高维和时滞混沌系统的理论研究及电路实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的二十多年中,混沌科学逐渐从简单的科学好奇过渡到重要的实际应用阶段。自从Lorenz系统作为研究混沌的典范以来,人们认为混沌提供了一个丰富的信号设计和发生机制,它们在数据加密、保密通信和信息处理等方面有潜在的应用前景。值得注意的是,有目的的产生和强化混沌是许多工程技术领域的一个研究热点。
     沿着这个研究趋势,本论文重点研究了三个方面的问题:非线性电路中混沌的产生机制,混沌系统的电路设计和混沌系统的自适应同步。本论文主要贡献如下:
     首先回顾了与论文研究相关的知识,包括混沌的定义、混沌运动的特征、混沌的判据和规则以及非线性电路中的混沌现象。人们知道,混沌现象不可能在一阶、二阶自治连续时间系统中产生,也不可能在一阶非自治连续时间系统中产生。但是人们在三阶自治连续时间系统中发现了混沌现象。本文对几个典型的三维混沌系统和电路实现进行了详细地分析。
     针对低维混沌系统的安全性较低、容易受到威胁的缺陷,我们考虑增强非线性系统的混沌行为,提出了一种四维混沌电路的设计方案,该电路可以作为一个高维混沌发生器,在保密通信和图像加密中有潜在的应用。
     但是,随着维数的增加,混沌系统的物理实现变得更加困难。幸运的是,如果加入时延,简单神经元就能够展示出混沌行为。人们发现:由两个或三个非线性神经元组成,每个神经元都有一个sigmoid传递函数的时延神经网络能产生混沌行为。我们分析了时滞非线性系统的稳定性、Hopf分岔、极限环的失稳和混沌现象,深入探讨了时滞非线性系统中的混沌产生机制。
     在上述研究基础上,本文提出了带有非单调激活函数的时滞混沌神经元模型电路设计方法。我们设计的廖氏时滞混沌神经元电路既可以作为独立的时滞混沌发生器,也可以作为一个混沌神经元电路单元,甚至可以看成是细胞神经网络中的一个细胞,在保密通信和信息处理中有潜在的应用价值。值得一提的是:我们发现了一个特定的非线性电路系统,并对其稳定性、Hopf分岔的存在性进行了理论分析,构建了相应的时滞混沌电路系统,其输出波形和相图具有明显的混沌特征。
     最后,我们研究了混沌同步控制。混沌同步吸引了越来越多的关注,人们在研究中发现,混沌同步在许多领域,特别是生理学、非线性光学和保密通信中起着重要的作用。利用现代控制技术,论文中研究了高维混沌系统和时滞混沌系统
Over the last two decades, chaos has gradually moved from simply being a scientific curiosity to a promising subject with practical significance and applications. Since the first paradigm of the well-known Lorenz system,chaotic systems have been considered as a rich mechanism for signal design and generation and they have potential applications to data encryption, secure communications and signal processing. It has been noticed that, purposefully generating or enhancing chaos can be a key issue in many technological and engineering applications.
     This thesis addresses three important issues involved in chaotic systems: mechanism of generating chaos in nonlinear circuits, construction of chaos generators and adaptive chaos synchronization. Specifically, the main contributions of this thesis are presented as follows.
     The preliminary knowledge involved in this thesis, including the definitions of chaos, the characteristics, the criterions and rules of chaos, and chaos phenomena in nonlinear circuits, are introduced.
     It is well known that chaos can neither occur in first- or second-order autonomous continuous-time system, nor in a first-order non-autonomous continuous-time system. Chaos has been found in three-order autonomous continuous-time system. Several typical chaos systems and circuitry implementation are analyzed in detail.
     Aiming at low-dimensional systems having low security to be easily captured, enhancement of chaos in nonlinear system should be considered. An electronic analog of a new four-dimensional continuous autonomous chaotic system is described in detail. The proposed circuit may be used as chaos generator and has potential applications to communications and signal processing.
     However, with the increase of dimension, the system become more complex and hard to implement with electronic circuitry. Fortunately, it is found that simple neural networks with time delays can exhibit chaotic dynamical behavior. Chaotic phenomena for delayed neural networks consisting of two or three non-linear neurons have also been found. In this thesis, the local stability and existence of Hopf bifurcation, the loss of stability of a limit circle and the numerical transition to chaos of delayed differential equations are studied.
     Based on the above work, a circuitry implementation of chaotic Liao’s delayed
引文
[1] S. S. Wanda. Chaos Bifurcation and Fractals around Us. Singapore. World Scientific.2003.
    [2] 陆启韶. 分岔与奇异性. 上海科技教育出版社. 1995 年
    [3] 郝柏林. 从抛物线谈起--混沌动力学引论. 上海科技教育出版社. 1993 年.
    [4] 陈式刚. 映象与混沌. 北京国防工业出版社. 1992 年.
    [5] Edword N. Lorenz. Deterministic nonperiodic Flow. Journal of the Atmospheric Sciences. 1963,30.pp130-141.
    [6] Colin Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. New York. Springer-verlag New York Inc. 1982.
    [7] D. Ruelle, F. Takens. On the nature of turbulence. Commun. Math. Phys. 1971,20.pp167-192, 23.pp343-344.
    [8] Ruelle D. Ergodic theory of chaos and strange attractor. Rew. Math. Monthly, 1975, 82.pp985- 992.
    [9] R. Bowen, D. Ruelle. The ergodic theory of Axiom flows. Inventiones Mathematicae. 1975,29.pp181-202.
    [10] S. Newhouse, D. Ruelle, F. Takens. Occurrence of strange AxiomA attractors near quasi periodic flows on Tm, m>3. Communications in Mathematical Physics. 1978, 64(1). pp35-40.
    [11] T. Y. Li, J. A. Yorke. Period Three Implies Chaos. American Mathematical Monthly. 1975.pp. 985-992.
    [12] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformation. J. Stat. Phys.1978,19.pp25-52.
    [13] Linsay P S. Period doubling and chaotic behavior in a driven anharmonic oscillator. Phys. Rew. Lett. 1981 .pp47.
    [14] L. O. Chua, M. Komuro, T. Matsumoto. The double scroll family, Parts I and II, IEEE Trans. Circuits syst. 1986,CAS-33(11) .pp1073-1118.
    [15] O. E. R?ssler. An equation for continuous chaos. Phys. Lett. A. 1976,57 .pp397-398.
    [16] F. Zou, J. A. Nossek.Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. 1993, 40 .pp166 -172.
    [17] G. R. Chen and T. Ueta.Yet another chaotic attractor. Int. J. Bifurcation Chaos. 1999,9 .pp1465-1466.
    [18] G. Q. Zhong and K. S. Tang.Circuitry implementation and synchronization of Chen’s attractor. Int. J. Bif. Chaos . 2002,12 .pp1423-1427.
    [19] J. H. Lü, G. R. Chen. A new chaotic attractor coined. Int. J. Bifurcation Chaos. 2002,12 .pp659-661.
    [20] A. Vanecek and S.Celikovsky.Control Systems: From linear analysis to synthesis of chaos. London .Prentice–Hall. 1996.
    [21] C. Barbara, C. Silvano, Hyperchaotic behavior of two bi-directionally Chua’s circuits, Int. J. Circuits. Theor. Appl. 2002.30 (6) .pp625–637.
    [22] A. ?enys, A. Tama?evi?ius, A. Baziliauskas, et al.. Hyperchaos in coupled Colpitts oscillators. Chaos, Solitons Fractals. 2003,17 (2-3) .pp349–353.
    [23] V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J. B. Cuenot, P. Levy, W. T. Rhodes. Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 2003,95 (1) .pp114–118.
    [24] R. Vicente, J. Daudén, P. Colet, R. Toral. Analysis and characterization of the hyperchaos generated by a semiconductor laser subject, IEEE J. Quantum Electron. 2005,41 (4) .pp541–548.
    [25] P. Arena, S. Baglio, L. Fortuna, G. Manganaro. Hyperchaos from cellular neural networks, Electron. Lett. 1995, 31 (4) .pp250–251.
    [26] J. Y. Hsieh, C. C. Hwang, A. P. Li, W. J. Li. Controlling hyperchaos of the R?ssler system, Int. J. Control. 1999,72 (10) .pp882–886.
    [27] P. Q. Jiang, B. H. Wang, S. L. Bu, Q. H. Xia, X. S. Luo. Hyperchaotic synchronization in deterministic small-world dynamical networks. Int. J. Mod. Phys. B. 2004,18 (17) .pp2674–2679.
    [28] G. Perez, H. A. Cerdeira. Extracting messages masked by chaos, Phys. Rev. Lett. 1995,74 (11) .pp1970–1973.
    [29] L. Pecora. Hyperchaos harnessed. Phys. World 1996,9-17.
    [30] D. Cafagna, G. Grassi. New 3D –scroll attractors on hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurcat. Chaos. 2003,13 (10) .pp2889–2903.
    [31] K. Thamilmaran, M. Lakshmanan, A. Venkatesan. A hyperchaos in a modified canonical Chua’s circuit. Int. J. Bifurcat. Chaos .2004,14 (1) .pp221–243.
    [32] Y. Li, W. K.S. Tang, G. Chen. Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circuits Theor. Appl. 2005,33 (4) .pp235–251.
    [33] O. E. R?ssler. An equation for hyperchaos. Phys. Lett. A.1979,71 (2–3) .pp155–157.
    [34] T. Matsumoto, L. O. Chua, K. Kobayashi. Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans. Circuits Systems. 1986,33 (11) .pp1143–1147.
    [35] C. Z. Ning, H. Haken. Detuned lasers and the complex Lorenz equations: subcritical andsuper-critical Hopf bifurcations. Phys. Rev. A .1990,41 (7) .pp3826–3837.
    [36] T. Kapitaniak, L.O. Chua. Hyperchaotic attractor of unidirectionally coupled Chua’s circuit. Int. J. Bifurcat. Chaos. 1994,4 (2) .pp477–482.
    [37] A. Chen, J. Lu, J. Lü , S.M. Yu. Generating hyperchaotic Lü attractor via state feedback control. Physica A .2006,364 .pp103–110.
    [38] Y. Li, WKS Tang, G. Chen. Generating Hyperchaos via State Feedback Control. Int. J. Bifurcat. Chaos .2005,15 (10) 3. pp.367–3375.
    [39] Y. Li, G. Chen, W.K.S. Tang. Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Systems II .2005,52 (4) .pp204–207.
    [40] J. Lü , G. Chen, D. Cheng, S. Celikovsky. Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurcat. Chaos. 2002,12(12) .pp2917–2928.
    [41] J. Lü, T. Chen, S. Zhang. Chaos synchronization between linearly coupled chaotic systems. Chaos, Solitons Fractals .2002,14 (4) .pp529–541.
    [42] S. Chen, J. Lü . Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons Fractals. 2002,14 (4) .pp643–647.
    [43] K. L. Babcock, R. M. Westervelt. Dynamics of simple electronic neural networks. Physica. D, 1987,28(3) .pp305-316.
    [44] M. Gilli. Strange attractors in delayed cellular neural networks. IEEE Trans. Circuits Syst. 1993,40 .pp849-853.
    [45] Xiaofeng Liao, Z. F. Wu and J. B. Yu. Hopf bifurcation analysis of a neural system with a continuously distributed delay. International symposium on signal processing and intelligent system. Guangzhou, China, 2001.
    [46] Xiaofeng Liao, Z. F. Wu and J. B. Yu. Stability switches and bifurcation analysis of a neural system with a continuously distributed delay. IEEE trans SMC-I. 1999,29 .pp692-696,
    [47] Xiaofeng Liao, K. W. Wong and Z. F. Wu. Bifurcation analysis on a two-neuron system with distributed delays. Physica D. 2001,149 .pp123–41,.
    [48] Xiaofeng Liao, K. W. Wong and Z. F. Wu. Stability of bifurcating periodic solutions for van der Pol equation with continuous distributed delay . Appl Math Comput. 2001,146 .pp313–34.
    [49] Xiaofeng Liao, S. W. Li and G. R. Chen. Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural Networks. 2004,17 .pp545–61.
    [50] Xiaofeng Liao, K. W. Wong, C. S. Leung and Z. F. Wu. Hopf bifurcation and chaos in a single delayed neuron equation with non-monotonic activation function. Chaos, Solitons and Fractals. 2001,12(8) .pp1535-1547.
    [51] K. Gopalsmay and K.C. Leung Issic. Convergence under dynamical thresholds with delays. IEEE Trans. Neural Networks. 1994, 8 .pp341-348,.
    [52] 杨维明.时空混沌和耦合映像格子,上海,上海科技教育出版社,1994.
    [53] M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase Synchronization of Chaotic Oscillators. Phys. Rev. Lett., 1996, 76. pp1804-1807.
    [54] S. Sivaprakasam, K.A. Shore, Demonstration of optical synchronization of chaotic external-cavity laser diodes .Opt. Lett., 1999, 24. pp466-468.
    [55] A. Barsella, C. Lepers. Chaotic lag synchronization and pulse-induced transient chaos in lasers coupled by saturable absorber. Optics Communications.2002, 205 .pp397–403.
    [56] Renversez, Gilles. Synchronization in two neurons: Results for a two-component dynamical model with time-delayed inhibition. Physica D. 1998, 114 .pp147-171.
    [57] Huang X, Xu J, Huang W and Zhu F. Error analysis for delay synchronization of chaotic systems. ACTA Physica SINICA. 2001, 50 (12) .pp2296-2307.
    [58] E.M. Shahverdiev et al. Lag synchronization in time-delayed systems. Physics Letters A. 2002, 292 .pp320–324.
    [59] S. Boccaletti et al. The synchronization of chaotic systems. Physics Reports, 2002, 366 .pp1–101.
    [60] Pikovsky, Arkady S., Rosenblum, Michael G., Osipov, Grigory V., Kurths, Jürgen. Phase synchronization of chaotic oscillators by external driving. Physica D. 1997, 104 .pp219-238.
    [61] H. U. Voss. Anticipating chaotic synchronization. Phys. Rev. E. 2000, 61 .pp5115.
    [62] S. Sivaprakasam, E.M. Shahverdiev, P.S. Spencer, K.A. Shore. Experimental Demonstration of Anticipating Synchronization in Chaotic Semiconductor Lasers with Optical Feedback. Phys. Rev. Lett. 2001, 87 .pp154101.
    [63] G. Grassi and S. Mascolo, NJ: Prentice-Hall, 1999.
    [64] M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev.Lett. 1997, 78 .pp4193-4196.
    [65] J. K. Hale, L. S. Verduyn, V. Lunel, M. Sjoerd. Introduction to Functional Differential Equations. New York, Springer-verlag, Inc., 1993.
    [66] Mikael Bask and Ramazan Gen?ay. Testing chaotic dynamics via Lyapunov exponents. Physica D: Nonlinear Phenomena.1998,114(1-2) .pp1-2.
    [67] Ramazan Gen?ay. A statistical framework for testing chaotic dynamics via Lyapunov exponents. Physica D: Nonlinear Phenomena.1996,89(3-4) .pp261-266.
    [68] Andrzej Stefanski, Artur Dabrowski and Tomasz Kapitaniak. Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. Chaos, Solitons & Fractals.2005,23(5) .pp1651-1659
    [69] Jia Lu, Guolai Yang, Hyounkyun Oh and Albert C.J. Luo. Computing Lyapunov exponents of continuous dynamical systems: method of Lyapunov vectors. Chaos, Solitons & Fractals. 2005, 23(5) .pp1879-1892
    [70] Victor F. Dailyudenko. Lyapunov exponents for complex systems with delayed feedback. Chaos, Solitons & Fractals.2003,17(2-3) .pp473-484
    [71] Murali, K. Lakshmanan, M.Chua, L.O. The simplest dissipative nonautonomous chaotic circuit. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 1994, 41( 6) .pp462-463.
    [72] Andrzej Stefanski. Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons & Fractals. 2000,11(15) .pp2443-2451.
    [73] Aldo Casaleggio and Stefano Braiotta. Estimation of Lyapunov exponents of ECG time series—The influence of parameters. Chaos, Solitons & Fractals. 1997,8(10) .pp1591-1599.
    [74] 邱关源,现代电路理论,北京:高等教育出版社,2001.
    [75] T Matsumoto et al. Bifurcations Sights, Sounds, and Mathematics. Tokyo: Springer Verlag, 1993.
    [76] L O Chua, P M Lin. Computer Aided Analysis of Electronic Circuits: Algorithma and Computational Tcehniques. Englewood Cliffs. NJ: Prentice-Hall,1975
    [77] J Guchenheimer, P Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983
    [78] M Vidyasagar. Nonlinear System Analysis. Englewood Cliffs. NJ: Prentice-Hall.1993
    [79] G M Maggio, Oscar De Feo, M P Kennedy. Nonlinear Analysis of the Colpitts Oscillator and Applications to Design. IEEE Trans, Circuit Ssyst. I .1999,46 .pp1118-1129
    [80] M Braun. Differential Equations and Their Applications (3rd edition) New York Heidelberg. Berlin: Springer-Verlag,1983
    [81] Gerard Iooss, Daniel D Joseph. Elementary Stability and Bifurcation Theory. Heidelberg. Berlin: Springer-Verlang New York, 1980
    [82] 高金峰. 非线性电路与混沌.科学出版社.2005,1.
    [83] Rudiger Seydel. Practical Bifurcation and Stability Analysis, Springer-Verlag,1994.
    [84] G. Perez. H. A. Cerdeira, Extracting messages masked by chaos. phys, Rev. Lett.1995,74(11) .pp1970-1973.
    [85] Xiaofeng Liao, G. R. Chen. Hopf bifurcation and chaos analysis of Chen’s system with distributed delays. Chaos, Solitons and Fractals.2005,25 .pp197–220,.
    [86] A. S. Elwakil and M. P. Kennedy. Construction of classes of circuit independent chaoticoscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst. I, 2001, 48 .pp289-307.
    [87] A. S. Elwakil and M.P. Kennedy. Creation of a complex butterfly attractor using a novel lorenz-type system. IEEE Trans. Circuits Syst. I. 2002 , 49 .pp527-530.
    [88] G. Y. Qi , G. R. Chen . Analysis and circuit implementation of a new 4D chaotic system. Phys. Lett. A. 2006,352 .pp386–397.
    [89] K.Gopalsmy, I.Leung. Delay induced periodicity in a neural network of excitation and inhibition. Physica D. 1996, 89 .pp395-426.
    [90] K.Gopalsmy, Issic K. C. Leung. Convergence under dynamical thresholds with delays. IEEE Trans. on Neural Networks. 1994, NN-8(2). pp341-348.
    [91] L.Olien, J. Belair. Bifurcations, stability and monotonicity properties of a delayed neural network model. Physica D. 1997, 102.pp.349-363.
    [92] J.Belair, s. Dufour. stability in a three-dimensional system of delay-differential epuations. Can. Appl. Math. Quart. 1996, 4(2) .pp135-156
    [93] 廖晓峰,吴中福,虞厥邦. 带分布时延神经网络,从稳定到振荡再到稳定的动力学现象.电子科学学刊,2001,23(7) .pp687-692
    [94] 王炎,廖晓峰,吴中福,虞厥邦. 一个带时延神经网络的分岔现象研究,电子科学学刊,2000,22(6) .pp927-977.
    [95] J. K. Hale, SMV Lunel. Introduction to Functional Differential Equations. - Applied Mathematical Sciences. 1993, 8.
    [96] BD Hassard, ND Kazarinoff, YH Wan. Theory and Applications of Hopf Bifurcation. London Canbridge. Univ Press, 1981.
    [97] K. Gopalsmay and K.C. Leung Issic. Convergence under dynamical thresholds with delays. IEEE Trans. Neural Networks. 1994,8 .pp341-348,.
    [98] D. Hansel and H. Sompolinsky. Synchronization and computation in a chaotic neural network. Phys. Rew. Lett. 1992,68 .pp718-721.
    [99] K. Aihara , T. Takabe and M. Toyoda. Chaotic Neural Networks. Phys. Lett. A, 1990,144 .pp333 -340,.
    [100] A. Babloyantz and C. Lourenco. Computation with chaos: a paradigm for cortical activity. Proc. Natl. Acad. USA. 1994,91 .pp9027-9031.
    [101] W. J. Freeman.Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bif. Chaos. 1992, 2 .pp451-482.
    [102] Xiaofeng Liao and K. W. Wong. Global exponential stability for a class of retarded functional differential equations with applications in neural networks. J. Math. Anal. Appl.2004,293(1) .pp125-148,
    [103] S. W. Li, Xiaofeng Liao and C. G. Li, et al. Hopf bifurcation of a two-neuron network with different discrete time delays. Int. J. Bif. Chaos.2005,15(5) .pp1589-1601.
    [104] Xiaofeng Liao, S. W. Li and G.R. Chen. Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain. Neural Networks. 2004,17(4) .pp545-561,
    [105] X. Xu, H. Y. Hu and Wang HL.Stability switches. Hopf bifurcation and chaos of a neuron model with delay-dependent parameters. Phys. Lett. A. 2006,354(1-2) .pp126-136.
    [106] M. H. Jiang, Y. Shen and J. G. Jian, et al. Stability, bifurcation and a new chaos in the logistic differential equation with delay. Phys. Lett. A. 2006,350(3-4) .pp221-227.
    [107] S. J. Deng, L. H. Zhang and D. Xiao. Image encryption scheme based on chaotic neural system. Lecture Notes in Computer Sci. 2005,3497 .pp868-872.
    [108] C. D. Li, Xiaofeng Liao and X. F. Yang, et al. Impulsive stabilization and synchronization of a class of chaotic delay systems. Chaos. 2005,15 (4) Art. No. 043103.
    [109] S. B. Zhou, Xiaofeng Liao, J. B. Yu, et al. Chaos and its synchronization in two-neuron systems with discrete delays. Chaos Solitons & Fractals. 2004,21(1) .pp133-142.
    [110] C. D. Li, Xiaofeng Liao and K. W. Wong. Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Phys. D-Nonlinear Phenomena. 2004,194(3-4) .pp187-202,
    [111] C. D. Li, Xiaofeng Liao and X. F. Yang et al. Impulsive stabilization and synchronization of a class of chaotic delay systems. Chaos. 2005,15(4) Art. No. 043103.
    [112] C. D. Li, Xiaofeng Liao, R. Zhang. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach. Chaos Solitons & Fractals. 2005,24( 4) .pp1119-1134.
    [113] A. Namaj nas, K. Pyragas and A. Tama evi ius. An electronic analog of the Mackey-Glass system. Physics Letters A.1995,201(1) .pp42-46.
    [114] H.N. Agiza and A.E. Matouk. Adaptive synchronization of Chua’s circuits with fully unknown parameters. Chaos, Solitons & Fractals.2006,28(1) .pp219-227.
    [115] M.T. Yassen. Feedback and adaptive synchronization of chaotic Lü system. Chaos, Solitons & Fractals.2005,25(2) .pp379-386.
    [116] Teh-lu Liao. Adaptive Synchronization of Two Lorenz Systems.Chaos, Solitons, & Fractals. 1998,9(9) .pp1555-1561.
    [117] E.M. Elabbasy, H.N. Agiza and M.M. El-Dessoky. Adaptive synchronization for four-scroll attractor with fully unknown parameters. Physics Letters A. 2006, 349(1-4) .pp187-191.
    [118] Ju H. Park. Adaptive synchronization of hyperchaotic Chen system with uncertain parameters.Chaos, Solitons & Fractals. 2005,26(3) .pp959-964.
    [119] Jianwen Feng, Shihua Chen and Changping Wan. Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification.Chaos, Solitons & Fractals. 2005,26(4) .pp1163-1169.
    [120] Shukai Duan, Xiaofeng Liao. Adaptive Chaos synchronization of coupled Chen-Liao systems Via Active Control. Dynamics Of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms, 2006,8, pp3599-3602.
    [121] Shukai Duan, Xiaofeng Liao. Adaptive Synchronization of Coupled FitzHugh_Nagumo Systems. Sixth International conference on Intelligent Systems Design and Applications (ISDA2006). Shandong, China, Oct.16-18,2006.
    [122] Ricardo Femat, José Alvarez-Ramírez and Guillermo Fernández-Anaya. Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization. Physica D: Nonlinear Phenomena. 2000,139(3-4) .pp231-246.
    [123] Zheng-Ming Ge and Yen-Sheng Chen. Adaptive synchronization of unidirectional and mutual coupled chaotic systems. Chaos, Solitons & Fractals. 2005,26(3) .pp881-888.
    [124] Lilian Huang, Mao Wang and Rupeng Feng. Parameters identification and adaptive synchronization of chaotic systems with unknown parameters. Physics Letters A. 2005,342(4) .pp299-304.
    [125] Ju H. Park. Adaptive synchronization of Rossler system with uncertain parameters. Chaos, Solitons & Fractals. 2005,25(2) .pp333-338.
    [126] M.T. Yassen. Adaptive synchronization of two different uncertain chaotic systems. Physics Letters A. 2005,337(4-6) .pp335-341.
    [127] M.T. Yassen. Adaptive synchronization of Rossler and Lü systems with fully uncertain parameters. Chaos, Solitons & Fractals. 2005,23(5) .pp1527-1536.
    [128] E. M. Elabbasy , H. N. Agiza and M. M. El-Dessoky. Adaptive synchronization of Lü system with uncertain parameters. Chaos, Solitons & Fractals. 2004,21(3) .pp657-667.
    [129] Yanwu Wang, Zhi-Hong Guan and Xiaojiang Wen. Adaptive synchronization for Chen chaotic system with fully unknown parameters. Chaos, Solitons & Fractals.2004,19(4) .pp899-903
    [130] Shihua Chen, Ja Hu, Changping Wang and Jinhu Lü. Adaptive synchronization of uncertain R?ssler hyperchaotic system based on parameter identification. Physics Letters A. 2004,321 (1) .pp50-55.
    [131] C. Wang and S. S. Ge. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos,Solitons & Fractals. 2001,12(7) .pp1199-1206
    [132] Zhi Li and Guanrong Chen. Robust adaptive synchronization of uncertain dynamical networks.Physics Letters A. 2004 ,324(2-3) .pp166-178.
    [133] Zhi Li and Songjiao Shi. Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique. Physics Letters A. 2003,311(4-5) .pp389-395.
    [134] 张 洪 , 陈 天 麒 . 一 类 时 延 混 沌 系 统 的 自 适 应 同 步 . 系 统 工 程 与 电 子 技术.2005,27(4) .pp708-710.
    [135] 李 世 华 , 蔡 海 兴 .Chen 氏 混 沌 电 路 实 现 与 同 步 控 制 实 验 研 究 . 物 理 学报.2004,53(6) .pp1687-1693.
    [136] G. Q. Zhong and Wallace K. S. Tang. Circuitry Implementation And Synchronization Of Chen's Attractor. International Journal of Bifurcation and Chaos.2002,12(6) .pp1423-1427.
    [137] Shukai Duan, Xiaofeng Liao. Chaos synchronization of coupled Chen-Liao system. International Conference on Neural Networks and Brain, ICNN&B '05. 2005, 1 .pp88 - 93.
    [138] 周尚波, 廖晓峰,虞厥邦. 具有时延的简单神经元模型的混沌行为. 电子与信息学报. 2002, 24(10) .pp1341 - 1345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700