoquet H. Functional-structural plant modelling[J]. New Phytologist 2005;166(3):705-8.
    [31] Prusinkiewicz P. Modeling plant growth development[J]. Current Opinion in Plant Biology 2004;7(1):79-83.
    [32] Sinoquet H, Rivet P. Measurement and visualization of the architecture of an adult tree basedon a three-dimensional digitising device[J]. Trees-Structure and Function 1997;11(5):265-70.
    [33] Bornhofen S, Lattaud C. Evolution of virtual plants interacting with their environment. Proceedings of VRIC. 2007,Laval, France:172–176.
    [34] Allen MT, Prusinkiewicz P, DeJong TM. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model[J]. New Phytologist 2005;166(3):869-80.
    [35] Le Roux X, Lacointe A, Escobar-Gutierrez A, Le Dizes S. Carbon-based models of individual tree growth: A critical appraisal[J]. Annal Forest Science 2001;58(5):469-506.
    [36] Perttunen J, Nikinmaa E, Lechowicz MJ, Sievanen R, Messier C. Application of the functional-structural tree model LIGNUM to sugar maple saplings (Acer saccharum Marsh) growing in forest gaps[J]. Annals of Botany 2001;88(3):471-81.
    [37] Rauscher HM, Isebrands JG, Host GE, Dickson RE, Dickmann DI, Crow TR, Michael DA. ECOPHYS - AN ECOPHYSIOLOGICAL GROWTH-PROCESS MODEL FOR JUVENILE POPLAR[C]. Workshop on Dynamics of Ecophysiological Processes in Tree Crowns and Forest Canopies, Rhinelander, Wi: 1989; 1989:255-81.
    [38] Stewart JM. Integrated events in flower and fruit. In: Stewart JRMaJM, editor. Cotton Physiology[M]. Memphis, Tennessee, U.S.A.: The Cotton Foundation Publisher; 1986: 261–300.
    [39] Jang JSR. ANFIS:Adaptive2network2based fuzzy inference system[J ] . IEEE Transactions on System ,Man and Cybernetics ,1993 ,23(3) :665~685.].
    [40] Sprugel D, Benecke, U. Woody-tissue respiration and photosynthesis[M]. In: Lassoie J, Hinckley, T., editor. Technics and approaches in forest tree ecophyiology. Boca Raton, FL, U.S.A.: CRC Press; 1991:329-47.
    [41] Thornley JHM. A Transport-Resistance Model of Forest Growth and Partitioning[J]. Annals of Botany 1991;68(3):211-26.
    [42] Amthor JS. The Role of Maintenance Respiration in Plant-Growth[J]. Plant Cell Environ 1984;7(8):561-9.
    [43] Baldwin, J. P. et al. J. appl. Ecol. 1971(8):543~554.
    [44] Baldwin, J. P. et al. Plant and Soil. 1972(37):209~213.
    [45] Marcelis LFM, Heuvelink E. Concepts of modelling carbon allocation among plant organs[C]. Workshop on Functional-Structural Plant Modelling in Crop Production, Wageningen, NETHERLANDS: 2006; 2006:103-11.
    [46] Wardlaw IF. Tansley Review No 27 - the Control of Carbon Partitioning in Plants[J]. New Phytologist 1990;116(3):341-81.
    [47] Sterck FJ, Schieving F, Lemmens A, Pons TL. Performance of trees in forest canopies: explorations with a bottom-up functional-structural plant growth model[J]. New Phytologist 2005;166(3):827-43.
    [48] Nicholas M. Patrikalakis, Takashi Maekawa著,冯结青,叶修梓译.计算机辅助设计与制造中的外形分析.北京.机械工业出版社,2005.
    [49] Maxime LHUILLIER, Long QUAN. A Quasi-Dense Approach to Surface Reconstruction from Uncalibrated Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27: 418– 433.
    [50] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [M]. New York: Cambridge University Press, 2000.
    [51] Zhang Z. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330~1334.
    [52] Heyden A, Astrom K. Euclidean reconstruction from constant intrinsic parameters [A]. In: Proceedings of International Conference on Pattern Recognition, Vienna, Austria, 1996. 339~343.
    [53] Pollefeys M, Koch R, van Gool L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters [J]. International Journal of Computer Vision, 1999,32(1):7~25.
    [54] E. Catmull, Subdivision algorithm for computer display of curved surfaces [D]. Department of Computer Science, University of Utah, Salt Lake City, Utah, 1974.
    [55] MF Cohen, J Shade, S Hiller, O Deussen. Wang Tiles for image and texture generation[C]. Annual Symposium of the ACM SIGGRAPH. Assoc Computing Machinery: San Diego, Ca, 2003:287-294.
    [56]李华,朱光喜.让文予,朱耀庭. Metamorphosis技术综述[J].计算机研究与发展, 2002, 39(5):524-532.
    [57] Godin C, Costes E, Sinoquet H. A method for describing plant architecture which integrates topology and geometry[J]. Annals of Botany 1999;84(3):343-57.
    [58] Heistand RE. AN EXECUTIVE SYSTEM IMPLEMENTED AS A FINITE-STATE AUTOMATON[J]. Communications of the Acm 1964;7(11):669-77.
    [59] Lhuillier M, Quan L. A quasi-dense approach to surface reconstruction from uncalibrated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005;27 (3):418-33.
    [60] Xu H, Gossett N, Chen BQ. Knowledge and heuristic-based modeling of laser-scanned trees[J]. Acm Transactions on Graphics 2007,26(4).
    [61] Brostow GJ, Essa I, Steedly D, Kwatra V. Novel skeletal representation for articulated creatures[C]. 8th European Conference on Computer Vision, Prague, CZECH REPUBLIC: 2004; 2004:66-78.
    [62] Chery McCarthy, Nige Hancock, Steven Raine. A preliminary field evaluation of an automated vision-based plant geometry measurement system[C]. In 5th International workshop on functional structural plant model, 2007 Napier New zealand, http://www- sop.inria.fr/virtualplants/Publications/2007/SGGPC07.
    [63] Dempster, A.P., Laird, N.M., Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm[J]. Journal of the Royal Statistical Society. Series B (Methodological) 39 (1)1977: 1–38.
    [64] ?gren G.I., Axelsson B., PT– A tree growth model, in: Persson T. (Ed.), Structure and function of Northern coniferous forests, an ecosystem study[J]. Ecological Bulletin, Stockholm, 1980: 525–536.
    [65] Davidson R.L., Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover[J], Annal of Botany, 1969;33: 561–569.
    [66] Thornley J.H.M., A model to describe the partitioning of photosynthates during vegetative plant growth[J], Annal of Botany, 1972;36:419–430.
    [67] Nichitiu C, Remila E. Simulations of Graph Automata[C]. Proc MFCS’98 Satellite Workshop on Cellular Automata; 1998:330-42.
    [68] Stefan Bornhofen CL. Competition and evolution in virtual plant communities: a new modeling approach[J]. Natural Computing 2008;8(2):349-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700