拉曼光纤放大器及多波长拉曼光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于光纤中受激拉曼散射现象的基本原理,围绕拉曼光纤放大器和多波长拉曼光纤激光器展开研究。
     提出了基于平均功率分析法的矩阵迭代法,并利用该算法对拉曼光纤放大器进行了仿真。从泵浦源的选择、不同类型增益光纤的影响、噪声随温度的变化情况等几方面对分布式拉曼光纤放大器进行了实验研究。制备了满足WDM系统实际应用要求的分布式拉曼光纤放大器样机,并进行了相关性能参数的测试。传输距离为60公里时,该样机平均开关增益在17.89dB,平均等效噪声指数为-2.6dB,增益平坦度为1.57dB,放大带宽为80nm,平均偏振依赖增益为0.17dB。提出了一种将C波段和L波段的泵浦光沿光纤反向传输的分布式拉曼光纤放大器的结构,减小了泵浦光之间由于拉曼相互作用引起的噪声。
     首次提出了一种新型结构的宽带分立式拉曼放大器——宽带双程分立式拉曼光纤放大器,并对其增益、噪声、偏振依赖增益等特性进行了理论及实验研究。结果表明,该新型结构的拉曼光纤放大器极大地提高了增益效率,并抑制了ASE噪声。
     首次提出了基于取样光纤光栅的新型多波长拉曼光纤激光器。对取样光栅的特性进行了分析并实际刻写了满足要求的取样光栅。在此基础上,利用该种光栅和拉曼光纤放大器实现了波长间隔分别为100GHz、50GHz以及25GHz的多波长激光输出,满足ITU标准,并具有较好的室温稳定性。此外,对基于可调光纤F-P干涉仪的多波长可调谐拉曼光纤激光器也进行了实验研究,获得了在1530~1610nm的波长范围内可连续调谐的双波长激光输出。
Based on the principle of Stimulated Raman Scattering (SRS) in fiber, the dissertation is focused on the study of Raman fiber amplifiers and multiwavelength Raman fiber lasers.
     Based on the theory of average power analysis, a new matrix iterative method for the wideband Raman fiber amplifier was presented. The distributed Raman fiber amplifier was developed, which can be put into practical use in DWDM systems. With 60km transmission distance, it has an average on-off gain of 17.89dB, a average effective noise figure of–2.60dB, a average polarization-dependent gain of 0.17dB, a gain flat of 1.57dB and a amplification bandwidth of 80nm. Besides, a distributed Raman amplifier with a novel pump scheme was studied experimentally.
     For the first time, as far as we know, a novel wideband discrete Raman fiber amplifier was presented, which is named as wideband double-pass discrete Raman amplifier. Its characteristics of gain, noise and polarization-dependent gain were studied theoretically and experimentally. The results showed that this configuration could obviously improve the gain efficiency by two or three times.
     A multiwavelength Raman fiber laser was presented for the first time, as far as we know. The characteristics of multiwavelength fiber ring laser can be easily controlled by adjusting the parameters of the sampled Bragg grating, including the sampling period and the sampling length. In the proposed fiber laser, stable 4 oscillating wavelengths with 100GHz and 50GHz spacing have been achieved, respectively, as well as 5 oscillating ones with a wavelength spacing of only 25GHz by varying the sampling period of the SBG.. Besides, the multiwavelength Raman laser based on Fabry–Perot etalon was studied experimentally.
引文
1. http://www.rhk.com
    2. 胡台光,波分复用器件现状【J】,光通信技术,2000,24(2):79-84
    3. 张宏斌,邱昆,周东,波分复用光纤通信系统【J】,电子科技大学学报,2000,29(4)337-341
    4. 纪越峰 编著,光波分复用系统【M】,第 2 版,北京:北京邮电大学出版社,2001,9-10
    5. 张成云,何振江,徐慧梁等,光通信技术的发展现状和趋势【J】,激光与光电子学进展,2004,41(3),26-29
    6. 丁龙刚,马虹,DWDM 技术进展及光复用器【J】,电力系统通信,2004,(10),40-43
    7. 张万春,DWDM 光纤传输网络的技术发展趋势【J】,光纤与电缆及其应用技术, 2000, (6), 16-21
    8. 王建全,何健武,刘雪原等,波分复用技术及其应用和发展【J】,通信世界,2000,(64),17-22
    9. K Fukuchi, T Kasamatsu, M Morie, R Ohhira et al, 10.92-Tb/s (273×40-Gb/s) reiple-band/ultra-dense WDM optical-repeated transmission experiment [J], in Proc. OFC2001, 2001, PD24-1,
    10. M Nakazawa, T Yamamoto and K R Tamura, 1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator [J]. Electron. Lett., 2000, 36(24): 2027-2029
    11. 韦乐平,光通信技术的发展趋势【J】,电信工程技术与标准化,2003,(07), 2-8
    12. 刘俭辉,丁永奎,贾东方 等,Tbit/s 超大容量光纤通信系统的研究进展【J】,光学技术,2003,29(4):408-410
    13. 霍力,电吸收调制器在高速光信号产生和处理中的应用【D】
    14. E M Diarmv, M V Grekov, et al. Highly efficient 1. 3μm Raman fiber amplifier [J]. Electron. Lett., 1998, 35(12): 669-670
    15. 顾睕仪,波分复用系统的发展和应用【J】,2001,(3),24-27
    16. J Gruber, R Ramaswami, Moving toward All Optical Networks [J], Lightwave Magazine, 2000, (11): 30-35
    17. 吴亦川,全光通信网综述【J】,电信快报,2001,(2): 22-23,37
    18. M. J Guy, J R Taylor and R Kashyap, single-frequency erbium fiber ring laser with intracavity phase-shifted fiber Bragg grating narrow band filter[J], Elec.Lett., 1995, 31(22):1924-1925
    19. G A Ball and W W Morey, Compression-tuned single-frequency Bragg grating fiber laser[J], Opt. Soci. Ameri., 1994, 19(23): 1979-1980
    20. M G Young, U Koren, B I Miller et al, A 16×1 multiplexer wavelength division with integrated distributed Bragg reflector lasers and electroabsorption modulators,Electron.Lett.[J], 1993, pp908-910
    21. K R Poguntke, J B D Soole, A Scherer et al, Stimultaneous multiple wavelength operation of a multistripe array grating integrated cavity laser[J], Appl. Phys. Lett., 1993: 2024~2026
    22. M Zirngibl, C H Joyner, C R Doerr et al, An 18-channel multifrequency laser[J], IEEE. Photon. Technol. Lett., 1996:870-872
    23. H Takara, S Kawnishi, M Saruwatari and J B Schlager,Multiwavelength birefringent-cavity mode-locked fiber laser[J], EIec.Lett., 1992, 28(25): 2274-2275
    24. H Takahashi, H Toba andY Inoue, Multiwavelength ring laser composed of EDFAs and an array-waveguide wavelength multiplexer[J], Elec. Lett., 1994, 30(1): 44-45
    25. H Okhamura and K Iwatsuki, Simultaneous oscillation of wavelength-tunable, singlemode lasers using an Er-doped fiber amplifier[J], Elec. Lett., 1992, 28(5): 461-463
    26. S Yamashita, K Hotate, Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen[J], Elec. Lett,1996, 32(14): 1298-1299
    27. J Huber, P Varming and M Kristensen, Five wavelength DFB fibre laser source for WDM systems[J], 1997, Elec. Lett., 33(2):139-140
    28. Imai K, Tsuritani T, Tanaka K, et al. 500Gb/s(50×10Gb/s) WDM transmission over 4000km using broadband EDFAs and low dispersion slope fiber[J], OFC'99. SanDiego, February 1999, paper PD5
    29. 杨祥林等,光放大器及其应用【M】,北京:电子工业出版社.96'"100
    30.顾婉仪,李国瑞,光纤通信系统【M】,北京邮电大学出版社,北京,1999
    1. Chinlon Lin, Rogers, H. Stolen. Backward Raman amplification and pulsesteepening in silica fibers[J]. Appl. Phys. Lett. 1976, 29(7): 428-431
    2. R. H. Stolen, E. P. Ippen. Raman gain in glass optical waveguide[J]. Appl. Phys.Lett. 1973, 22 (6):276-278
    3. Akira Hasegawa. Numberical study of optical soliton transmission amplified periodically by the stimulated Raman processing[J]. Appl. Opt. 1984, 23(19): 3302-3309
    4. Y Durteste, M. Monerie P. Lamouler. Raman amplification in fluoride glass fibers[J]. Electron. Lett. 1985, 21(17): 723-724
    5. Masataka Nakazawa. Highly efficient Raman amplification in a polarizationpreserving optical fiber[J]. Appl. Phys. Lett. 1985, 46(7): 628-630.
    6. R. Pini, Renzo Salimbeni, M. Vannini, et al. High concession efficiency ultraviolet fiber Raman oscillator amplifier system[J]. Appl. Opt. 1 986, 25(7):1048-1050
    7. 刘红林,张在宣,金尚忠等,光纤拉曼放大器技术的进展[J],中国计量学院学报,2001,12(3):51-56
    8. Y. Emori and S. Namiki. 100nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes[J], OFC99, 1999,P1319,
    9. Lewis S A E,Chemikov S V Triple wavelength pumped silica-fiber Raman amplifiers with 114 nm bandwith[J]. Electron. Lett. ,1999 ,35(16):1761--1762
    10. Kawai S, Masuda H, et al. .Ultra-wide, 75 nm 3 dB gain-band optical amplifier utilizing gain-flatemed erbium-doped fluoride fiber amplifier and discrete Raman amplification[J]. Electron Left. ,1998, 34(9):897-898
    11. Masda H,Kawai S, Aida K. Ultra-wdeband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fiber amplifier[J]. Electron. Lett. ,1998, 34(13):1342-1344
    12. Masda H,Kawai S, Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier[J]. IEEE Photon. Technol. Lett, 1999, 11(7):647:649
    13. Kani J, Jinno M. Wideband and flat-gain optical amplification from 1460to 1510 nm by serial combination of thulium-doped fluoride fiber amplifier and fiber Raman amplifier[J]. Electron. Lett. ,1999, 35(12):1004-1006
    14. Diarmv E M, Grekov M从Bufetov et al ..Highly efficient 1.3 Ym Raman fiber amplifier. Electron. Lett,[J] ,1998, 34(7):669-670
    15. Guy M J, Chemikov S V, Taylor J R. Lossless transmission of 2 ps pulse over45 km of strand fiber at 1.3 μ m using distributed Raman amplification[J]. Electron. Lett. ,1999, 11(7): 886-888
    16. 印新达,何万晖,刘永华,分布式拉曼光纤放大器的分析与实验【J】,光通信研究,2001,6:12-17
    17. Hong Seok Seo, Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core [J], Optics Communications, 2000, 181:145-151
    18. X Zhou, C Lu, P Shum and T H Cheng, et al. A Simplified Model and Optimal Design of a Multi-wavelength Backward-Pumped Fiber Raman Amplifier[J], IEEE Photon. Technol. Lett, 2001, 13(9):945-947
    19. C V Raman, Indian J Physics, 1998, 2:387
    20. Govind P Agrawal, Nonlinear Fiber Optics(2"edition), Academic Press, San Diego,1995
    21. Stolen, R. H., Lee, Clinton and lain, R. K., Development Of Stimulated Raman Scatering In Single-Mode Silica Fibers[J], Journal of the Optical Society of America B: Optical Physics, 1984, 4,:652-657
    22. 杨祥林等,光放大器及其应用【M】,北京:电子工业出版社.
    23. H H Kee, C R S Fludger. Statistical properties of polarization dependent gain in fiber Raman amplifiers[J], “OFC”2002:180-181
    24. Aoki Y. Properties of fiber raman amplifiers and their applicability to digital optical communication systems [J].J.Lightwave Tech., 1988,6(7):1225--1239
    25. 陈健等.光纤拉曼放大器增益系数与噪声系数的研究.中国激光:Vol. A28,N.11
    26. Jiang Weijian,Ye Peida.Crosstalk in fiber raman amplification far WDM systems [J]. J。Lightwave Tech., 1989,7(9): 1407-1411
    27. Wan Pin, Jan Conradi, Impact of double Reileigh backscatter noise on digital and analog fiber systems[J]. J. Light. Tech., 1996, 14(3):288-297
    28. H.Masuda, “Review of wideband hybrid amplifiers,” in Tech.Dig.OFC’00,2000,pp.2-4, Baltimore, MD USA
    29. P.B.Hansen, et al, “Capacity upgrades of transmission systems by Raman amplifier,” IEEE Photon.Technol.Lett.,1997,vol.9, issue: 2, pp.262-264
    30. M.-S.Kao and J.Wu, “Exending transmission distance of high-density WDM systems using post transmitter fiber Raman amplifiers,” J. Light-wave Technol., 1991,.9: 394-399,
    31. Stephen G.Grupp, “Detailed analysis of Raman amplifiers for long-haultransmission,” in Tech.Dig.OFC’98, 1998, pp30-31, San Jose, CA USA
    32. H.Kidorf, et al, Pump interactions in a 100-nm bandwidth Raman amplifier [J], IEEE Photon.Technol.Lett., 1999, 11(5):530-532
    33. Victor E. Perlin and Herbert G. winful, “Efficient design method for multi-pump flat-gain Fiber Raman amplifiers,” OFC’02,TuJ1
    34. Y.Emory,and S.Namiki, 100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes [J]. Tech.Dig, OFC’99, 1999 ,2(19),San Diego , CA, USA.
    1. 周俊鹤,陈建平,李新碗. 后向泵浦 Raman 放大器的快速算法[J]. 上海交通大学学报,2004,38(11):1854-1856
    2. K Mochizuku. Optical fiber transmission systems using stimulated Raman scattering theory[J]. Journal of Lightwave Technol. 1985, 3(3): 668-673
    3. B Min, W J Lee, N Park. Efficient formulation of Raman amplifier propagation equations with average power analysis[J]. IEEE Photon Technol. Lett, 2000, 12(11): 1486-1488
    4. Liu Xueming, Zhang Hanyi, Guo Yili. A novel method for Raman amplifier propagation equations[J]. IEEE Photon Technol. Lett, 2003, 15(3): 392-394
    5. S Tariq, C Palais Joseph. A computer model of non-dispersion-limited Stimulated Raman Scattering in optical fiber multiple-channel communications[J]. IEEE Journal of Lightwave Technol, 1993, 11(12): 1914-1924
    6. 王四海,范崇澄. 光纤拉曼放大器中的广义损耗系数和特性模拟新算法[J]. 中国激光,2001,28(12): 113-116
    7. 何敬锁,郭同文,顾畹仪等. 拉曼光纤放大器的一种简化模型[J]. 光电子.激光,2003,14(3): 228-231
    8. 童治,魏淮,简水生. 多波长抽运宽带光纤拉曼放大器的数值模拟与优化[J]. 光学学报,2004,23(2): 193-196
    9. D N Christodoulides, R B Jander. Evolution of simulated Raman crosstalk in wavelength division multiplexed systems[J]. IEEE Photon Technol. Lett, 1996, 8(12): 1722-1724.
    10. 凌洁,李康,孔繁敏等,多泵浦拉曼放大器增益特性的仿真与分析[J]. 红外与激光工程,2004,33(2): 138-141.
    11. 林洪榕,于娟,沈晓强. 拉曼放大器的交迭因子模型及其性能特性仿真[J]. 中国激光,2004,31(2): 195-198
    12. Y.Emory,and S.Namiki, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes. Tech.Dig,” OFC’99, 1999, 2(19),San Diego , CA, USA.
    13. H.Kidorf, et al, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photon.Technol.Lett., May 1999, 11(5):530-532
    14. Victor E. Perlin and Herbert G. winful, “Efficient design method for multi-pump flat-gain Fiber Raman amplifiers,” OFC’02,TuJ1 [15] S A E Lewis, S V Chernikov, J R Taylor, Temperature-dependent gain and noise in fiber Raman amplifiers[J]. Optics Lett. 1999, 24(24)
    1. T Miyamoto et al., Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber [J], Tech. Dig. Optical Fiber Communication Conf. (OFC’02), 2002:66-68
    2. M Tang, Y D Gong and P Shum. Design of double-pass dispersion-compensated Raman amplifiers for improved efficiency: Guidelines and Optimizations [J]. J. Lightwave Technol. , 2004, 22(8): 1899-1908
    3. R J Essiambre, P Winzer, J Bromage, and C H Kim. Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering [J]. IEEE Photon. Technol. Lett., 2002, 14: 914-916
    4. S Popov, E Vanin, and G Jacobsen. Influence of polarization mode dispersion value in dispersion-compensating fibers on the polarization dependence of Raman gain [J], Optics Lett. 2002, 27(10):848-850
    5. S Popov, E Vanin, and G Jacobsen. Polarization dependence of gain in discrete Raman amplifiers with dispersion compensating fibres [J]. J. Opt A: Pure Appl. Opt. 4: 46-51
    1. J M Battiao,T F Morse,R K Kostuk, Dual-wavelength common-cavity codoped fiber laser[J],IEEE Photon. Technol. Lett.,1997, 913-915
    2. J Hubner, P Varming and M Kristensen, Five wavelength DFB fiber laser source for WDM systems[J], Electron. Lett, 1997, 139-140,
    3. J W Dawson, N Park and K J Vahala. Co-lasing in an electrically tunable erbium-doped fiber laser, Appl. Phys. Lett., 1992, 3090-3092
    4. H Takahashi, H Toba and Y Inoue. MuItiwavelength ring Iaser compound ofEDFAs and arrayed-waveguide wavelength multiplexer[J], Electron. Lett., 1994, 44-45
    5. T Miyazaki,N Edagawa,S Yamamoto et al. A multiwavelength fiber ring laser employing a pair of silica-band arrayed-waveguide-gratings[J], IEEE. Photon. Technol. Lett.,1997, 910一912
    6. J Chow, G Town, B Eggleton, et al. Multiwavelength generation in an Erbium-doped fiber laser using in-fiber comb filters[J], IEEE Photon. Technol. Lett., 1996, 60-62
    7. Xuewen Shu,Shan Jiang and Dexiu Huang. Fiber grating Sagnac loop and its multiwavelength laser application[J], IEEE Photon. Technol. Lett. 980一982
    8. N Park and P F Wysodki.24-Iine muItiwaveIength operation of erbium-doped fiber-ring laser[J], IEEE Photon. Technol. Lett., 1996, 1459-1461
    9. S Yamashita and K Hotate. Multiwavelength erbium-doped fiber laser using intracavity eetalon and cooled by liquid nitrogen[J], Electron.Lett., 1996, 1298-1299
    10. S Yamashita, K Hsu and W H Loh. Miniature Erbium:Ytterbium fiber Fabry-Port multiwavelength lasers[J], IEEE J Select.Topics Quantum,1997, 1058-1064
    11. C J Koester and E.Snitzer, Amplification in a fiber laser[J], Appl. Opt., 1963, 1182-1186
    12. M Zirngilb, C H Joyner, C R Doerr et al. An 18-channel multifrenquency laser[J], IEEE Photon. Technol. Lett., 1996, 870-872
    13. A A M Staring, L H Spiekman, J J M Binsma et al, A compact nine-channel mul-tiwavelength laser[J], IEEE Photon. Technol. Lett. 1996, 1139-1141
    14. C R Doerr, C H Joyner, M Zormgilb et al, Chirped waveguide gating router multi-frequency laser with absolute wavelength control[J], IEEE Photon.Technol. Lett., 1996, 1606-1608
    15. B Glance, L P Kaminov and R W Wilson, Applications of the integrated waveguide gating router[J], J. Lightwave Technol., 1994, 957-962
    16. Seung Kwan Kim, Moo Jung Chu and Jong Hyun Lee, Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback[J]. Opt. Commun., 2001, 291-302
    17. U Ghera, N Friedman and M Tur, A fiber laser with a comb-like spectrum[J], IEEE. Photon. Technol. Lett., 1993, 1159-1161
    18. S. Yamashita and K. Hotate, Multiwavelength erbium doped fiber usingintracavity etalon and cooled by liquid nitrogen[J], Electron. Lett., vol. 32, 1996, 1298–1299,
    19. X. Shu, S. Jiang, and D. Huang, Fiber grating sagnac loop and its multiwavelength laser application[J], IEEE Photon. Technol. Lett., 2000, 12: 980–982,
    20. X. P. Dong, S. Chiang, M. N. Ng, and B. C. B. Chu, Multiwavelength erbium-doped fiber laser based on a high birefringence fiber loop mirror[J], Electron. Letter., 2000, 36: 1609–1610,
    21. B. Srinivasan, S. Gupta, and R. K. Jain, Polarization anisotropic gain behavior in elliptical core rare earth doped fibers[J], Doped Fiber Devices and Systems, SPIE, 1994, 2289: 51–54
    22. J. H. Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Polarization effects in a high birefringence elliptical fiber laser with a Bragg grating in a low birefringence fiber[J], Appl. Opt., 2000, 39: 972–977
    23. N Park and P F Wysodki, 24-Iine muItiwaveIength operation of erbium-doped fiber-ring laser[J], IEEE Photon.Technol. Lett.,1996, 1459-1461
    24. A Bellemare, M Karasek,M Rochette, S LaRochelle, and M Tetu, Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid[J], J.Lightwave Technol., 2000,18(6): 825-831
    25. O Graydon, W H Loh,R I Laming,L Dong., Triple-frequency operation of an Er-Doped twin-core fiber loop laser[J], IEEE Photon. Tech. Let., 1996, 8(1): 63-65
    26. Sun Junqiang, Qiu Junlin, Huang Dexiu, Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning, Opics Communication[J], 2000, 182: 193-197
    27. D S Lim, H K Lee, K H Kim, et al Generation of multiorder Stokes and anti-Stokes lines in a Brillouin Erbium-fiber laser with a Sagnac loop mirror[J], Opt. Lett., 1998, 23(21): 1671一1673
    28. M Kamil Abd-Rahman, M Khazani Abdullah, Ahmad Harith, Multiwavelength, bidirectional operation of twin-cavity Brillouin/Erbium fiber laser,Optics Communications[J], 2000,181:135-139
    29. F. Koch, P. C. Reeves-Hall, S. V. Cheraikov, J. R. Taylor, Proc. OFC 2001, Paper WDD7, 2001
    30. C. S. Kim, R. M. Sova, and J. U. Kang, “Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,” Opt. Commun., vol. 218,pp.291–295, 2003
    31. Y. G. Han, C. S. Kim, J. U. Kang, and U. C. Peak, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings”, IEEE Photon. Technol. Lett., vol. 15, pp. 383–385, 2003.
    32. 多波长半导体激光器的研究【D】,硕士学位论文,华中科技大学
    33. H Taga, Long distance transmission experiments using the WDM technology[J], J. Lightwave Technol., 1996, 14(6): 1287-1298
    34. D Z Anderson et al, Elect. Lett., 1993, 29: 566
    35. J Peerlings, A Dehe, A Vogt et al. Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter, IEEE Photon.Technol.Let., 1997, 9(9): 1235-1237
    36. 刘水华,许远忠,方罗珍,带单模尾纤的GRIN透镜型Fabry-Perot腔可调谐光滤波器.光通信研究,1994, 3 (71): 26-30
    37. S R Mallinson. Wavelength-selective filters for single-mode fiber WDM systems using Fabry-Perot interferometers. Appl.Opt, 1987, 26 (3): 430-436
    38.K Hirabayashi, H Tsuda, T Kurokawa. Narrow-Band tunable wavelength-selective filters of Fabry-Perot interferometers with a liquid crystal intracavity. IEEE Photon. Technol. Lett.,1991, 3 (3): 213-215.
    39. K. Hirabayashi, H. Tsuda, T. Kurokawa. Tunable liquid-crystal Fabry-Perot interferometer filter for wavelength-division multiplexing communication systems. J. Lightwave technology, 1993, 11(12): 2033-2043.
    40. B.Ortega, J.Capmany, S.Member et al. Wavelength division multiplexing all-fiber hybrid devices based on Fabry-Perot and grating. J.Lightwave Technol,1999, Vol. 17 (7): 1241--1247.
    41. 刘水华,许远忠,方罗珍.带单模尾纤的GRIN透镜型Fabry-Perot腔可调谐光滤波器.光通信研究,1994, 3 (71): 26-30.
    42. 程科华,程多思.自聚焦透镜准直应用的长度计算与实验光子学报,1992, 21(2): 145-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700