弥散加权成像(DWI)在肝细胞肝癌诊断方面的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     mSENSE技术在SE-EPI弥散加权成像中对HCC小病灶(≤3cm)的应用研究——不同b值的比较研究
     目的:评价在肝脏DWI中应用mSENSE技术是否有助于提高图像质量及对HCC小病灶的表观弥散系数测量有无影响,以进一步优化DWI的检查技术。
     材料和方法:分别用常规DWI和mSENSE-DWI对32例肝癌行单次屏气SE-EPI弥散加权成像(b值为300、500、800sec/mm~2)。对两组成像序列不同b值下病灶的CNR、图像质量、病灶的ADC值进行观测和比较,并行统计学分析。
     结果:在同一b值条件下,mSENSE-DWI组的图像质量均优于常规DWI组(P<0.01);病灶的CNR也高于常规DWI组(P<0.01);在大b值条件下(500、800sec/mm~2),两组所测得的病灶的ADC值无明显差别(P=0.383 0.388)。随着b值的升高,在常规DWI和mSENSE-DWI组中病灶的CNR、病灶的ADC值逐渐变小(P<0.01),图像质量也随之下降(P<0.01)。
     结论:在肝脏DWI中应用mSENSE技术可获得高质量的图像,同时对HCC小病灶的ADC值测量没有影响。
     第二部分
     弥散加权成像与MRI动态增强对HCC小病灶检测的比较研究
     目的:比较DWI与2D DCE MRI扫描对慢性肝病基础上的HCC小病灶的检出敏感性,评价DWI的临床应用价值。
     材料和方法:54例病人共74个HCC病灶(≤3cm)被纳入研究对象,所有病人均一次同时进行DWI和2D DCE MRI,DWI成像采用mSENSE—DWI(SE-EPI)序列,在三个b值条件(300、500、800sec/mm~2)下进行。2D DCE MRI采用FLASH序列,行Gd-DTPA动态增强成像;两位阅片者独立随机顺序分析DWI和2D DCE MRI图像,对结果行ROC曲线分析,并统计病灶的检出敏感性和阳性预测值。
     结果:对所有≤3cm小病灶和≤1cmMHCC病灶,两位阅片者ROC曲线下平均面积DWI(0.95,0.86)均高于2D DCE MRI(0.86,0.64),并且差别有统计学意义(P<0.01),对所有≤3cm小病灶和≤1cmMHCC病灶,DWI对病灶检出的敏感性均高于2D DCE MRI(P<0.05)。对于MHCC病灶,DWI和2D DCE MRI敏感性分别为95.8-96%,62.5-68%;对MHCC病灶,DWI的阳性预测值要高于2D DCE MRI(P<0.05)。
     结论:对于慢性肝病基础上的肝癌病例而言,DWI对HCC小病灶的检出敏感性要高于2D DCE MRI扫描,而且可以补充提供有价值的鉴别珍断信息。
     第三部分
     弥散加权成像在小肝癌与肝细胞增生性结节鉴别诊断中的价值
     目的:评价弥散加权成像对SHCC与肝细胞增生性结节的鉴别价值。
     材料和方法:利用mSENSE技术在b=500sec/mm~2条件下行肝脏的DWI,观察经手术病理证实的28个SHCC和10个DN病灶、11个FNH病灶在DWI上的信号特点,测量其ADC值并行统计学分析。
     结果:28个SHCC病灶表现为高信号,平均ADC值1.30±0.21 X10~(-3)mm~2/sec,10个DN病灶表现为等低信号,平均ADC值为1.51±0.22 X10~(-3)mm~2/sec,11个FNH病灶为高信号,平均ADC值1.85±0.33X10~(-3)mm~2/sec,SHCC病灶与周围的肝组织ADC值之间的差异有统计学意义(P=0.001),FNH病灶与周围肝组织ADC值之间的差异有统计学意义(P=0.006),DN病灶与周围肝组织ADC值之间的差异无统计学意义(P=0.575),SHCC病灶与DN病灶、FNH病灶ADC值之间的差异有统计学意义(P=0.021、0.000)。根据病灶的信号特征改变结合ADC值的测定对SHCC和肝细胞增生结节鉴别的准确性达89.8%,动态增强鉴别的准确性为69.4%,联合应用动态增强和DWI,鉴别的准确性为97.9%。
     结论:综合应用DWI上的病灶信号特征改变和ADC值的量化分析,DWI可以为SHCC和肝细胞增生性结节的鉴别诊断提供重要的补充信息。
     第四部分
     弥散加权成像与肝细胞肝癌分化程度及PCNA表达相关性的初步探讨
     目的:探讨DWI上HCC的ADC值与HCC病理分级和相关病理指标PCNA有无相关性。
     材料和方法:自2005年4月至2005年12月,共搜集病理确诊的HCC27例共29个病灶。利用mSENSE技术行DWI(b=500sec/mm~2),分析所有病灶在DWI上的信号特点,并测量ADC值;对29个病灶的手术标本进行病理取材并作常规HE染色切片及相应部位的免疫组化切片。采用统计学方法分析和判断病灶的ADC值与病理分化程度及PCNA免疫组化阳性指数之间有无相关性。
     结果:29个HCC病灶在DWI上均表现为高信号,ADC值范围从0.86-1.69X10~(-3)mm~2/sec,Edmondson分级结果,高分化14个,低分化15个,分化程度不同的HCC之间的ADC值差异没有统计学意义(P=0.913),HCC的ADC值与组织的胞核胞浆面积比没有相关性(r=0.149),与PCNA免疫组化阳性指数之间也无明显相关性(r=0.364)。
     结论:在b值500 sec/mm~2的DWI中,ADC值的变化不能在体反映和评估HCC的分化程度和侵袭性。
Objective: To prospectively evaluate whether DWI with mSENSE (mSENSE-DWI)
    can help to improve image quality and affect the calculation of lesion's ADC,
    compared with DWI with conventional phase encoding(conventional DWI)in patients
    with small HCC lesions.
    Materials and methods: 32 patients with 47 small HCC lesions underwent
    single-shot spin-echo echo-planar DWI with conventional phase encoding and
    mSENSE. Three b values of 300, 500 and 800 sec/mm~2 were used. mSENSE-DWI
    and conventional DWI were compared for image quality, and CNR with different b
    value. Lesion's ADC with conventional phase encoding and mSENSE at MR imaging
    were also observed and compared; Friedman test and matched-pairs Wilcoxon signed
    rank test was used to test statistical significance.
    Results: Higher image quality scores were achieved at mSENSE-DWI group (P<
    0.01) and CNR of the lesions was also higher than that of conventional DWI (P<
    0.01) with the same b value. There was no significant difference in the measurement
    of lesion's ADC between mSENSE-DWI group and conventional DWI group with
    high b value(500 and 800 sec/mm~2, P=0.383,0.388 respectively). With the increase of
    b value, the image quality 、 CNR and ADC decreased at mSENSE-DWI group as well
    as that of conventional DWI group(P<0.01).
    Conclusion: Higher quality images can be achieved in liver DWI with mSENSE
    without compromising small HCC lesion's ADC calculation.
    Objective: To compare the sensitivity of DWI and 2D DCE MRI for the detection of
    small HCC lesion (≤ 3 cm)in the patients with chronic liver disease, and evaluate the
    clinical value for DWI.
    Materials and methods: 54 patients with 74 small HCC lesions(≤3cm) underwent
    DWI and 2D DCE MRI at the same time. The DWI was performed using mSENSE
    technology with different b value(300 500 800sec/mm~2). The dynamic MRI
    examination was performed using 2D FLASH sequence. Two observers
    independently interpreted the images in random order, separately. The diagnostic
    performance of each technique was evaluated using the ROC curves. The sensitivity
    and positive predictive value were also calculated.
    Results: The mean area under the ROC curve (Az) of DWI (0.95, 0.86) was
    statistically higher than that of 2D DCE MRI (0.86, 0.64) for all small HCC lesions
    and MHCC lesions (P<0.01). The sensitivities of DWI for two observers were
    significantly higher than those of 2D DCE MRI for all small lesions and for MHCC(P
    <0.05); For MHCC, the sensitivity of DWI and 2D DCE MRI was 95.8-96%,
    62.5-68% respectively, The positive predictive value for MHCC lesions in DWI was
    statistically higher than in 2D DCE MRI(P<0.05).
    Conclusion: For the detection of small HCC lesions in the patients with chronic liver
    disease, DWI is more sensitive than 2D DCE MRI. It can provide valuable
    information in the differential diagnosis.
    Part III
    The value of diffusion-weighted imaging in differentiating SHCC from Hepatic
    hyperplastic nodules
    Objective: To evaluate the value of DWI of liver in differentiating SHCC from hepatic hyperplastic nodules(including DN and FNH).
    Materials and methods: the DWI of liver were performed with mSENSE technology under b value 500 sec/mm~2, the signal feature of 28 SHCC lesions 10 DN lesions and
    11 FNH lesions confirmed with surgery and pathology were observed retrospectively and ADC value of all lesions were calculated and analyzed statistically. Results: All of 28 SHCC lesions showed as hyperintense on DWI, isointensity or hypointensity was showed in 10 DN lesions, hyperintensity was showed in 11 FNH lesions, the mean ADC value of SHCC、 DN and FNH was 1.30±0.21 X10~(-3)mm~2/sec, 1.51±0.22 X10~(-3)mm~2/sec, 1.85±0.33X10~(-3)mm~2/sec respectively. There was statistically significant difference in ADC value between SHCC lesions and DN lesions (P=0.021), between SHCC lesions and FNH lesions(P=0.000), between SHCC lesions and surrounding hepatic tissues(P=0.001), between FNH lesions and surrounding hepatic tissues(P=0.006); there was no statistically significant difference in ADC value between DN lesions and surrounding hepatic tissues(P=0.575). Combination of ADC value and signal features, The accuracy of DWI for differentiating SHCC from hepatic hyperplasia nodules was 89.8%. The accuracy of dynamic contrast-enhanced was 69.4%. The combination of dynamic contrast-enhanced and DWI had accuracy of 97.9% in differential diagnosis. Conclusion: Combined with ADC value and signal features, DWI of liver can provide additional important information in differentiating SHCC from hepatic hyperplastic nodules.
    
    
    
    
    
    Part IV
    Initial investigation of HCCs on its Correlation between DWI and HCC
    Differentiations, PCNA expression
    Objective: To investigate the correlations between ADC value of HCC on DWI and tumor differentiation and PCNA expression.
    Materials and methods: 27 HCCs cases with 29 lesions confirmed by pathology were collected in this study. The DWI of liver were performed with mSENSE technology under b value 500sec/mm~2 for all cases, the ADC value of HCC were calculated on ADC mapping. The pathological examination with HE stain for cell differentiation, irnmunohistochemistrical exams for PCNA were performed. All lesions were also divided according to Edmondson grading into two groups: group one (high differentiation) including Edmondson grade I, I-II and II; group two (low
    differentiation) including Edmondson grade II-II1, III, III-IV and IV; The all 29 leisons were quantitatively evaluated N/C area ratio, immunohistochemistrically for PCNA positive index. The correlation between ADC value and cell differentiation PCNA expression were analyzed.
    Results: Hyperintensity was demonstrated on DWI for all HCC lesions. The ADC value of HCC lesions was 0.86-1.69X10~(-3)mm~2/sec. According to the Edmondson grade, there was 14 high-differentiated lesiosns and 15 low-differentiated lesions. There was no significant difference in ADC value between high-differentiated and low-differentiated lesions(p=0.913). There were no significant correlations between ADC value and the tumor N/C area ratio(r=0.149) and PCNA index(r=0.364). Conclusion: At the DWI of liver with b value 500sec/mm~2, ADC value of HCC may not be used to evaluate the tumor cell differentiation and invasion in vivo study.
引文
1. Braga L, Guller U, Semelka RC. Modern hepatic imaging. Surg Clin North Am. 2004;84(2):375-400. Review.
    2. Marrero JA. Hepatocellular carcinoma. Curr Opin Gastroenterol. 2005;21(3):308-12. Review.
    3. Murakami T, Kim T, Takamura M, etal. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT.Radiology. 2001;218(3):763-7.
    4. Zhao H, Zhou KR, Yan FH, et al. Small hepatocellular carcinoma: multiphase hepatic CT scan with a multidetector row helical CT scanner. Zhonghua Gan Zang Bing Za Zhi. 2003;11(9):530-2.
    5. Yan FH, Zhou KR, Wu D, et al. Evaluation of dynamic enhanced fast multip lanner spoiling gradient recalled (FMPSPGR) in the diagnosis of small hepatocellular carcinoma. Chin J Hepatol, 2001; 9(3): 139-141.
    6. Zhao H, Zhou KR, Yan FH, et al. Dynam ic enhancement MRI and multirow-detector helical CT for detection of small hepatocellular carcinoma with receiver operating characteristic analysis. Chin J Radiol, 2005;39(7):705-709.
    7. Libbrecht L, Bielen D, Verslype C, et al. Focal lesions in cirrhotic explant livers: pathological evaluation and accuracy of pretransplantation imaging examinations. Liver Transpl. 2002;8(9):749-61.
    8. Bhartia B, Ward J, Guthrie JA, et al. Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol. 2003;180(3):577-84.
    9. Yan FH, Zhou KR, Da RR, et al. The comparative study in the diagnosis of SHCC with Mn-DPDP enhanced MRI, plain MRI and Gd-DTPA dynamic enhanced MRI. J Chin Clinical Med, 2002;3(1):1-4.
    10. Zhang GF, Zhou KR, Yan FH, et al. Evaluation of Gd-BOTPA enhanced MRI in the diagnosis of small HCC. J Clinical Radiol, 2004;23(12): 1052-1056.
    11. Zheng WW, Zhou KR, Chen ZW, et al. Characterization of focal hepatic lesions with SPIO-enhanced MRI.World J Gastroenterol. 2002;8(1):82-6.
    12. Takahashi M, Ono J , Harada K, et al. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology. 2000;216(3):881-5.
    13. Patel MR , Siewert B , Warach S , et al. Diffusion and perfusion imaging techniques. Magn Reson Imaging Clin N Am. 1995;3(3):425-38. Review.
    14. Miyasaka N , Kuroiwa T , Zhao FY,et al. Cerebral ischemic hypoxia: discrepancy between apparent diffusion coefficients and histologic changes in rats. Radiology. 2000;215(1):199-204.
    15. Mukherjee P , Bahn M, Mckinstry RC ,et al. Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. Radiology. 2000;215(1):211-20.
    16. Sorensen AG, Wo O , Copen WA ,et al. Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology. 1999;212(3):785-92.
    17. Karonen J , Liu Y, Vanninen R ,et al. Combined perfusion- and diffusion-weighted MR imaging in acute ischemic stroke during the 1 st week: a longitudinal study.Radiology. 2000;217(3):886-94.
    18. Namimoto T, Yamashita Y, Sumi S, et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997; 204(3):739-744.
    19. Amano Y, Kumazaki T, Ishihara M. Single-shot diffusion-weighted echoplanar imaging of normal and cirrhotic livers using a phased-array multicoil. Acta Radiol 1998;39(4):440-442.
    20. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR 1998;170(2):397-402.
    21. Kim T, Murakami T, Takahashi S, et al. Diffusion-weighted single-shot echo--planar MR imaging for liver disease. AJR Am J Roentgenol. 1999; 173(2):393-8.
    22. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226 (1):71-78.
    23. Griswold MA, Jakob PM, Nittka M, et al. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44(4):602-9.
    24. Bammer R, Keeling SL, Augustin M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med Magn Reson Med. 2001;46(3):548-54.
    25. Bammer R, Schoenberg SO. Current Concepts and Advances in Clinical Parallel Magnetic Resonance Imaging. Top Magn Reson Imaging. 2004; 15(3): 129-58. Review.
    26. Naganawa S, Sato C, Nakamura T, et al. Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging. 2005;21(6):836-40.
    27. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9(1):53-60.
    28. Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 2004, 24(6):4175-9.
    1. Muller MF, Prasad P, Siewert B, et al. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 1994;190(2):475-478.
    2. Namimoto T, Yamashita Y, Sumi S, et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology 1997; 204(3):739-744.
    3. Amano Y, Kumazaki T, Ishihara M. Single-shot diffusion-weighted echoplanar imaging of normal and cirrhotic livers using a phased-array multicoil. Acta Radiol 1998;39(4):440-442.
    4. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR 1998;170(2):397-402.
    5. Kim T, Murakami T, Takahashi S, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999;173(2):393-8.
    6. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 2003;226 (1):71-78.
    7 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591-603.
    8. Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952-62.
    9. Griswold MA, Jakob PM, Nittka M, et al. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med. 2000;44(4):602-9
    10. Bammer R, Keeling SL, Augustin M, et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn Reson Med Magn Reson Med. 2001;46(3):548-54.
    11. Bammer R, Schoenberg SO. Current Concepts and Advances in Clinical Parallel Magnetic Resonance Imaging. Top Magn Reson Imaging. 2004; 15(3): 129-58. Review
    12. Bachir Taouli, Alastair J. Martin, Aliya Qayyum, et al. Parallel Imaging and Diffusion Tensor Imaging for Diffusion-Weighted MRI of the Liver: Preliminary Experience in Healthy Volunteers. AJR Am J Roentgenol. 2004;183(3):677-80
    13. Willinek WA, Gieseke J, von Falkenhausen M, et al. Sensitivity Encoding for Fast MR Imaging of the Brain in Patients with Stroke. Radiology. 2003; 228(3):669-75.
    14. Wilson GJ, Hoogeveen RM, Willinek WA, et al. Parallel Imaging in MR Angiography. Top Magn Reson Imaging. 2004; 15(3): 169-85. Review.
    1. Brown JJ, Naylor MJ, Yagan N. Imaging of hepatic cirrhosis. Radiology. 1997; 202(1): 1-16. Review.
    2. Murakami T, Kim T, Takamura M, et al. Hypervascular hepatocellular carcinoma: detection with double arterial phase multi-detector row helical CT. Radiology. 2001; 218(3): 763-7.
    3. Marrero JA. Hepatocellular carcinoma. Curr Opin Gastroenterol. 2005; 21 (3): 308-12. Review.
    4. Kim YK, Kim CS, Chung GH, et al. Comparison of Gadobenate Dimeglumine-Enhanced Dynamic MRI and 16-MDCT for the Detection of Hepatocellular Carcinoma. AJR Am J Roentgenol. 2006; 186(1): 149-57.
    5. Bhartia B, Ward J, Guthrie JA, et al. Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol. 2003; 180(3): 577-84.
    6. Simon G, Link TM, Wortler K, et al. Detection of hepatocellular carcinoma: comparison of Gd-DTPA-and ferumoxides-enhanced MR imaging. Eur Radiol. 2005; 15(5): 895-903.
    7. Kubaska S, Sahani DV, Saini S, et al. Dual contrast enhanced magnetic resonance imaging of the liver with superparamagnetic iron oxide followed by gadolinium for lesion detection and characterization. Clin Radiol, 2001; 56(5): 410-5.
    8. Naganawa S, Sato C, Nakamura T, et al. Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging. 2005; 21(6): 836-40.
    9. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol. 1998;170(2):397-402.
    
    10. Zhao H, Zhou KR, Yan FH, et al. Small hepatocellular carcinoma: multiphase hepatic CT scan with a multidetector row helical CT scanner. Zhonghua Gan Zang Bing Za Zhi. 2003;11(9):530-2.
    11. Yan FH, Zhou KR, Wu D, et al. Evaluation of dynamic enhanced fast multip lanner spoiling gradient recalled (FMPSPGR) in the diagnosis of small hepatocellular carcinoma. Chin J Hepatol, 2001; 9(3): 139-141.
    12. Zhao H, Zhou KR, Yan FH, et al. Dynam ic enhancement MRI and multirow-detector helical CT for detection of small hepatocellular carcinoma with receiver operating characteristic analysis. Chin J Radiol, 2005;39(7):705-709.
    13. Yan FH, Zhou KR, Da RR, et al. The comparative study in the diagnosis of SHCC with Mn-DPDP enhanced MRI, plain MRI and Gd-DTPA dynamic enhanced MRI. J Chin Clinical Med, 2002;3(1):1-4.
    14. Zhang GF, Zhou KR, Yan FH, et al. Evaluation of Gd-BOTPA enhanced MRI in the diagnosis of small HCC. J Clinical Radiol, 2004;23(12): 1052-1056.
    15. Kuhl CK, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology. 2005;234(2):517-26.
    16 Taouli B, Martin AJ, Qayyum A, et al. Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. AJR Am J Roentgenol. 2004;183(3):677-80.
    17. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of Liver Diffusion Isotropy and Characterization of Focal Hepatic Lesions with Two Single-Shot Echo-planar MR Imaging Sequences: Prospective Study in 66 Patients. Radiology. 2003;226(1):71-78.
    18. Earls JP, Theise ND, Weinreb JC, et al. nodules and hepatocellular carcinoma: thin section MR imaging of explanted cirrhotic livers with pathologic correlation. Radiology. 1996;201 201(1):207-214.
    19. Hussain HK, Syed I, Nghiem HV, et al. T2-weighted MR imaging in the assessment of cirrhotic liver. Radiology. 2004;230(3):637-44.
    20. de Ledinghen V, Laharie D, Lecesne R, et al. Detection of nodules in liver cirrhosis: spiral computed tomography or magnetic resonance imaging? A prospective study of 88 nodules in 34 patients. Eur J Gastroenterol Hepatol. 2002;14(2):159-65.
    21. Kim YK, Kwak HS, Kim CS, et al. Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT. Radiology. 2006;238(2):531-41.
    22. Ferrell LD, Crawford JM, Dhillon AP, et al. Proposal for standardized criteria for the diagnosis of benign, borderline, and malignant hepatocellular lesions arising in chronic advanced liver disease. Am J Surg Pathol. 1993; 17(11):1113-23.
    23. Holland AE, Hecht EM, Hahn WY, et al. Importance of small (< or = 20-mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of the cirrhotic liver: evaluation and comparison with whole explanted liver. Radiology. 2005;237(3):938-44.
    24. Jeong YY, Mitchell DG, Kamishima T. Small (<20 mm) enhancing hepatic nodules seen on arterial phase MR imaging of the cirrhotic liver: clinical implications. AJR Am J Roentgenol. 2002; 178(6): 1327-34.
    25. Kanematsu M, Kondo H, Semelka RC, et al. Early-enhancing non-neoplastic lesions on gadolinium-enhanced MRI of the liver. Clin Radiol 2003;58 (10):778-786.
    26. Baron RL, Peterson MS. From the RSNA refresher courses: screening the cirrhotic liver for hepatocellular carcinoma with CT and MR imaging: opportunities and pitfalls. Radiographics. 2001;21 (Spec) No:Sl 17-32. Review.
    27. Fukui N, Kitagawa K, Matsui O, et al. Focal ischemic necrosis of the liver associated with cirrhosis: radiologic findings. AJR 1992; 159(5): 1021-1022.
    28. Hussain SM, De Becker J, Hop WC, et al. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imaging. 2005;21(3):219-29.
    1. Namimoto T, Yamashita Y, Sumi S, et al. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 1997; 204(3): 739-44.
    2. Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol. 1998; 170(2): 397-402.
    3. Kim T, Murakami T, Takahashi S, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999; 173(2): 393-8.
    4. Chan JH, Tsui EY, Luk SH, et al. Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging. 2001; 26(2): 161-5.
    5. Brown JJ, Naylor MJ, Yagan N. Imaging of hepatic cirrhosis. Radiology. 1997;202(1):1-16. Review.
    6. Kobayashi M, Ikeda K, Hosaka T, et al. Dysplastic nodules frequently develop into hepatocellular carcinoma in patients with chronic viral hepatitis and cirrhosis. Cancer. 2006;106(3):636-47.
    7. Libbrecht L, Bielen D, Verslype C, et al. Focal lesions in cirrhotic explant livers: pathological evaluation and accuracy of pretransplantation imaging examinations. Liver Transpl.2002;8(9):749-61.
    8. Holland AE, Hecht EM, Hahn WY, et al. importance of small(≤20mm) enhancing lesions seen only during the hepatic arterial phase at MR imaging of cirrhotic liver: evaluation and comparison with whole explanted liver. Radiology. 2005;237(3):938-44
    9. Mahfouz AE, Hamm B, Taupitz M, et al. Hypervascular liver lesions: differentiation of focal nodular hyperplasia from malignant tumors with dynamic gadolinium-enhanced MR imaging.Radiology. 1993; 186( 1): 133-8
    10. Ba-Ssalamah A, Schima W, Schmook MT, et al. Atypical focal nodular hyperplasia of the liver: imaging features of nonspecific and liver-specific MR contrast agents. AJR Am J Roentgenol. 2002; 179(6): 1447-56.
    11. Hussain SM, Terkivatan T, Zondervan PE, et al. FNH-findings at state-of-the-art MRI US CT and pathologic analysis. Radiographics. 2004;24(1):3-17. Review. 12.Imai Y, Murakami T, Yoshida S, et al. Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology. 2000;32(2):205-12.
    13.Inoue T, Kudo M, Watai R, et al. Differential diagnosis of nodular lesions in cirrhotic liver by post-vascular phase contrast-enhanced US with Levovist: comparison with superparamagnetic iron oxide magnetic resonance images. J Gastroenterol. 2005;40(12): 1139-47
    14.Grazioli L, Morana G, Kirchin MA, et al. MRI of Focal Nodular Hyperplasia (FNH) With Gadobenate Dimeglumine (Gd-BOPTA) and SPIO (Ferumoxides): An Intra-Individual Comparison. J Magn Reson Imaging. 2003;17(5):593-602.
    15. Fournier LS, Cuenod CA, de Bazelaire C, et al. Early modifications of hepatic perfusion measured by functional CT in a rat model of hepatocellular carcinoma using a blood pool contrast agent. Eur Radiol. 2004; 14( 11):2125-33
    16. Earls JP, Theise ND, Weinreb JC, et al. Dysplastic nodules and hepatocellular carcinoma: thin-section MR imaging of explanted cirrhotic livers with pathologic correlation. Radiology. 1996;201(1):207-14.
    17. Terminology of nodular hepatocellular lesions. International Working Party. Hepatology. 1995;22(3):983-93. Review.
    18. Chiu FY, Jao JC, Chen CY, et al. Effect of intravenous gadolinium-DTPA on diffusion-weighted magnetic resonance images for evaluation of focal hepatic lesions. J Comput Assist Tomogr. 2005;29(2):176-80.
    1. SzaferA, Zhong J, Gore JC. Theoretical model of water diffusion in tissues. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995; 33(5): 697-712.
    2. Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Resort Med. 2000; 43(6): 828-36.
    3. Duong TQ, Ackerman JJ, Ying HS, et al. Evaluation of extra-and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn Reson Med. 1998; 40(1): 1-13.
    4. Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991 Jan;7(1): 1-30. Review.
    5. Norris DG. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 2001; 14(2):77-93. Review.
    6. Tworek JA, Appelman HD, Singleton TP, et al. Stromal tumors of the jejunum and ileum. Mod Pathol. 1997; 10(3): 200-9.
    7. Rudolph P, Gloeckner K, Parwaresch R, et al. Immunophenotype, proliferation, DNA ploidy, and biological behavior of gastrointestinal stromal tumors: a multivariate clinicopathologic study. Hum Pathol. 1998; 29(8): 791-800.
    8. Vallat-Decouvelaere AV, Dry SM, Fletcher CD. Atypical and malignant solitary fibrous tumors in extrathoracic locations: evidence of their comparability to intra-thoracic tumors. Am J Surg Pathol. 1998; 22(12): 1501-11.
    9. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999; 9(1): 53-60.
    10. Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 2004, 24(6): 4175-9
    11. Squillaci E, Manenti G. Correlation between ADC Values of Diffusion-weighted MR Imaging and Cellularity in Renal Tumors with 3T MR Unit. 2005 RSNA congress meeting.
    12.翟为溶,张锦生 主编.现代组织化学的原理及应用.上海:上海科学技术文献出版社,1998:122—123.
    13. Okuda K, Tabor E. Molecular mechanisms of hepatocarcinogenesis. New York: Churchill Livingstone, 1997: 59-63.
    14. Alder H, Yoshinouchi M, Prystowsky MB, et al. A conserved region in intron 1 negatively regulates the expression of the PCNA gene. Nucleic Acids Res, 1992; 20(7): 1769-1776.
    15. Nakashima O, Sugihara S, Kaga M, et al. Pathomorphologic characteristics of small hepatocellular carcinoma: a special reference to small hepatocellular carcinoma with indistinct margins. Hepatology. 1995; 22(1): 101-5.
    16. Claudio PP, Russo G, Kumar CA, et al. pRb2/p130, Vascular Endothelial Growth Factor, p27(KIP1), and Proliferating Cell Nuclear Antigen Expression in Hepatocellular Carcinoma: Their Clinical Significance. Clin Cancer Res. 2004, 15; 10(10): 3509-17.
    17. Thoeny HC, De Keyzer F, Vandecaveye V, et al. Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology. 2005; 237(2): 492-9.
    1 Keogan MT, Edelman RR. Technologic advances in abdominal MR imaging. Radiology. 2001 Aug; 220(2): 310-20. Review.
    2 Ichikawa T, Haradome H, Hachiya J, et al. Perfusion-weighted MR imaging in the upper abdomen: preliminary clinical experience in 61 patients. AJR Am J Roentgenol. 1997; 169(4): 1061-6.
    3 Mostafavi MR, Chavez DR, Cannillo J, et al. Redistribution of renal blood flow after SWL evaluated by Gd-DTPA-enhanced magnetic resonance imaging. J Endourol. 1998; 12(1): 9-12.
    4 Prasad PV, Cannillo J, Chavez DR, et al. Contrast-enhanced MR angiography and first-pass renal perfusion imaging using MS-325, an intravascular contrast agent. Acad Radiol. 1998; 5 Suppl 1: S219-22; discussion S226-7. No abstract available.
    5 Ichikawa T, Haradome H, Hachiya J, et al. Characterization of hepatic lesions by perfusion-weighted MR imaging with an echoplanar sequence. A JR Am J Roentgenol. 1998; 170(4): 1029-34.
    6 Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology. 1999; 210(3): 617-23.
    7 Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. A JR Am J Roentgenol. 1998; 170(2): 397-402.
    8 Okada Y, Ohtomo K, Kiryu S, et al. Breath-hold T2-weighted MRI of hepatic tumors: value of echo planar imaging with diffusion-sensitizing gradient. J Comput Assist Tomogr. 1998; 22(3): 364-71.
    9 Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986; 161 (2):401 -7.
    10 Yamashita Y, Tang Y, Takahashi M. Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging. J Magn Reson Imaging. 1998;8(2):367-74. Review.
    11 Kim T, Murakami T, Takahashi S, et al. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol. 1999;173(2):393-8.
    12 Chan JH, Tsui EY, Luk SH, et al. Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging. 2001;26(2):161-5.
    13 Muller MF, Prasad P, Siewert B, et al. Abdominal diffusion mapping with use of a whole-body echo-planar system.Radiology. 1994;190(2):475-8.
    14 Namimoto T, Yamashita Y, Sumi S, etal. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 1997;204(3):739-44.
    15 Ichikawa T, Araki T. Fast magnetic resonance imaging of liver. Eur J Radiol. 1999;29(3): 186-210. Review.
    16 Moteki T, Horikoshi H, Oya N, et al. Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images. J Magn Reson Imaging. 2002;15(5):564-72.
    17 Laghi A, Catalano C, Assael FG, et al. Diffusion-weighted echo-planar sequences for the evaluation of the upper abdomen: technique optimization. Radiol Med (Torino). 2001;101(4):213-8.
    18 Amano Y, Kumazaki T, Ishihara M. Single-shot diffusion-weighted echo-planar imaging of normal and cirrhotic livers using a phased-array multicoil. Acta Radiol. 1998;39(4):440-2.
    19 Geschwind JF, Artemov D, Abraham S, et al. Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J Vasc Interv Radiol. 2000; 11 (10): 1245-55.
    20 Murtz P, Pauleit D, Traber F, et al. Pulse triggering for improved diffusion-weighted MR imaging of the abdomen. Rofo. 2000;172(7):587-90.
    21 Uematsu H, Yamada H, Sadato N, et al. Assessment of hepatic portal perfusion using T2 measurements of Gd-DTPA. J Magn Reson Imaging. 1998;8(3):650-4.
    22 Ichikawa T, Arbab AS, Araki T, et al. Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma. AJR Am J Roentgenol. 1999;173(1):207-13.
    23 YangZ, XieJX, Zhang Y, et al. evaluation of cirrhotic liver with perfusion-weighted MR imaging: an experimental study in animal modes. Radiology. 2000,217[supplement]: 1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700