SDF-1/CXCR4趋化作用与前列腺癌骨转移效应的相关性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     前列腺癌是好发于老年男性的恶性肿瘤,欧美多发。在我国,随着人口老龄化趋势加快及PSA血清学检测的普及,其发病呈上升趋势。前列腺癌易发生远处转移,尤其是骨转移,各种治疗效果不理想,患者受癌性疼痛困扰,死亡率较高。因此,阐明前列腺癌骨转移的分子机制,对前列腺癌转移的预防和治疗有重要意义。
     趋化因子SDF-1是趋化因子CXC亚家族成员之一,主要在骨髓基质及内皮细胞表达,CXCR4是SDF-1的特异性受体,在神经、血管及造血等组织中组成性表达。SDF-1通过与CXCR4结合,对造血干/祖细胞、肝星状细胞有趋化作用,对诱导造血细胞的归巢及体内再分布有重要意义。近期研究证实SDF-1/CXCR4生物轴与多种肿瘤的播散和转移密切关联。并提出肿瘤细胞基于趋化因子以实现器官特异性转移的理论模型,认为高表达趋化因子受体的肿瘤细胞能向高表达相应趋化因子配体的器官进行选择性转移,但其确切机制仍不清楚。
     ICAM-1、VCAM-1作为炎性粘附分子主要介导炎细胞-血管黏附作用。ICAM-1配体为淋巴细胞功能相关抗原-1(LFA-1),是β2整合素家族中的成员,而VLA-4(CD49d)是整合素β1亚家族重要成员之一,是VCAM-1配体。SDF-1可以通过促使LFA-1在淋巴细胞膜表面重分布,提高LFA-1的黏附能力,促进炎细胞与血管内皮的黏附。而ICAM-1与LFA-1结合,介导免疫细胞向组织迁移、细胞与细胞外基质的粘附等作用。近年来发现ICAM-1、VCAM-1在许多肿瘤的表达明显高于相应正常组织,炎症分子介导的细胞-血管黏附作用与肿瘤的侵袭及转移有明显相似性,提示炎症分子可能以促进炎性进展的方式在在肿瘤侵袭及其转移方面起重要作用。
     基于国外研究进展,在本研究中我们用逆转录病毒作为载体,将CXCR4基因转染前列腺癌细胞,增强CXCR4表达水平,在体外通过微孔隔离室将前列腺癌细胞株PC-3与高表达SDF-1α的骨髓内皮细胞BMEC-1共培养,分析前列腺癌细胞对骨髓内皮细胞的迁移效应。将转染CXCR4基因前列腺癌细胞株种植于SCID小鼠前列腺包膜下,观察前列腺癌的骨转移效应,分析SDF-1/ CXCR4信号转导通路在前列腺癌转移及粘附过程中的作用及分子机理,为前列腺癌骨转移机制提供新的实验依据。
     方法
     1.收集148例手术切除及穿刺确诊前列腺癌存档蜡块。应用免疫组化方法检测前列腺癌组织、前列腺增生组织中CXCR4蛋白的表达,分析其不同表达与年龄、雄激素受体(AR)、病理分级和转移等临床特征的关系。进一步用免疫组化方法CD34标记计数肿瘤间质微血管密度(MVD),观察前列腺癌转移相关分子VEGF及MMP-9与微血管密度的关系。
     2.分离健康人外周血单个核细胞,提取总RNA,以其为模板, RT-PCR法扩增CXCR4,获取CXCR4基因全长序列,装入带有绿色荧光蛋白(GFP)的逆转录病毒质粒pLEGFP-N1,用脂质体法转染PC-3细胞,采用实时定量PCR和Western blotting观察CXCR4表达情况,并通过体外细胞-基质粘附试验和Transwells小室检测肿瘤细胞体外侵袭能力的变化。
     3.趋化因子SDF-1诱导培养CXCR4稳定转染PC-3细胞24h后,实时定量RT-PCR和Western blotting方法检测粘附分子LFA-1α/ICAM-1、VLA-4/VCAM-1及mRNA及蛋白表达情况,实时定量PCR和EMSA方法检测HIF-1α及P65NF-κB的mRNA水平及DNA结合活性。探讨前列腺癌细胞SDF-1/CXCR4生物轴功能增强对上述分子表达的影响。
     4.接种人前列腺癌PC-3、转染CXCR4的PC-3以及LNcap细胞于雄性SCID小鼠皮下,建立SCID小鼠人前列腺癌移植模型及原位转移模型,观察小鼠活动、移植成瘤率、肿瘤生长及形态学特征,以免疫组化检测CXCR4、前列腺癌特异性抗原PSA以及转移相关因子VEGF和MMP-9的表达情况。并观察CXCR4转染对荷瘤SCID小鼠转移情况及对骨转移灶微环境的影响。
     结果
     1. 148例前列腺癌组织中CXCR4的表达率显著高于癌旁正常前列腺组织和前列腺增生组织(P<0.001)。前列腺癌组织中CXCR4蛋白的高表达与病理分级和远处转移有关;前列腺癌间质MVD值随肿瘤分化程度减低而增高;与患者年龄无关,转移组较无转移组MVD值增高,AR阴性组较阳性组MVD值增高,随CXCR4、VEGF及MMP-9蛋白表达逐渐增强MVD值增高。
     2.成功构建pLEGFP-CXCR4载体,转染人前列腺癌细胞PC-3 72h后,CXCR4 mRNA及蛋白质水平明显上调, PC-3细胞的体外侵袭及迁移能力明显增强(CXCR4转染组与对照组比较,P<0.01,89.33±11.67 vs 59.33±7.27)。
     3.给予趋化因子SDF-1予CXCR4稳定转染PC-3细胞24h后, P38 mRNA和蛋白的表达与对照组相比显著增强(P<0.01,n=3),明显促进磷酸化P38蛋白的表达(P<0.01,n=3),且磷酸化P38与P38比值明显增高,提示pLEGFP-CXCR4转染PC-3细胞P38蛋白活性增强;与对照组相比PC-3细胞ICAM-1蛋白的表达显著增高(p<0.01,n=3),且mRNA水平增高(P<0.05,n=3);转染CXCR4的PC-3细胞VCAM-1mRNA的表达显著增高(P<0.01),VCAM-1蛋白水平增高(P<0.05,n=3); LFA-1αmRNA及蛋白水平显著增高(P<0.01,,n=3);VLA-4mRNA水平变化不显著(P>0.05,n=3),VLA-4蛋白水平显著增高(P<0.01,n=3);实时定量PCR检测P65NF-κB的mRNA水平显著增高(P<0.01,n=3),HIF-1α的mRNA水平显著升高(P<0.01,n=3),EMSA检测HIF-1α及P65NF-κB蛋白DNA结合活性显著增强(P<0.01,n=3)。
     4. PC-3/PEGFP-CXCR4细胞组与PC-3、LNcap细胞组相比较,移植瘤细胞形态、生长特性和PSA等未见明显改变。转移相关基因VEGF和MMP-9的表达在未转染CXCR4转移瘤及转染CXCR4组中明显增高(P<0.05 )。瘤结节包埋于尿道部皮下,形成一种模仿人类前列腺癌骨转移的动物模型,观察发现各组均未出现侵犯前列腺及生殖腺组织。SCID鼠移植瘤实验观察发现与对照组比较,转染CXCR4荷瘤SCID小鼠瘤细胞成瘤时间短,瘤体积大,转移灶多。骨转移主要位于腰柢椎,而且转染CXCR4组软骨内成骨及钙化明显,骨小梁增多,新生血管增多,髓腔内单核细胞增多。
     结论
     1.前列腺癌中CXCR4表达增高,可协同肿瘤间质趋化因子SDF-1促进前列腺癌的侵袭转移。CXCR4高表达提示肿瘤具有更高的侵袭转移能力。CXCR4的蛋白表达与间质微血管密度及VEGF及MMP-9蛋白的表达呈正相关。
     2. CXCR4转染能够明显提高CXCR4 mRNA及蛋白水平,提高人前列腺癌细胞体外侵袭能力。
     3. CXCR4转染PC-3细胞可以不通程度上调LFA-1α/ICAM-1、VLA-4/VCAM-1及P38MAPK的mRNA mRNA及蛋白的表达水平,促进P38MAPK的磷酸化,上调HIF-1Α及P65NF-κB的mRNA水平,显著增强HIF-1α及P65NF-κB蛋白的DNA结合活性。
     4.前列腺癌细胞SCID小鼠腹腔移植模型,模拟了人前列腺癌转移的生物学行为,较好地保持了人前列腺癌的生物学特性,是研究前列腺癌转移机制及生物治疗较理想的动物模型。PLEGFP-CXCR4转染促进癌细胞生长及转移,参与骨的重塑更显著。
Backgroud and objective
     Prostate cancer(PCa)is the most common malignant tumors in eld men, it occurred more in Europe and the United States, with the trend of aging and popular of detection serological PSA in China. Incidences of PCa appear upward trend, As a result of PCa tend to distant metastases, especially bone metastases, all kinds of treatment result is not satisfactory, Unbearable pain troubled Patients with PCa,and result in higher mortality. Therefore it is important to clarify the molecular mechanism of bone metastasis of PCa for preventing and treatment of PCa metastases.
     Chemokine SDF-1, as a member of the CXC chemokine subfamily, mainly expressed in bone marrow stromal and endothelial cells, CXCR4, the specific receptor of SDF-1, mainly expressed in the nerves, blood vessels and blood components. SDF-1 binding with CXCR4 is important to chemotactic effect on inducting hematopoietic cells homing and redistribution for hematopoietic stem / progenitor cells, hepatic stellate cells in vivo. Recent research has shown that SDF-1/CXCR4 biological axis related closely with invasion and metastasis in a variety of tumor. They assumed, Base on theory model of tumor cells depending on chemokines to achieve organ-specific metastasis, that high expressing of chemokine receptors in the tumor cells metastasis to organs of high expression of the corresponding chemokine ligand. But the mechanism is still unclear.
     ICAM-1, VCAM-1 as inflammatory adhesion molecules, mainly mediated adhesion of inflammatory cells to vascular. Ligand of lymphocyte function associated antigen -1 (LFA-1) for ICAM-1, a members theβ2 integrin subfamily。VLA-4(CD49d), as an important member of the integrinβ1subfamily, is receptor of VCAM-1. SDF-1 can improve adhesion ability of LFA-1 to promote inflammation and vascular endothelial cell adhesion by promoting LFA-1 redistribution at membrane surface of lymphocyte. And ICAM-1 binding to LFA-1 mediated migration of immune cell to the organization, cells adhesion to extracellular matrix, and so on. In recent years, ICAM-1, VCAM-1 are found higher expression significantly in many tumors than the corresponding normal tissue, the adhesions of cells to vascular mediated by inflammation molecules are obviously similar to invasion and metastasis of tumor, it suggest that inflammatory molecules may be plays an important role to promot tumor invasion and metastasis as the way of inflammation.
     Based on research overseas, in this study, We transfect CXCR4 gene to PCa cells by retroviral vectors, enhance the expression level of CXCR4, analysis effect of PCa cells migration to bone marrow endothelial cell by co-culture PCa cells line PC-3 and bone marrow endothelial cells BMEC-1, which SDF-1αexpressed in high level, in Transwell chamber in vitro. Cultivate PCa cells line, which Transfected with CXCR4 gene, into capsule of the prostate in SCID mice, observate effects of bone metastasis of prostate cancer, analysis the role and molecular mechanism of SDF-1 / CXCR4 signaling pathway in prostate cancer adhesion and metastasis, to provide new experimental evidence for the mechanism of bone metastasis of prostate cancer.
     Method
     1. Collectiing 148 cases archived wax blocks of surgical resection and puncture, which diagnosised prostate cancer. Detect expression of CXCR4 protein in prostate cancer tissue and benign prostatic hyperplasia tissues by immunohistochemistry, analysis relations of CXCR4 expression , clinical characteristics, the age difference, Androgen receptor (AR), pathological grade and metastasis. Further count microvessel density (MVD) of CD34 marked, observe relations prostate cancer metastasis-associated Molecules VEGF, MMP-9 with microvessel density in prostate cancer tissues.
     2. extracte of total RNA in mononuclear cells Separated from healthy human peripheral blood, RT-PCR amplify CXCR4 as RNA extracted a template, to obtain full-length CXCR4 gene sequence, restructur it into retrovirus vectors pLEGFP-N1,which with a green fluorescent protein (GFP), then transfected to PC-3 cells with lipofectamine, observe the expression of CXCR4 by real-time quantitative PCR and Western blotting, and detecte the invasive ability of tumor cells through cell - matrix adhesion by Transwells chamber testing in vitro.
     3. Prostate cancer cells line PC-3 transfected CXCR4 gene stably treated with Chemokine SDF-1 for 24 hr, Detect mRNA and protein expression adhesion molecules LFA-1α/ ICAM-1, VLA-4/ VCAM-1 and Kinase P38MAPK by real-time quantitative PCR and Western blot; detect mRNA level and DNA binding activity of HIF-1αand P65NF-κB by real-time quantitative PCR and EMSA. Investigate affect enhanced functions of SDF-1/CXCR4 biological axis in prostate cancer cells on the expression of Moleculars appeal.
     4. Inoculated human prostate cancer cells line PC-3, PC-3 cells transfected CXCR4 gene and LNcap cells in subcutaneously of male SCID mice, establish transplanted human prostate cancer model of SCID mice And in situ model of tumor metastasis, observe the activities, the rate of tumor incidence, tumor growth and morphological characteristics. Detect expression of CXCR4, prostate cancer-specific antigen (PSA), as well as metastasis-associated factors VEGF and MMP-9 by Immunohistochemistry. Observe impact of cancer cells metastasis and the bone micro-environment in tumor-bearing SCID mice after CXCR4 gene transfection.
     Result
     1. Expressing of CXCR4 in Prostate cancer tissues was significantly higher than that in normal prostate tissues adjacent to cancer and benign prostatic hyperplasia (P<0.01) in 148 cases. Expression of CXCR4 protein relate with histological grade and distant metastasis in human Prostate cancer tissues. Values of MVD in Prostate cancer interstitial increased with reduce the degree of tumor differentiation. unrelated with the patient's age, the metastasis group have higher MVD values than in non-metastasis group, the values of MVD in AR-negative group are increased than in the value of AR-positive group, values of MVD increased as CXCR4, VEGF and MMP -9 protein expression gradually upregulated.
     2. pLEGFP-CXCR4 vector constructed successfully, which transfected into human prostate cancer cells line PC-3 after 72h, levels of CXCR4 mRNA and protein were significantly up-regulated, invasiveness and Migration of cells increased markedly(Compared with the control group, P<0.01, 89.33±11.67 vs 59.33±7.27)in vitro.
     3. Prostate cancer cells line PC-3 transfected CXCR4 gene stably treated with Chemokine SDF-1 for 24 hr significantly increase the expression P38MAPK mRNA and protein significantly (P<0.01, n=3), expression of phospho-P38 protein significantly increased (P<0.01, n=3). And Ratio of phospho-P38 and P38 increased, suggeste that CXCR4 gene transfection promote activity of P38 protein; Compared with the control group, expression of ICAM-1 protein in PC-3 cells increased Significantly(p<0.01, n=3), levels of ICAM-1 mRNA increased significantly (P<0.05, n=3); levels of VCAM-1 mRNA increased significantly (P<0.01, n=3), expression of VCAM-1 protein increased also (p<0.01, n=3) in PC-3 cells transfected CXCR4 gene ; levels of LFA-1αmRNA and protein increased significantly (P <0.01,n=3); levels of VLA-4 mRNA have no significant changes (P>0.05, n=3), levels of VLA-4 protein increased significantly (P<0.01, n=3).Compared with the control group, evels of P65NF-κB and HIF-1αmRNA in PC-3 cells transfected CXCR4 gene increased significantly (P<0.01, n=3), DNA binding activity of HIF-1αand P65NF-κB protein increased significantly detected by EMSA (P <0.01, n=3).
     4. Compared with PC-3/PEGFP-CXCR4 cells and PC-3, LNcap cells groups, significant Differences has not been found in prostate cancer lines in morphology of transplant tumor tissues, growth characteristics and the levels of PSA. Expression of VEGF and MMP-9 in groups of metastatic tumors tissues without CXCR4 transfected and PC-3/PEGFP-CXCR4 groups was significantly higher then two other groups (P<0.05). To simulate human In situ prostate cancer bone metastasis animal model by embedding tumor nodules in the subcutaneous urethra of SCID mice, that each group had not found invasion of the prostate tissues and gonad organizations. Observe SCID mice transplanted tumor transfected CXCR4 gene experiments, Compared with the control group, group of tumor transfected CXCR4 gene SCID mouse generate into a tumor need shorter time, tumor sizes biger, number of metastases more. Sites of cancer bone metastases are mainly in the lumbar vertebral. Dochondral osteogenesis Cartilage and calcification in CXCR4 transfection groups increased, and trabecular bone apparent increased, angiogenesis increased, medullary cavity mononucleosis increased.
     Conclusion
     1. Increased expression of CXCR4 in PCa can coordinated chemokine SDF-1 which from Stromal of tumor to promotes invasion and metastasis. high expression of CXCR4 in PCa cells make tumor has a higher capacity of invasion and metastasis. CXCR4 protein expression, MVD in stromal, VEGF and MMP-9 protein expression was positively correlated.
     2. CXCR4 transfection can significantly increase the levels of CXCR4 mRNA and protein in prostate cancer cells line, enhance capacity of human prostate cancer cell invasion induced by SDF-1 in vitro.
     3. CXCR4 transfection PCa cells line PC-3 can increase levels of LFA-1α/ICAM-1, VLA-4/ VCAM-1 and P38MAPK the mRNA and protein in varying degrees, and promote the P38MAPK phosphorylation, increase levels of HIF-1αand the P65NF-κB mRNA, increased DNA binding activity of HIF-1αand P65NF-κB protein significantly.
     4. Human Prostate cancer SCID mouse transplantation model simulate biological behavior of metastasis for human prostate cancer, maintain a better biological characteristics of human prostate cancer, it is a excellent animal model to study metastasis mechanism and the biological treatment of prostate cancer. Transfection CXCR4 gene into prostate cancer cells promote growth and metastasis of cancer cells in SCID mice, and bone remodeled more significantly, when bone metastasis occur.
引文
1. Mochizuki H, Matsubara A, Teishima J, et al. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis[J]. Biochem Biophys Res Commun, 2004; 320(3): 656-63
    2. Ted SL, Matthew BY, Chang SS, et al. Recruitment of osteoclast precursors by stromal cell derived factor-1 (SDF-1) in giant cell tumor of bone[J]. Orthopaedic Res, 2005; 23(1): 203-209
    3. Wang J, Babcock GJ, Choe H, et al. N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins[J]. Virology, 2004; 324(1): 140-50
    4. Castellone MD, Guarino V, De-Falco V, et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas[J]. Oncogene, 2004; 23(35): 5958-67
    5. Andreas E, Ulrich F, Monika T, et al. Expression Analysis and Potential Functional Role of the CXCR4 Chemokine Receptor in Bladder Cancer[J]. European Urology, 2005;47(1): 111-117
    6. Tavor S,Petit I, Porozov S, et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice[J]. Cancer Res, 2004; 64(8): 2817-24
    7. Mizokami Y, Kajiyama H, Shibata K, et al. Stromal cell-derived factor-1alpha-induced cell proliferation and its possible regulation by CD26/dipeptidyl peptidase IV in endometrial adenocarcinoma[J]. Int J Cance, 2004; 110(5): 652-9
    8. Toshiyuki Y, Toru H. Crosstalk between cancer cells and bone microenvironment in bone metastasis[J]. Biochem Biophys Res Commun, 2005, 328 (3): 679 -687
    9. Ishitoya S, Kurazono H, Nishiyama H, et al. Verotoxin induces rapid elimination of human renal tumor xenografts in SCID mice[J]. J Urol, 2004; 171(3): 1309-13
    10. Fizazi K, Yang J, Peleg S, et al. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts[J]. Clin Cancer Res, 2003; 9(7): 2587-97
    11. Glinskii AB, Smith BA, Jiang P, et al. Viable circulating metastatic cells produced in orthotopic but not ectopic prostate cancer models[J]. Cancer-Res, 2003; 63(14): 4239-43
    12. Yonou H, Ochiai A, Goya M, et al. Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions[J]. Prostate, 2004;58(4): 406-13
    13. Yang M, Jiang P, Sun FX, et al.A fluorescent orthotopic bone metastasis model of human prostate cancer[J]. Cancer-Res, 1999;59(4): 781-6
    14. Francisco JC, Shahin R, Jeffery TP, et al. BMEC-1: A Human Bone Marrow Microvascular Endothelial Cell Line with Primary Cell Characteristics[J]. Microvascular-Res, 1996; 52 (3): 221-234
    15. Muller A, Homey B, Soto H, et al. In vovvment of ckemokine receptors in breast cancer metastasis[J]. Nature, 2001; 420(1):50-56
    16. Tobias E, Borna R, Ch rista B, et al. Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix [J]. Life Sciences, 2006;78:1784 -1793
    17. Kathryn E. Luker, Gary D. Luker. Functions of CXCL12 and CXCR4 in breast cancer[J]. Cancer Letters, 2006;238:30-41
    18. Kang H, mansel RE, jiang WG. benetic manipulation of stromal cell-derived-factor-2 attests the pivotal role of theAutocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells[J]. Int J Oncol,2005;26:1429-1434
    19. Taichan RS,Cooper C,Keller E T,et a1.Use of the stromal cell-derived factor l/cxcr4 pathway in prostate cancer metastasis to bone[J].Cancer Res, 2002; 62:1832-1837.
    20. Hodohara K,Fujii N,Yamamoto N,et a1.Stromal cell derived factor-1 (SDF-1)acts together with thrombo poietin to enhance the development of megakaryocytic progenitor ce11s [J].Blood, 2000;95:769-775.
    21. Adriana BA, Federica B, Alessandra DB, et al. Expression of CXC chemokine receptors 1-C5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration[J]. Neurochemistry International, 2006; 49:423-432.
    22. Upadhyay J, Shekarriz B, Nemeth S, et al. Membrane type 1-matrix metallproteinase(MT1-MMP) and NIMP-2 immunolocalization in human prostate: change in cellular localization associated with high-grade prostatic intraepithelial neoplasia[J]. Clin Cancer Res, 1999; 5(12):4105-4110.
    23. Wood M, Fudge K, Mohler JL, et al. In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer[J]. Clin Exp Metastasis, 1997; 15 (3):246-258.
    24. Festuccia C, Bologna M, Vicentini C, et al. Increased matrix metalloproteinase-9 secretion in short-term tissue cultures of prostatic tumor cells[J]. Int J Cancer, 1996;69 (5) :386-393.
    25. Stearns ME, Wang M. Type IV collagenase expression in human prostate: benign and malignant tissue[J]. Cancer Res. 1993; 53 (4):878-883.
    26. Steams M, Steams ME. Evidence for increased activated metalloproteinase 2 (MMP-2a) expression associated with human prostate cancer progression[J]. Oncol Res, 1996; 8 (2):69-75.
    27. Lokeshwar BL, Selzer MG, Block NL, Gunja-Smith Z. Secretion of matrix metalloproteinases and their inhibitors(tissue inhibitor of metalloproteinases) by human prostate in explant cultures: reduced tissue inhibitor of metalloproteinase secretion by malignant tissues[J]. Cancer Res, 1993;53 (19) :4493-4498.
    28. Nemeth JA, Yousif R, Herzog M, et al. Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis[J]. J Natl Cancer Ins t, 2002; 94 (1):17-25.
    29. Cao J, Chiarelli C, Kozarekar P, Adler HL. Membrane type 1-matrix metalloproteinase promotes human prostate cancer invasion and metastasis[J]. Thromb Haemost, 2005; 93 (4):770-778.
    30. Sanchez-Sweatman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases invasion matastasis[J]. Cancer Res, 1998; 18 (5-6):297-305.
    31. Still K, Rohson CN, Autzen P, et al. Localization and quantification of mRNA for matrix metalloproteinase-2(MMP-2) and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in human benign and malignant prostatic tissue[J]. Prostate, 2000;42(1):18-25.
    32. Hart CA, Scott LJ, Bagley S, et al. Role of proteolytic enzymes in human prostate bonemetastasis formation: in vivo and in vitro studies[J]. Br J Cancer. 2002; 86 (7):1136-1142.
    33. Latil A, Bieche, SP, Valeri A, et al. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms[J]. Int J Cancer, 2000; 89: 167–171.
    34. Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells[J]. Stem Cells, 2001;19:453–66.
    35. Oda Y, Yamamoto H, Tamiya S, et al. CXCR4 and VEGF expression in the primary site and the metastatic site of human osteosarcoma: analysis within a group of patients, all of whom developed lung metastasis[J]. Mod Pathol, 2006;19:738–45.
    36. Hao L, Zhang C, Qiu Y, et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph nodemetastasis in human breast cancer[J]. Cancer Lett, 2007;253:34–42.
    37. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway[J]. Biochem Biophys Res Commun 2007; 359: 716–22.
    38. Peyromaure M, Camparo P, Badoual C, et al. The expression of vascular endothelial growth factor is associated with the risk of cancer progression after radical prostatectomy[J]. BJU Int, 2007;99:1150–3.
    39. Green MM, Hiley CT, Shanks JH, et al. Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome[J]. Int J Radiat Oncol Biol Phys, 2007;67:84–90.
    40. Delongchamps NB, Peyromaure M, Dinh-Xuan AT. Role of vascular endothelial growth factor in prostate cancer[J]. Urology 2006;68:244–8.
    41. Ueda M, Terai Y, Kumagai K, et al. Correlation between tumor angiogenesis and expression of thymidine phosphorylase, and patient outcome in uterine cervical carcinoma[J] . Hum Patho l, 1999; 30 (11):1389
    42. Roy V, Catherine MC, Andrew RN, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohortstudy[J]. The Lancet Oncology, 2008; 9(4): 342-351
    43. Wahlfors J, Loimas S, Pasanen T, et al . Green fluorescent protein (GFP) fusion constructs in gene therapy research[J]. Histochem Cell B iol , 2001, 115 (1) : 592 65.
    44. IkawaM, Yamada S, Nakanishi T, et al . Green fluorescent protein (GFP) as a vitalmarker in mammals[ J ]. Curr Top Dev B iol , 1999, 44 (1) : 12-20
    45. Lapteva N, Yang AG, Sanders D E. CXCR4 knockdown by s mall interfering RNA abrogates breast tumor growth in vivo [J]. Cancer Gene Ther, 2005, 12 (1): 842-89.
    46. Panchal RG, Williams DA, Kitchener PD, et al. Gene transfer: manipulating and monit oring functi on in cells and tissues [J]. Clin Exp Pharmacol Physi ol, 2001, 28: 687 - 691.
    47. Lee K, Majumdar MK, Buyaner D, et al . Human mesenchymal stem cells maintain transgene exp ression during expansion and differentiation . Mol Ther, 2001, 3: 857 - 866.
    48. He X, Li Yh, Wang XR, et al. Mesenchymal stem cells transduced by PLEGFP-N1 retroviral vector maintain their biological features and differentiation[J]. Chin Med J, 2005, 118(20): 1728-1734.
    49. Zhuang L, Lin J, Lu ML, et al. Cholesterolrich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res, 2002; 62(8):2227–2231.
    50. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method. Methods, 2001;25(4):402–408.
    51. Huang YC, Hsiao YC, Chen YJ, et al. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kB dependent pathway in human lung cancer cells [J]. Biochemical Pharmacology, 2007; 74(12):1702-1712
    52. Helbig G, Christopherson KW, Bhat-Nakshatri P. NF-kappa B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4 [J]. J BiolChem, 2003; 278(24):21631-21638
    53. Hah N, Lee ST. Anabsolute role of the PKC2 dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2003; 305( 2):428
    54. Shida Y, Igawa T, Hakariya T, et al. p38MAPK activation is involved in androgen independent proliferation of human prostate cancer cells by regulating IL-6 secretion[J]. Biochemical and Biophysical Research Communications, 2007; 353(3): 744-749
    55. Sun JL, Turner A, Xu JF, et al. Genetic variability in inflammation pathways and prostate cancer risk [J]. U Urologic Oncology: Seminars and Original Investigations, 2007; 25(3): 250-259
    56. Liang ZX, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial micro RNA [J]. Biochemical and Biophysical Research Communications, 2007; 363(3):542-546
    57. BC, Lee TH, Avraham S, et al. Involvement of the chemokine receptor CXCR4and its ligand stromal cell-derived Factor 1 alpha in breast cancer cell migration through human brain microvascular endothelial cells[J]. Mol Cancer Res, 2004;2(6):327-381
    58. GL Nicolson. Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis [J].Cancer Metastasis Rev, 1993; 12: 325–343.
    59. J.M Wang, X Deng, W Gong and S Su, et al. Chemokines and their role in tumor growth and metastasis[J]. J Immunol Methods, 1998; 220: 1–17.
    60. Peled A, Kollet O, T Ponomaryov, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice [J].Blood, 2000;95:3289–3296.
    61. Jo DY, Rafii S, Hamada T, et al. Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1 [J]. J Clin Invest, 2000;105:101–111.
    62. Peled A, Petit I, Kollet O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 [J]. Science, 1999;283:845–848.
    63. Robledo MM, Bartolome RA, Longo N, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells [J]. J Biol Chem, 2001;276: 45098–45105.
    64. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis [J], J Invest Dermatol, 2002;118: 915–922.
    65. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer [J].Cancer Res, 2002;62: 5930–5938.
    66. Koshiba T, Hosotani R, Miyamoto Y, et al. Expression of stromal cell-derived factor 1and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression [J]. Clin Cancer Res, 2000;6: 3530–3535.
    67. Kijima T, Maulik G, Ma P.C, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells [J]. Cancer Res, 2002;62: 6304–6311.
    68. Geminder H, Sagi-Assif O, Goldberg L, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma [J]. J Immunol, 2001;167: 4747–4757.
    69. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone [J]. Cancer Res, 2002;62 :1832–1837.
    70. Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules as diagnostic tools in tumor pathology [J]. Int J Surg Pathol, 2000;8: 191–200.
    71. Sawada R, Tsuboi S, Fukuda M. Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials [J]. J Biol Chem, 1994;269:1425–31.
    72. Nelson H, Ramsey PS, Donohue JH, et al. Cell adhesion molecule expression within the microvasculature of human colorectal malignancies [J]. Clin Immunol Immunopathol, 1994; 72:129–36.
    73. Gearing AJ, Hemingway I, Pigott R, et al. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: Pathological significance [J]. Ann NYAcad Sci, 1992; 667:324–31.
    74. Banks RE, Gearing AJ, Hemingway IK, et al. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies[J]. Br J Cancer, 1993;68:122–4.
    75. Tsujisaki M, Imai K, Hirata H, et al. Detection of circulating intercellular adhesion molecule-1 antigen in malignant diseases[J]. Clin Exp Immunol, 1991;85:3–8.
    76. Shimizu Y, Minemura M, Tsukishiro T, et al. Serum concentration of intercellular adhesion molecule-1 in patients with hepatocellular carcinoma is a marker of the disease progression and prognosis[J]. Hepatology, 1995;22:525–31.
    77. Zhang GJ, Adachi I. Serum levels of soluble intercellular adhesion molecule-1 andE-selectin in metastatic breast carcinoma: Correlations with clinicopathological features and prognosis[J]. Int J Oncol, 1999;14:71–7.
    78. Alexiou D, Karayiannakis AJ, Syrigos KN, et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: Correlations with clinicopathological features, patient survival and tumour surgery[J]. Eur J Cancer, 2001;37: 2392–7.
    79. Velikova G, Banks RE, Gearing A, et al. Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer[J]. Br J Cancer, 1997;76:1398–404.
    80. Benekli M, Gullu IH, Tekuzman G, et al. Circulating intercellular adhesion molecule-1 and E-selectin levels in gastric cancer[J]. Br J Cancer 1998;78:267–71.
    81. Yoo NC, Chung HC, Chung HC, et al. Synchronous elevation of soluble intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) correlates with gastric cancer progression J]. Yonsei Med J, 1998;39:27–36.
    82. Gabriela C, Meytham M, Cinzia G, et al. Chemokines Trigger Immediateβ2 Integrin Affinity and Mobility Changes: Differential Regulation and Roles in Lymphocyte Arrest under Flow[J]. Immunity, 2000; 13(6): 759-769
    83. Friedrich EB, Clever YP, Wassmann S, 17β-Estradiol inhibits monocyte adhesion via down-regulation of Rac1 GTPase[J]. Journal of Molecular and Cellular Cardiology, 2006; 40(1): 87-95
    84. Domenech J, Carion A, Herault O, Reversibility of low VLA-4, and CXCR-4 expression on peripheral blood CD34+ cells[J]. Experimental Hematology, 2000;28(7): 49-50
    85. Shen W, Bendall LJ, Gottlieb DJ, et al. The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow[J]. Experimental Hematology, 2001;29(12):1439-1447
    86. Bonaros N, Sondermejer H, Schuster M, et al. CCR3 and CXCR4-mediated interactions regulate migration of CD34+ human bone marrow progenitors to ischemic myocardium and subsequent tissue repair[J]. The Journal of Thoracic and Cardiovascular Surgery, 2008;136(4): 1044-1053
    87. Schaumann DHS, Wolfram Ebell JT, Manz RA, et al.VCAM-1-positive stromal cellsfrom human bone marrow producing cytokines for B lineage progenitors and for plasma cells: SDF-1, flt3L, and BAFF[J]. Molecular Immunology, 2007; 44(7): 1606-1612
    88. Wong CP, Bray TM, Ho E, et al. Induction of proinflammatory response in prostate cancer epithelial cells by activated macrophages[J]. Cancer Letters, 2009; 276(1): 38-46
    89. Ogawa Y, Hirakawa K, Nakata B, et al. Expression of intercellular adhesion molecule-1 in invasive breast cancer reflects low growth potential, negative lymph node involvement, and good prognosis[J]. Clin Cancer Res, 1998 4:31–36.
    90. Yasuda M, Tanaka Y, Tamura M, et al. Stimulation of beta1 integrin down-regulatesICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase[J]. Cancer Res, 2001; 61:2022–2030.
    91. Maruo Y, Gochi A, Kaihara A, et al. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer[J]. Int J Cancer, 2002; 100: 486–490.
    92. Kammerer S, Roth RB, Reneland R, et al. Large-scale association study identifies ICAM gene region as breast and prostate cancer susceptibility locus[J]. Cancer Res, 2004; 64: 8906–8910.
    93. Duncan JS, Litchfield DW. Too much of a good thing: the role of protein CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2[J]. Biochim Biophys, 2008;1784: 33-47
    94. Wong CK, Wang CB, LiM L, et al. Induction of adhesion molecules upon the interaction between eosinophils and bronchial epithelial cells: involvement of p38MAPK and NF- kappaB [J]. Int Immunopharmacol, 2006; 6 (12): 1859 -71.
    95. Huang CP, Zhang ZX, Xu YJ. p38 Mitogen Activated protein kinase and nuclear factor-κB modulate the expression of inducible nitricoxide synthase in lipopolysaccharide stimulated alveolarmacr ophages[J]. Acta Med Univ Sci Technol, 2005;34 (2): 185 - 8.
    96. Semenza GL, Agani F, Feldser D, et al. Hypoxia,HIF-1,and the pathophy siology of common human diseases[J]. Adv Exp Med Biol, 2000; 475:123-130.
    97. Liu HS, Pan CE, Liu QG, et al. Effect of NF-kappaB and p38MAPK in activatedmonocytes/ macrophageson proinflammatory cytokines of rats with acute pancreatitis [J]. Word J Gast roenterol,2003;9:2513-2518.
    98. Huang YC, Hsiao YC, Chen YJ, et al. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kB dependent pathway in human lung cancer cells [J]. Biochemical Pharmacology, 2007; 74(12):1702-1712
    99. Helbig G, Christopherson KW, Bhat-Nakshatri P. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of thechemokine receptor CXCR4 [J]. J Biol Chem, 2003; 278(24):21631-21638
    100. Hah N, Lee ST.An absolute role of the PKC2 dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2003; 305(2):428
    101. Shida Y, Igawa T, Hakariya T, et al. p38MAPK activation is involved in androgen independent proliferation of human prostate cancer cells by regulating IL-6 secretion [J]. Biochemical and Biophysical Research Communications, 2007; 353(3): 744-749
    102. Sun JL, Turner A, Xu JF, et al. Genetic variability in inflammation pathways and prostate cancer risk [J]. U Urologic Oncology: Seminars and Original Investigations, 2007; 25(3): 250-259
    103. Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients [J]. Hum Pathol,2000;31:578-583.
    104. Liang ZX, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial micro RNA [J]. Biochemical and Biophysical Research Communications, 2007; 363(3):542-546
    105. Lee BC, Lee TH, Avraham S, et al. Involvement of the chemokine receptor CXCR4and its ligand stromal cell-derived Factor 1 alpha in breast cancer cell migration through human brain microvascular endothelial cells[J]. Mol Cancer Res, 2004;2(6):327-381
    106. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse[J]. Nature, 1983 ,301 :5272
    107.李炎生,肖亚军,杜岳峰等.一种表达增强型红色荧光蛋白的前列腺癌骨转移模型的建立[J]。临床泌尿外科杂志,2006;21(9):702-705
    108. Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens[J]. Cancer Res. 2007;67: 3153–3161.
    109. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells[J]. Cancer Res, 2005,65: 10946–10951.
    110. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment[J]. Nature, 2005;435: 969–973.
    111. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J].Nature, 2001;410: 50–56.
    112. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo[J]. J. Bone Miner Res, 2005;20: 318–329.
    113. Jung K, Lein M, Stephen C, etal.Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications[J]. Int J Cancer, 2004;111:783-91.
    114. Cohen P, Peehl DM, Graves H, et al. Biological effects of prostate specific antigen as an insulin-like growth factor binding protein-3 protease[J]. J Endocrinol, 1994; 142:407-15.
    115. Aguirre-Ghiso JA, Estrada Y, Liu D, et al. ERK(MAPK) activity as a determinant of tumor growth and dormancy;regulation by p38 [J]. Cancer Res,2003;63 (7):1684一1695.
    116. Rembrink K, Romijin JC, Rubben H, et al. Orthotopic implantation of human prostate cancer cell lines: a clinically relevant animal model for metastatic prostate cancer [J]. Prostate, 1997;31(3):168-174.
    117. Sato N, Gleve ME, Bruchovsky N, et al. A metastatic and androgen-sensitive human prostate cancer model using intraprostatic inoculation of LNCaP cells in SCID mice[J]. Cancer Res,1997;57(8):1584-1589.
    118. Yang M, Jiang P, Sun FX, et al. A fluorescent orthotopic bone metastasis model of human prostate cancer [J]. Cancer Res , 1999;59 (4) :781-786.
    119. Giovanella BC, Stehlin JS, Shepard RC, et al. Correlation between response to chemotherapy of human tumors in patients and in nude mice [J]. Cancer, 1983, 52(7):1146-1152 .
    120. Zhau HE, Chang SM, Chen BQ, et al. Androgen - repressed phenotype in human prostate cancer[J]. Proc Natl Acad Sci, 1996;93: 15152-15257.
    121. Zhau HE , Li CL ,Chung LW. Establishment of human prostate carcinoma skeletal metastasis model. Cancer, 2000;88(12 Suppl) : 2995-3001.
    122. Corey E, Quinn JE, Bladou F, et al. Establishment and characterization of osseous prostate cancer models : intratibial injection of human prostate cancer cells[J]. Prostate, 2002; 52:20-33.
    123. Fisher JL, Schmitt JF, Howard ML, et al . An in vivo model of prostate carcinoma growth and invasion in bone[J]. Cell Tissue Res, 2002; 307(3):337-345.
    124. Andresen C, Bagi CB, Adams S.W. Intratibial injection of human prostate cancer cell line CWR22 elicits osteoblastic response in immunodeficient rats[J]. J Musculoskel Neuron Interact, 2003;3(2):148-55.
    125. Nemeth JA, Harb J, Barroso U, et al. Severe Combined immunodeficient model of human prostate cancer metastasis to human bone[J] . Cancer Res, 1999;59(8):1987-93.
    126. Yonou H, Yokose T, Kamijo T, et al. Establishment of a novel species and tissue specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone[J] . Cancer Res, 2001; 61(5):2177~82.
    127. Sweeney TJ, Mailander V, Tucker AA , et al. Visuzlizing the kinetics of tumor - cellclearance in living animals [J] . Proc Natl Acad Sci USA, 1999;96:12044-12049.
    128. Yang M, Baranov E, Moossa AR, et al. Visualizing gene expression by whole-body fluorescence imaging[J] . Proc Natl Acad Sci USA , 2000 ,97:12278-12282.
    129. Ricw BW, Cable MD, Nelson MB. In vivo imaging of light– emitting probes[J]. J Biomed Opt, 2001; 6:432~440.
    130. Glinskii AB, Smith BA, Jiang P, et al. Viable circulating metastatic cells produced in orthotopic but not ectopic prostate cancer models[J] . Cancer Res. 2003; 63 (14) :4239-4243.
    1. 1 Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin. Jan-Feb 2005;55 (1):10-30.
    2. Pinski J, Dorff TB. Prostate cancer metastases to bone: pathophysiology,pain management, and the promise of targeted therapy. eur J Cancer. Apr2005:41(6):932-940.
    3. Eder IE, Haag P, Bartsch G, Klocker H. Gene therapy strategies in prostate cancer. Gene Ther. Feb 2005:5(1):1-10.
    4. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial Lancet. Feb 3 2001:357(9253):336-341.
    5. Langley RR, Fidler IJ, et al. Tumor cell-organ micro environmenint eractions in the pathogenesis of cancer metastasis, Endocr,2007,28 (1): 297–321.
    6. Liotta LA, Kohn EC, et al. The microenvironment of the tumour–hos interface, Nature, 2001,411 (2) 375–379.
    7. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 1:571-573.
    8. Jacob K, Webber M, Benayahu D,et al .Osteonectin promotes prostate cancer cell migration and invasion:a possible mechanism for metastasis to bone. Cancer Res,1999, 59:4453-4457
    9. Cooper CR, Chay CH, Gendernalik JD, et al. Stromal factors involved in prostate carcinoma metastasis to bone. Cancer. 2003,97(3 Suppl): 739-747.
    10. Miki J, Furusato B, Li H, et al. Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens, Cancer Res. 2007,67: 3153–3161.
    11. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res, 2005,65: 10946–10951.
    12. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment, Nature, 2005,435: 969–973.
    13. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis, Nature, 2001,410: 50–56.
    14. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo, J. Bone Miner Res, 2005,20: 318–329.
    15. Taichman RS, Cooper C, Keller ET, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone, Cancer Res, 2002,62:1832–1837.
    16. Holleran JL, Miller CJ, Edgehouse IVL, et al. Differential experimental micrometastasis to lung, liver and bone with lacZ tagged CWR22R prostate carcinoma cells. Clin Exp Metastasis.2002,19:17-24.
    17. Lehr J E, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. Natl Cancer Inst.l998, 90:118-123.
    18. Cooper CR, Mclean L, Walsh M, et al. Perferential adhesion of prosate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res. 2000, 6:4839-4847.
    19. Simpson MA, Reiland J, Burger SR. Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention,a prerequisite for rapid adhesion to bone marrow endothelial cells. Journal of Biological Chemistry.2001,276:17949-17957.
    20. Kierszenbaum AL, Rivkon E, Chang PL, et al.Galac osyl receptor, a cell surface C-type lectin of normal and tumoral prostate epithelial cells with binding affinity to endothelial cells. Prostate. 2000, 43 (3): 175-183.
    21. Cooper CR, Bhatia JK, Muenchen HJ, et al. The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines. Clin Exp Metastasis. 2002, 19 (1):25-33.
    22. Sartor 0, Reid RH, Hoskin PJ, etal. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 2004, 63:940-5.
    23. Han SH, de Kl erk JM, Tan S,,et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186) Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med. 2002, 43:1150-1156.
    24. Heidenreich A, Hofmann R, Engelmann UH. The use of bisphosphonate for the palliative treatment of painful bone metastasis due to hormone refractory prostate cancer. ,T Urol. 2001,165:136-40.
    25. Nelson JB, Hedican SP, George DJ, et al.Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995, 1:944-9
    26. Autzen P, Robson CN, Bjartell A, etal. Bone morphogenetic protein6 in skeletal metastases from prostate cancer and other common human malignancies. Br J Cancer. 1998, 78:1219-23.
    27. Marquardt H, Lioubin MN, Ikeda T. Complete amino acid sequence of human transforming growth factor type beta 2. J Biol Chem. 1987, 262:12127-31
    28. Shariat SF, Shalev M, Menesses-Diaz A, etal. Preoperative plasma levels of transforming growth factor beta (1) (TGF-beta (1))strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol. 2001,19:2856-64.
    29. Chan JM, Stampher MJ, Giovannucci E, etal.Plasma insulin-Like growth factor-I and prostate cancer risk:a prospective study. Science. 1998, 279:563-6.
    30. Ali O, Cohen P, KW. Epidemiology and biology of insulin-like growth factor binding protein-3 (IGFBP-3) as an anti-cancer molecule. Horm Metab Res. 2003, 35:726-33.
    31. Fudge K, Wang CY, Steams ME. Immunohistochemistry analysis of platelet-derived growth factor A and B chains and platelet-derived growth factor alpha and beta receptor expression in benign prostatic hyperplasias and Gleason-graded human prostate adenocarcinomas. Mod Pathol. 1994, 7:549-54.
    32. Xiao G, Jiang D, Gopalakrishnan R, etal. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfal/Runx2. J Biol Chem. 2002, 277:36181-7.
    33. Dai J, Kitagawa Y, Zhang ,J, etal. Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein. Cancer Res. 2004,64:994-9.
    34. Yang J, Fizazi K, Peleg S, etal. Prostate cancer cells induce osteoblast differentiation through a Cbfal-dependent pathway. Cancer Res. 2001,61:5652-9.
    35. Gleave M, Hsieh JT, Gao CA, etal. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 1991,51:3753-61.
    36. Festuccia C, Giunciuglio D, Guerra F, etal.Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res.1999,11:17-31.
    37. Fizazi K, Yang J, Peleg S, et al. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res. 2003, 9:2587-97.
    38. Jung K, Lein M, Stephen C, etal.Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer. 2004,111:783-91.
    39. Cramer SD, Chen Z, Peehl DM. Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol. 1996, 156:526-31.
    40. Cohen P, Peehl DM, Graves H, etal. Biological effects of prostate specific antigen as an insulin-like growth factor binding protein-3 protease. J Endocrinol. 1994, 142:407-15.
    41. 41.Aguirre-Ghiso JA, Estrada Y, Liu D, et al .ERK(MAPK) activity as a determinant of tumor growth and dormancy;regulation by p38 (SAPK) Cancer Res. 2003,63 (7):1684一1695.
    42. Vakar-Lopez F, Cheng CJ, Kim J, etal. Up-regulation of MDA-BF-1, a secreted isoform of ErbB3, in metastatic prostate cancer cells and activated osteoblasts in bone marrow. J Pathol. 2004,203:688-95.
    43. Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005, 5:21-8.
    1. Campbell JJ, Butcher EC, et al. Chemokines in tissue-specific and micro vironment-specific lyphocte homing. Curr Opin Immunol, 2000,12(3):336
    2. Buttcher EC, Williams M, Youngman K, et al. Lymphocyte trafficing and regional immunity .Adv Immunol,1999,72:209
    3. Balkwill F, et al. Chemokine biology in cancer. Sem Immunol, 2003, 15:49-55
    4. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005;11(5):1743-1750
    5. Ben-Baruch A, et al. The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev, 2006, 25 (3):357-371
    6. Roland J, Murphy BJ, Ahr B, et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood, 2003, 101(2): 399-406.
    7. Psenak O, et al. Stromal cell-derived factor 1 (SDF-1), its structure and function. Cas Lek Cesk, 2001, 140(12): 355-63.
    8. Crump MP, Gong JH, Loetscher P, et al. Solution structure and basis for functional activity of stromal Cell-derived factor-1; dissociation of CXCR4 activation frombinding and inhibition of HIV 1. EMBO J, 1997, 16 (23): 6996-7007.
    9. Juarez J, Bendall L, Bradstock K, et al. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Phanm Des, 2004, 10(11): 1245-59.
    10. Gregory J, Babcock, Michael Farzan, et al. Ligand-independent Dimerization of CXCR4, a Principal HIV 1 Coreceptor. J Biol Chem, 2003, 278(5): 3378-3385.
    11. Muller A, Hommey B, Soto H, et al. Involyement of chemokine receptors in breast cancer metastasis. Nature, 2001,410(6824):50-56
    12. Cooper CR, Chay CH, Gendernalik JD, et a1.Stromal factors involved in prostate carcinoma metastasis to bone.Cancer, 2003, 97:739-47
    13. Ratajczak MZ, Kucia M, Reca R, et al. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells "hide out" in the bone marrow. Leukemia, 2004, 18: 29-40.
    14. Libura J, Drukala J, Majka M, et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion.Blood. 2002,100: 2597-2606.
    15. Adams GB, Chabner KT, Foxall RB, et al. Heterologous cells cooperate toaugment stem cell migration, homing, and engraftment. Blood, 2003, 101: 45-51.
    16. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824): 50-56.
    17. Bartolome RA, Galvez BQLongo N, et al. Stromal cell-derived factor-lalpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res 2004, 64: 2534-2543.
    18. Fox JA, Ung K, Tanlimco SG, et al. Disruption of a single Pten allele augments the chemotactic response of B lymphocytes to stromal cell-derived factor-1. J Immunol, 2002, 169: 49-54.
    19. Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem, 2003, 278: 9536-9543.
    20. Petit I, Goichberg P, Spiegel A, et al. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest, 2005, 115:168-176.
    21. Libura J, Drukala J,Majka M, et a1.CXCR4-SDF-1 signaling is Active in rhabdomyosarcoma cells and regulates locomotion, chemo-taxis, andadhesion. Blood, 2002, 100(7):2597-2606.
    22. Wehler T, Wolfert F, Schimanski CC,et al. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease.Oncol Rep. 2006,16(6):1159-1164
    23. Taichman RS,Cooper C,Keller E, et a1.Use of the stromal Cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis To bone. CancerRes, 2002,62(6):1832-1837
    24. Sun YX,Wang J,Shelburne CE,et a1.Expression of CXCR4 and CXCL1α(SDF1α) in human prostate cancers(PCa) in vivo. Cell Biochem, 2003, 89(3):462-473
    25. Geminder H,Sagi Assif O,Goldberg L,et a1.A possible role for CXCR4 and its ligand,he CXC chemokine stromal cell-derived Factor-l, in the development of bonemarrow metastases in neuro-blastoma. Immunol, 2001, 167(8):4747-4757
    26. Koshiba T, Hosotani R, Miyamoto Y, et a1. Expression of stromal Cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res, 2000,6(9):3530- 3535
    27. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005,11(5):174-350
    28. Uchida D, Begum NM, Almofti A, et a1. Possible role of stromal-Cell- derived factor-1 /CXCR4 signaling on lymph node metastasis of Oral squamous cell carcinoma. Exp Cell Res,2003,290(2):289-302
    29. Zeelenberg IS, Ruuls VL, Roos E.The chemokine recaptor CXCR4 is required for outgrowth of colon carcinoma microme-tastases. Cancer Res, 2003, 63(13): 3833-3839
    30. Scotton CJ, Wilson JL, Milliken D, et al. Epithelial cancer cell Migration: a role for chemokine receptors? Cancer Res,2001,6(13):4961-4965
    31. Dewan MZ, Ahmed S, Iwasaki Y, et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006,60(6):273-276
    32. Helbig Q, Christopherson KW, BhatNakshatri P, eta1. NF-Kappa B promotes breast cancer cell migration and metastsis by inducing the expression of the chemokine receptor CXCR4.BiolChem,2003,278(24):21631-21638
    33. Shailesh S, Udai P, William E, et al. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Laboratory Investigation (2004) 84, 1666-1676
    34. Kijowski J, Baj-Krzyworzeka M, Majaka M, et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and actives integrins but dos not affect proliferation and survival in lymphohematopoietic cells. Stem Cells, 2001, 19:453- 466
    35. Scotton CJ, Wikon JL, Scott K, et al. Multiple actions of the che-Mokine CXCL12 on epithelial tumor cells in human ovarian cancer.Cancer Res, 2002, 62(20): 930-5938
    36. Chen I,Triplett J, Dehner B, et al. Transforming growth factor-b receptor type 1 gene is frequently mutated in ovarian carcinomas. Cancer, 2001, 61:4679-4682
    37. Burger JA, Burger M, Kipps TJ, et a1.Chronic lymphocytic leuke-Mia B cells express functional CXCR4 chemokine receptors that mediate Spontaneous migration beneath bone marrow stromal cells Blood, 1999, 94(11):3658-3667
    38. Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4- mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45.Biol chem, 2003, 278:9536-9543
    39. Cheng J Q, Godwin A K, Bellacosa A, et al. a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. 1992,89: 9267-9271
    40. Kijowski J, Baj-Krzyworzeka M, Majka M, et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but dose not affect proliferation and survival in lymphohematopoietic cells. Stem Cells, 2001, 19:453-466
    41. Peled A, kollet O, Ponomaryov I, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD. SCID mice. Blood, 2000,95:3289-3296
    42. Wright N, Hidalgo A, Rodriguez-Frad JM, et al. The chemokine stromal cell-derived factor-1 alpha modulates alpha 4 beta 7 integrinmediated lymphocyte adhesion tomucosal addressin cell adhesion molecule-1 and fibronectin. J Immunol, 2002,168:5268-5277
    43. Ding Z, Issekutz TB, Downey GP, et al. 1-selection stimulation enhances functional expression of surface CXCR4 in lymphocytes: Implications for cellular activation during adhesion and migration. Blood, 2003, 101:4245-4252
    44. Schimanski CC, Schwald S, Simiantonaki N, et al. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005, 11(5):1743-1750
    45. Kodama J, Hasen, L, Kusumoto T, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007,18(1):70-76
    46. Jian YP, Wu XH, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: An independent prognostic factor for tumor progression. Gynecol Oncol. 2006, 103(1):226-233
    1. GL Nicolson, Paracrine and autocrine growth mechanisms in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis. Cancer Metastasis Rev, 1993;12:325–343.
    2. JM Wang, X Deng, W Gong, S Su. Chemokines and their role in tumor growth and metastasis. J Immunol Methods, 1998;220: 1–17.
    3. A Peled, O Kollet, T Ponomaryov, I Petit, S Franitza, V Grabovsky, MM Slav, A Nagler, O Lider, R Alon, D Zipori and T Lapidot. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/ stromal migration and engraftment of NOD/SCID mice. Blood, 2000; 95:3289–3296.
    4. DY Jo, S Rafii, T Hamada, MA Moore. Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. J Clin Invest, 2000; 105: 101–111.
    5. A Peled, I Petit, O Kollet, M Magid, T Ponomaryov, T Byk, A Nagler, H Ben-Hur, A Many, L Shultz, O Lider, R Alon, D Zipori,T Lapidot. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 1999;283 :845–848.
    6. A Muller, B Homey, H Soto, N Ge, D Catron, ME Buchanan, T McClanahan, EMurphy, W Yuan, S.N Wagner, J.L Barrera, A Mohar, E Verastegui, A Zlotnik. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001; 410:50–56.
    7. MM Robledo, RA Bartolome, N Longo, JM Rodriguez-Frade, M Mellado, I Longo, G.N van Muijen, P Sanchez-Mateos, J Teixido. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem, 2001276: 45098–45105.
    8. AS Payne, LA Cornelius. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol, 2002;118:915–922.
    9. CJ Scotton, JL Wilson, K Scott, G Stamp, GD Wilbanks, S Fricker, G Bridger, FR Balkwill. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer.Cancer Res, 2002;62:5930–5938.
    10. T Koshiba, R Hosotani, Y Miyamoto, J Ida, S Tsuji, S Nakajima, M Kawaguchi, H Kobayashi, R Doi, T Hori, N Fujii, M Imamura. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res, 2000; 6:3530–3535.
    11. T Kijima, G Maulik, PC Ma, EV Tibaldi, RE Turner, B Rollins, M Sattler, BE Johnson,R Salgia. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res, 2002;62:6304–6311.
    12. H Geminder, O Sagi-Assif, L Goldberg, T Meshel, G Rechavi, IP Witz, A Ben-Baruch. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol, 2001;167:4747–4757.
    13. RS Taichman, C Cooper, ET Keller, KJ Pienta, NS Taichman, L.K McCauley. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 2002; 62 :1832–1837.
    14. Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules as diagnostic tools in tumor pathology. Int J Surg Pathol 2000;8: 191–200.
    15. Sawada R, Tsuboi S, Fukuda M. Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials. J BiolChem,1994;269:1425–31.
    16. Nelson H, Ramsey PS, Donohue JH, et al. Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clin Immunol Immunopathol, 1994; 72:129–36.
    17. Gearing AJ, Hemingway I, Pigott R, et al. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: Pathological significance. Ann NY Acad Sci, 1992; 667:324–31.
    18. Banks RE, Gearing AJ, Hemingway IK, et al. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer, 1993;68:122–4.
    19. Tsujisaki M, Imai K, Hirata H, et al. Detection of circulating intercellular adhesion molecule-1 antigen in malignant diseases. Clin Exp Immunol, 1991;85:3–8.
    20. Shimizu Y, Minemura M, Tsukishiro T, et al. Serum concentration of intercellular adhesion molecule-1 in patients with hepatocellular carcinoma is a marker of the disease progres-sion and prognosis. Hepatology, 1995;22:525–31.
    21. Zhang GJ, Adachi I. Serum levels of soluble intercellular adhesion molecule-1 and E-selectin in metastatic breast carcinoma: Correlations with clinicopathological features and prognosis. Int J Oncol, 1999;14:71–7.
    22. Alexiou D, Karayiannakis AJ, Syrigos KN, et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: Correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer, 2001;37: 2392–7.
    23. Velikova G, Banks RE, Gearing A, et al. Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer, 1997;76:1398–404.
    24. Benekli M, Gullu IH, Tekuzman G, et al. Circulating intercellular adhesion molecule-1 and E-selectin levels in gastric cancer. Br J Cancer 1998;78:267–71.
    25. Yoo NC, Chung HC, Chung HC, et al. Synchronous elevation of soluble intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) correlates with gastric cancer progression. Yonsei Med J, 1998;39:27–36.
    26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-timequantitativePCR and the2(-Delta DeltaC(T))Method. Methods, 2001; 25(4): 402–408.
    27. Zhuang L, Lin J, LuML, Solomon KR, FreemanMR. Cholesterol rich lipid raftsmediate akt-regulated survival in prostate cancer cells. Cancer Res, 2002;62(8): 2227–2231.
    28. Tu SM, Millikan RE, Mengistu B, Delpassand ES, Amato RJ Pagliaro LC, Daliani D, Papandreou CN, Smith TL, Kim J Podoloff DA, Logothetis CJ. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate:Arandomised phase II trial. Lancet, 2001;357(9253):336–341.
    29. Sun YX, Schneider A, Jung Y,Wang J, Dai J, Cook K, Osman NI, Koh-Paige AJ, Shim H, Pienta KJ, Keller ET, McCauley LK, TaichmanRS. Skeletal localization andneutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J BoneMiner Res 2005;20(2):318–329.
    30. L Osborn, C Hession, R Tizard, C Vassallo, S Luhowskyj, G Chi-Rosso, R Lobb. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine- induced endothelial protein that binds to lymphocytes. Cell , 1989;59:1203–1211.
    31. Y. Koyama, Y. Tanaka, K. Saito, M. Abe, K. Nakatsuka, I. Morimoto, P.E. Auron and S. Eto, Cross-linking of intercellular adhesion molecule 1 (CD54) induces AP-1 activation and IL-1beta transcription. J Immunol, 1996;157:097–5103.
    32. M Yanase, T Tsukamoto. Y Kumamoto, Cytokines modulate in vitro invasiveness of renal cell carcinoma cells through action on the process of cell attachment to endothelial cells.J Urol, 1995;153:844–848.
    33. GE Rice and MP Bevilacqua. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science, 1998; 246:1301–1306.
    34. Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+cells: role in transendothelial/ stromal migration and engraftment of NOD/SCID mice. Blood, 2000; 95:3289
    35. Peled A, Grabovsky V, Habler L, et al. The chemokine SDF-1 stimulates integrin- mediated arrest of CD34
    37. Dutt P, Wang J-F, Groopman JE Stromal cell–derived factor-1 and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol, 1998; 161:3652
    38. Gerszten RE, Friedrich EB, Matsui T, Hung RR, Li L, Force T, et al. Role of phosphor- inositide 3-kinase in monocyte recruitment under ?ow conditions. J Biol Chem, 2001;276: 26846–51.
    39. Friedrich EB, Sinha S, Li L, Dedhar S, Force T, Rosenzweig A, et al. Role of integrin- linked kinase in leukocyte recruitment. J Biol Chem2002;277:16371–5.
    40. Friedrich EB, Tager AM, Liu E, Pettersson A, Owman C, Munn L, et al. Mechanisms of leukotriene B4-triggered monocyte adhesion. Arterioscler Thromb Vasc Biol 2003;23: 1761–7.
    41. Endres MJ, Clapham PR, Marsh M, Ahuja M, Turner JD, McKnight A, Thomas JF, Stoebenau-Haggarty B, Choe S, Vance PJ,Wells TN, Power CA, Sutterwala SS, Doms RW, Landau NR, Hoxie JA. CD4-independent infection by HIV-2 is mediated byfusin/CXCR4. Cell 1996;87(4):745–756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700