二恶英吸附及CeO_2和VO_x/CeO_2催化剂上氯苯催化氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染问题的日益严峻,氯代芳烃及二恶英等高毒性有机污染物的排放控制和消除引起了学术界、工业界、政府和公众的普遍关注。低温吸附或低温催化氧化能够实现二恶英的零排放。本论文详细考察了二苯并二恶英(DD)在氧化物上的吸附行为,并以形成二恶英的可能前体氯苯为模型化合物,研究了CeO_2及VOx/CeO_2催化剂上氯苯的催化氧化性能。
     利用红外光谱技术和差热分析方法研究了DD在氧化物和分子筛上的吸附与脱附行为。结果表明,DD与氧化物分别存在三种不同强度的相互作用模式,分子筛孔道对DD电子结构的限制作用>表面Lewis酸中心的电子配位作用>表面羟基的氢键作用。DD在各种氧化物上的脱附温度高低顺序为:NaY、丝光沸石> H-ZSM-5、Na-ZSM-5 >无定形氧化物(SiO_2、Al_2O_3、TiO_2及SBA-15)。
     研究了采用不同沉淀剂制备的CeO_2及VOx/CeO_2催化剂上氯苯的催化氧化性能。结果表明,所用催化剂均表现出较高的氯苯催化氧化活性。尿素为沉淀剂制备的催化剂(CeO_2-U)上的氯苯催化氧化活性高于Na2CO3和NH3-H2O_2沉淀剂制备的CeO_2。在考察的催化剂中,VOx/CeO_2-U显示了最高的氯苯催化氧化活性,在250 oC下,可将空速为10000 ml·g~(-1)·h~(-1)空气中1000 ppm的氯苯完全氧化。表征结果表明CeO_2-U表面的(110)和(100)等高活性晶面有利于氧化钒与氧化铈形成高活性V-O-Ce物种。研究还发现,Na+和水汽的存在会导致负载氧化钒中毒。
     本论文还研究了乙醇在Au/CeO_2及Au/SiO_2等催化剂上的催化转化。结果表明催化剂表面的金纳米粒子和Au3+都具有较好的乙醇选择氧化活性。无氧条件下,乙醇在金催化剂上的脱氢反应活性与金纳米粒子大小相关,小于6 nm的金纳米粒子活性明显高于大尺寸的金纳米粒子。在400 oC时,脱氢反应的乙醛单程收率高达76%。
The emission abatement of toxic chemicals, such as chlorinated aromatics and polychlorinated dioxins/furans (PCDD/F) has attracted much attention from academia, industry, government and public with the growing environmental crisis. Adsorption or catalytic oxidation of dioxin-like compounds at low temperatures is a useful strategy for the emission abatement of dioxins. In this thesis work, the adsorption/desorption behaviors of dibenzodioxin on inorganic materials have been studied. The catalytic oxidation of chlorobenzene, the possible precursors of dioxins formation, on CeO_2 and VOx/CeO_2 catalysts has been investigated.
     Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin. The order of dibenzodioxin desorption temperature is following: mordenite and NaY > H-ZSM-5 and Na-ZSM-5 > amorphous/mesoporous silica.
     A series of CeO_2 prepared via precipitation with different precipitation reagents have been used as the catalyst and catalyst support for the total oxidation of chlorobenzene. The cerium oxides and supported VOx catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and Raman spectroscopy. All catalysts show quite high catalytic activityfor chlorobenzene oxidation. CeO_2 catalyst prepared with urea (named as CeO_2-U) shows higher activity than those prepared with Na2CO3 and NH3-H2O_2. VOx/CeO_2-U catalyst shows the highest activity among all catalysts investigated. A total oxidation of 1000 ppm chlorobenzene on VOx/CeO_2-U can be achieved at 250 oC with space velocity of 10000 ml·g~(-1)·h~(-1). It is proposed that the reactive crystal planes on the surface of CeO_2-U like (110) and (100) benefit to the formation of highly reactive surface V-O-Ce species. The presence of Na+ or water vapor results in the deactivation of vanadium oxide catalyst.
     The ethanol conversion on Au/CeO_2 and Au/SiO_2 catalysts was also investigated. It was found that both Au nanoclusters and Au3+ species are reactive for the selective oxidation of ethanol to acetaldehyde. For ethanol dehydrogenation in the absence of O_2, a significant particle size dependence effect was observed: Au nanoparticles with size below 6 nm show much higher catalytic activity than those with bigger Au particles. The yield of acetaldehyde from ethanol dehydrogenation at 400 oC is 76% on Au nanoparticles with the mean size of 5 nm.
引文
[1] G Mckay, Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem. Eng. J., 2002, 86: 343-368.
    [2] P Cole, D Trichopoulos, H Pastides, T Starr, J S Mandel, Dioxin and cancer: a critical review. Regulatory Toxicology and Pharmacology, 2003, 38: 378-388.
    [3] 蒋可,二恶英毒性及污染,中国环保产业, 1999, 10: 21-23.
    [4] Olie K, Vermeulen P L, Hutzinger O, Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands, Chemosphere, 1977, 6: 455-459.
    [5] K Tuppurainen, I Halonen, P Ruokoarvi, Formation of PCDDs and PCDFs in Municipal Waste Incineration and its Inhibition Mechanisms: a review. Chemosphere, 1998, 36: 1493-1511.
    [6] K Tuppurainen, P Ruokojarvi, J Ruuskanen, Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Acc. Chem. Res., 2003, 36: 652-658.
    [7] 王金成,熊力,张连玉,二恶英的毒性及危害,解放军医学高等专科学校学报,1999, 27: 65-66.
    [8] United States Environmental Protection Agency (USEPA), Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. EPA/600/Bp-92/001c Estimation Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC, 1994a.
    [9] H J Geyer, K W Schramm, E A Feicht, A Behechti, C Steinberg, R Bruggemann, H Poiger, B Henkelmann, A Kettrup, Half-lives of tetra-, penta-, hexa-, hepta-, and octachlorodibenzo-p-dioxin in rats, monkeys, and humans-a critical review. Chemosphere, 2002, 48: 631-644.
    [10] United States Environmental Protection Agency (USEPA), National center for Environmental assessment. The inventory of sources and environmental releases of dioxin-like compounds in the United States: The Year 2000 update. Washington, DC.
    [11] C Rappe, R Andersson, P A Bergqvist, C Brohede, M Hansson, L O Kjeller, G Lindstrom, S Marklund, M Nygen, S E Swanson, M Tysklind, K Wiberg, Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources, levels and isoeric pattern in various matrices. Chemosphere, 1987, 16: 1603-1618.
    [12] L G Oberg, C Rappe, Biochemcial formation of PCDD/F from chlorophenols. Chemosphere, 1992, 25: 49-52.
    [13] Dow Chemicals, The Trace Chemistries of Fire-A source of and Routes for the Entry of chlorinated Dioxins into the Environment. The chlorinated Dioxin Task Force, Michigan Division, Dow Chemicals, USA, 1978.
    [14] C Gaus, G J Brunskill, R Weber, O Papke, J F Muller, Historical PCDD inputs and their source implications from dated sediment cores in queensland (Australia). Environ. Sci. Technol., 2001, 35: 4597-4603.
    [15] W V S B Ligon, R J Dorn, Chlorodibenzofuran and chlorodibenzo-p-dioxin levels in Chilean mummies dated about 2800 years before the present. Environ. Sci. Technol., 1989, 23: 1286-1290.
    [16] E J Hoekstra, H de Weerd, E W B de Leer, U A T H Brinkman, Natural formation of chlorinated phenols, dibenzo-p-dioxins and dibenzo furans in soil of Douglas fir forest. Environ. Sci. Technol., 1999, 33: 2543-2549.
    [17] K Everaert, J Baeyens, The formation and emission of dioxins in large scale thermal processes. Chemosphere, 2002, 46: 439-448.
    [18] M K Cieplik, J P Carbonell, C Munoz, S Baker, S Kruger, P Liljelind, S Marklund, R Louw, On dioxin formation in iron ore sintering. Environ. Sci. Technol., 2003, 37: 3323-3331.
    [19] J V Ryan, B K Gullett, On-road emission sampling of a heavy-duty diesel vehicle for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol., 2000, 34: 4483-4489.
    [20] B R Stanmore, The formation of dioxins in combustion systems. Combustion and Flame, 2004, 136: 398-427.
    [21] H P Hagenmaier, M Kraft, H Brunner, R Haag, Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol., 1987, 21: 1080-1084.
    [22] H Vogg, L Stieglitz, Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere, 1986, 15: 1373-1378.
    [23] I E Fangmark, B van Bavel, S Marklund, B Stromberg, N Berge, C Rappe, Influence of combustion parameters on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environ. Sci. Technol., 1993, 27: 1602-1610.
    [24] I E Fangmark, B Stromberg, N Berge, C Rappe, Influence of postcombustion temperature profiles on the formation of PCDDs, PCDFs, PCBzs, and PCBs in a pilot incinerator. Environ. Sci. Technol., 1994, 28: 624-629.
    [25] E Wikstrom, S Marklund, Secondary Formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during MSW combustion. Environ. Sci. Technol., 2000, 34: 604-609.
    [26] H Huang, A Buekens, De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans proposal of a mechanistic scheme. The Science of the Total Environment, 1996, 193: 121-141.
    [27] J W A Lustenhouwer, K Olie, O Hutzinger, Chlorinated dibenzo-p-dioxins and related compounds in incinerator effluents: a review of measurements and mechanisms of formation. Chemosphere, 1980, 9: 501-522.
    [28] G G Choudhry, K Olie, O Hutzinger, Mechanisms in the thermal formation of chlorinated compounds including polychlorinated dibenzo-p-dioxins. Chlorinated Dioxins and related compounds., Pergamon Press. New York, 1982, pp. 275-301.
    [29] Hutzinger, M J Blumich, M van der Berg, K Olie, Sources and fate of PCDDs and PCDFs: an overview. Chemosphere, 1985, 14: 581-600.
    [30] L Stieglitz, G Zwick, J Beck, W Roth, H Vogg, On the de novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere, 1989, 18: 1219-1226.
    [31] L Stieglitz, H Vogg, G Zwick, J Beck, H Bautz, On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere, 1991, 20: 1255-1264.
    [32] H Ismo, T Kari, R Juhani, Formation of aromatic chlorinated compounds catalyzed by copper and iron. Chemosphere, 1997, 34: 2649-2662.
    [33] M Takaoka, A Shiono, K Nishimura, T Yamamoto, T Uruga, N Takeda, T Tanaka, K Oshita, T Matsumoto, H harada, Dynamic change of copper in fly ash during de Novo synthesis of dioxins. Environ. Sci. Technol., 2005, 39: 5878-5884.
    [34] T Hatanaka, A Kitajima, M Takeuchi, Role of copper chloride in the foration of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration. Chemosphere, 2004, 57: 73-79.
    [35] S P Ryan, E R Altwicker, Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans. Environ. Sci. Technol., 2004, 38: 1708-1717.
    [36] G G Choudry, O Hutzinger, Mechanistic Aspects of the Thermal Formation ofHalogenated Organic Compounds Including Polychlorinated Dibenzo-p-dioxins, Gordon and Breach, New York, 1983.
    [37] M S Milligan, E Altwicker, Mechanistic aspects of the de novo synthesis of polychlorinated dibenzo-p-dioxins and furans in fly ash from experiments using isotopically labeled reagents. Environ. Sci. Technol., 1995, 29: 1353-1358.
    [38] M S Milligan, E Altwicker, Chlorophenol reactions on fly ash. 1. Adsorption/desorption equiblibria and conversion to polychlorinated dibenzo-p-dioxins, Environ. Sci. Technol., 1996, 30: 225-229.
    [39] S Lomnicki, B Dellinger, A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/Silica surface, J. Phys. Chem. A, 2003, 107: 4385-4395.
    [40] C S Evans, B Dellinger, Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-chlorophenol. Environ. Sci. Technol., 2003, 37: 1325-1330.
    [41] S L Alderman, G R Farquar, E D Poliakoff, B Dellinger, An Infrared and X-ray spectroscopic study of the reactions of 2-chlorophenol, 1,2-dichlorobenzene, and chlorobenzene with model CuO/Silica fly ash surfaces. Environ. Sci. Technol., 2005, 39: 7396-7401.
    [42] Y Qian, M H Zheng, W B Liu, X D Ma, B Zhang, Influence of metal oxides on PCDD/Fs formation from pentachlorophenol. Chemospere, 2005, 60: 951-958.
    [43] R T Yang, Adsorobents: Fundamentals And Applications, John Wiley & Sons.
    [44] H J Fell, M Tuczek, Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed. Chemosphere, 1998, 37: 2327-2334.
    [45] X D Liu, Y Murayama, M Matsunaga, M Nomizu, N Nishi, Preparation and characterization of DNA hydrogel bead as selective adsorbent of dioxins. International Journal of Biological Macromolecules, 2005, 35: 193-199.
    [46] K Everaert, J Baeyens, J Degreve, Entrained-Phase adsorption of PCDD/F from incinerator flue gases. Environ. Sci. Technol., 2003, 37: 1219-1224.
    [47] H X Xi, Z Li, H B Zhang, X Li, X J Hu, Estimation of activation energy for desorption oflow-volatility dioxins on zeolites by TPD technique. Separation and Purification Technology, 2003, 31: 41-45.
    [48] M Yates, J Blanco, P Avila, M P Martin, Honeycomb monoliths of activated carbons for effluent gas purification, Microp. Mesop. Mater., 2000, 37: 201-208.
    [49] R T Yang, R Q Long, J Padin, A Takahashi, Adsorbents for dioxins: A new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res., 1999, 38: 2726-2731.
    [50] R Q Long, R T Yang, Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc., 2001, 123: 2058-2059.
    [51] R Jager, A M Schneider, P Behrens, B Henkelmann, K Schramm, D Lenoir, Selective Adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans by zeosils UTD-1, SSZ-24, and ITQ-4, Chem. Eur. J., 2004, 10: 247-256.
    [52] H Matzing, W Baumann, B Becker, K Jay, H Paur, H Sifert, Adsorption of PCDD/F on MWI fly ash, Chemosphere, 2001, 42: 803-809.
    [53] K Everaert, J Baeyens, Catalytic combustion of volatile organic comounds. J. Hazard. Mater. B, 2004, 109: 113-139.
    [54] P Papaefthimiou, T Ioannides, X E Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Appl. Catal. B: Environ., 1997, 13: 175-184.
    [55] E M Cordi, J L Falconer, Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts. J. Catal., 1996, 162: 104-117.
    [56] K Okumura, T Kobayashi, H Tanaka, M Niwa, Toluene combustion over palladium supported on various metal oxide supports. Appl. Catal. B: Environ., 2003, 44: 325-331.
    [57] L Becker, H Forster, Oxidative decomposition of chlorobenzene catalyzed by palladium-containing zeolite Y. J. Catal., 1997, 170: 200-203.
    [58] R W van den Brink, R Louw, P Mulder, Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/γ-Al2O3 catalyst. Appl. Catal. B: Environ., 1998, 16: 219-226.
    [59] R W van den Brink, P Mulder, R Louw, Catalytic combustion of chlorobenzene onPt/γ-Al_2O_3 in the presence of aliphatic hydrocarbons. Catal. Today, 1999, 54: 101-106.
    [60] S Scire, S Minico, C Crisafulli, Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B: Environ., 2003, 45: 117-125.
    [61] M Okumura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada, Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B: Environ., 2003, 41: 43-52.
    [62] P Subbanna, H Greene, F Desal, Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol., 1988, 22: 557-561.
    [63] P O Larsson, A Andersson, L R Wallenberg, B Svensson, Combustion of CO and toluene; characterization of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. J. Catal., 1996, 163: 279-293.
    [64] S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J Catal., 2000, 193: 264-272.
    [65] S D Yim, D J Koh, I S Nam, A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts. Catal. Today, 2002, 75: 269-276.
    [66] A K Sinha, K Suzuki, Three-dimensional mesoporous chromium oxide: A highly efficient material for the elimination of volatile organic compounds. Angew. Chem. Int. Ed., 2005, 44: 271-273.
    [67] H Rotter, M V Landau, M herskowitz, Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support. Environ. Sci. Technol., 2005, 39: 6845-6850.
    [68] L Jin, M A Abraham,Low-temperature catalytic oxidation of 1,4-dichlorobenzene. Ind. Eng. Chem. Res., 1991, 30: 89-95.
    [69] S Krishnamoorthy, J P Baker, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts. Catal. Today, 1998, 40: 39-46.
    [70] S Krishnamoorthy, M D Amiridis, Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al_2O_3 catalysts. Catal. Today, 1999, 51:203-214.
    [71] S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal., 2000, 193: 264-272.
    [72] S Lomnicki, J Lichtenberger, Z T Xu, M Waters, J Kosman, M D Amiridis, Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Appl. Catal. B: Environ., 2003, 46: 105-119.
    [73] J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal., 2004, 223: 296-308.
    [74] Y Liu, M F Luo, Z B Wei, Q Xin, P L Ying, C Li, Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B: Environ., 2001, 29: 61-67.
    [75] Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst: MnOx/TiO2-Al_2O_3. J. Catal., 2001, 202: 200-204.
    [76] G J Hutchings, C S Heneghan, I D Hudson, S H Taylor, Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature, 1996, 384: 341-343.
    [77] S H Taylor, C S Heneghan, G J Hutchings, I D Hudson, The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catal. Today, 2000, 59: 249-259.
    [78] A Trovarelli, C de Leitenburg, M Boaro, G Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today, 1999, 50: 353-367.
    [79] S Scire, S Minico, C Crisafulli, C Satriano, A Pistone, Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B: Environ., 2003, 40: 43-49.
    [80] D Andreeva, R Nedyalkova, L. Ilieva, M V Abrashev, Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A: Gen., 2003, 246: 29-38.
    [81] C H Wang, S S Lin, Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Appl. Catal. A: Gen., 2004, 268: 227-233.
    [82] S Carrettin, P Concepcion, A Corma, J M Lopez Nieto, V F Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed., 2004, 43: 2538-2540.
    [83] J Guzman, S Carrettin, A Corma, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc., 2005, 127: 3286-3287.
    [84] J Guzman, S Carrettin, J C Fierro-Gonzalez, Y L Hao, B C Gates, A Corma, CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed., 2005, 44: 4778-4781.
    [85] R W van den Brink, V de Jong, R Louw, P. Maggi, P Mulder, Hydrogen-deuterium isotope effects in the reactions of chlorobenzene and benzene on Pt/γ-Al2O3 catalyst. Catal. Lett., 2001, 71: 15-20.
    [86] V de Jong, M K Cieplik, W A Reints, F Fernandez-Reino, R Louw, A Mechanistic study on the catalytic combustion of benzene and chlorobenzene. J. Catal., 2002, 211: 355-365.[1] H Gilman, J J Dietrich, Halogen Derivatives of dibenzo-p-dioxin. J. Am. Chem. Soc., 1957, 79: 1439-1441. [2] C Li, Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV Raman spectroscopy. J. Catal., 2003, 216: 203-212.
    [1] G McKay, Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration. Chem. Eng. J., 2002, 86: 343-368.
    [2] J Kaiser, Toxicology – dioxin draft sparks controversy. Science, 2000, 288: 1313-1314.
    [3] A Dabrowski, Adsorption – from theory to practice. Advances in Colloid and Interface Science, 2001, 93: 135-224.
    [4] A Karademir, M Bakoglu, F Taspinar, S Ayberk, Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environ. Sci. Technol., 2004, 38: 1201-1207.
    [5] M Lasagni, E Collina, M Tettamanti, D Pitea, Thermal reaction kinetics and mechanism of PCDF, PCDD, and PCB parent compounds and activated carbon on silica. Environ. Sci. Technol., 1996, 30: 1896-1901.
    [6] E R Altwiker, Y Xun, M S Milligan, Dioxin formation over fly ash: oxygen dependence temperature dependence and phase distribution. Organohalogen Compds., 1994, 20: 381-384.
    [7] R Addink, H A J Govers, K Olie, Desorption behaviour of polychlorinated dibenzo-p-dioxin/dibenzofuran on a packed fly ash bed. Chemosphere, 1995, 31: 3945-3950.
    [8] R T Yang, R Q Long, J Padin, A Takahashi, Adsorbents for dioxins: A new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res., 1999, 38: 2726-2731.
    [9] R Q Long, R T Yang, Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc., 2001, 123: 2058-2059.
    [10] R Jager, A M Schneider, P Behrens, B Henkelmann, K Schramm, D Lenoir, Selective Adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans by zeosils UTD-1, SSZ-24, and ITQ-4, Chem. Eur. J., 2004, 10: 247-256.
    [11] H J Fell, M Tuczek, Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed. Chemosphere, 1998, 37: 2327-2334.
    [12] M Yates, J Blanco, P Avila, M P Martin, Honeycomb monoliths of activated carbons for effluent gas purification. Microp. Mesop. Mater., 2000, 37: 201-208.
    [13] K Everaert, J Baeyens, J Degreve, Entrained-phase adsorption of PCDD/F from incinerator flue gases. Environ. Sci. Technol., 2003, 37: 1219-1224.
    [14] H Matzing, W Baumann, B Becker, K Jay, H R Paur, H Seifert, Adsorption of PCDD/F on MWI fly ash. Chemosphere, 2001, 42: 803-809.
    [15] X D Liu, Y Murayama, M Matsunaga, M Nomizu, N Nishi, Preparation and characterization of DNA hydrogel bead as selective adsorbent of dioxins. International Journal of Biological Macromolecules, 2005, 35: 193-199.
    [16] Y Liu, W Wu, Y Guan, P Ying, C Li, FT-IR spectroscopic study of the oxidation of chlorobenzene over Mn-based catalyst. Langmuir, 2002, 18: 6229-6232.
    [17] S Krishnamoorthy, M D Amiridis, Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al_2O_3 catalysts. Catal. Today, 1999, 51: 203-214.
    [18] S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal., 2000, 193: 264-272.
    [19] H Gilman, J J Dietrich, Halogen Derivatives of dibenzo-p-dioxin. J. Am. Chem. Soc., 1957, 79: 1439-1441.
    [20] E A Gastilovich, V G Klimenko, N V Korolkova, R N Nurmukhametov, Spectroscopic data on nuclear configuration of dibenzo-p-dioxin in S0, S1, and T1 electronic states. Chem. Phys., 2002, 282: 265-275.
    [21] J Ryczkowski, IR spectroscopy in catalysis. Catal. Today, 2001, 68: 263-381.
    [22] Y Mao, S Panksem, J K Thomas, Photoinduced oxidative reactions of dioxin and its chlorinated derivative on laponite surfaces. Langmuir, 1993, 9: 1504-1512.
    [23] S A Boyd, M M Mortland, Dioxin radical formation and polymerization on Cu(II)-smectite Nature, 1985, 316: 532-535.
    [24] F Eder, M Stockenhuber, J A Lercher, Bronsted acid site and pore controlled siting of alkane sorption in acidic molecular sieves. J. Phys. Chem. B, 1997, 101: 5414-5419.
    [25] A Jentys, H Tanaka, J A Lercher, Surface processes during sorption of aromatic molecules on medium pore zeolites. J. Phys. Chem. B, 2005, 109: 2254-2261.
    [26] Y E oda, J N Kondo, K Domen, Detailed process of adsorption of alkanes and alkenes on zeolites. J. Phys. Chem. B, 2005, 109: 1464-1472.
    [27] K Bobuatong, J Limtrakul, Effects of the zeolite framework on the adsorption of ethylene and benzene on alkali-exchanged zeolites: an ONIOM study. Appl. Catal. A, 2003, 253: 49-64.
    [28] B Su, V Norberg, Location of benzene in NaBeta zeolite upon coadsorption of ammonia and methyamine: A further confirmation of molecular recognition effect in benzene adsorption in 12R window zeolites. Langmuir, 2000, 16: 6020-6028.
    [29] A Corma, H Garcia, G Sastre, P M Viruela, Activation of molecules in confined spaces: An approach to zeolite-guest supramolecular systems. J. Phys. Chem. B, 1997, 101: 4575-4582.
    [1] G Mckay, Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) inceneration: review. Chem. Eng. J., 2002, 86: 343-368.
    [2] K Everaert, J Baeyens, The formation and emission of dioxins in large scale thermal processes. Chemosphere, 2002, 46: 439-448.
    [3] R T Yang, R Q Long, J Padin, A Takahashi, Adsorbents for dioxins: A new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res., 1999, 38: 2726-2731.
    [4] K Everaert, J Baeyens, Catalytic combustion of volatile organic comounds. Journal of Hazardous Materials B, 2004, 109: 113-139.
    [5] M Okumura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada, Multi-component noblemetal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B: Environ., 2003, 41: 43-52.
    [6] A M Padilla, J Corlla J M Toledo, Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts. Appl. Catal. B: Environ., 1999, 22: 107-121.
    [7] Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst: MnOx/TiO2-Al2O3. J. Catal., 2001, 202: 200-204.
    [8] R Weber, T Sakurai, H Hagenmaier, Low temperature decomposition of PCDD/PCDF, chlorobenzes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl. Catal. B: Environ., 1999, 20: 249-256.
    [9] J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal., 2004, 223: 296-308.
    [10] C T Campbell, C H F Peden, Oxygen vacancies and catalysis on ceria surfaces. Science, 2005, 309: 713-714.
    [11] A Trovarelli, C de Leitenburg, M Boaro, G Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today, 1999, 50: 353-367.
    [12] M Hirano, E Kato, Hydrothermal synthesis of nanocrystalline cerium (IV) oxide powders. J. Am. Ceram. Soc., 1999, 82: 786-788.
    [13] N Uekawa, M Ueta, Y J Wu, K Kakegawa, Synthesis of CeO2 spherical fine particles by homogeneous precipitation with polyethylene glycol. Chem. Lett., 2002, 8: 854-855.
    [14] E Verdon, M Devalette, G Demazeau, Solvothermal synthesis of cerium dioxide microcrystallites: effect of the solvent. Mater. Lett., 1995, 25: 127-131.
    [15] X T Dong, G Y Hong, D C Yu, D S Yu, Synthesis and properties of cerium oxide nanometer powders by pyrolysis of amorphous citrate. J. Mater. Sci. Technol., 1997, 13: 113-116.
    [16] T Masui, K Fujiwara, K Machida, G Adachi, T Sakata, H Mori, Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles. Chem. Mater., 1997, 9: 2197-2204.
    [17] X D Zhou, W Huebner, H U Anderson, Processing of nanometer-scale CeO2 particles. Chem. Mater., 2003, 15: 378-382.
    [18] B Aiken, W P Hsu, E. Matijevic, Preparation and properties of monodispersed colloidal particles of lanthanide compounds: III, Yttrium (III) and mixed Yttrium (III)/Cerium (III) systems. J. Am. Ceram. Soc., 1988, 71: 845-853.
    [19] P L Chen, I W Chen, Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc., 1993, 76: 1577-1583.
    [20] B Djuricic, S Pickering, Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc., 1999, 19: 1925-34.
    [21] M Z C Hu, E A Payzant, C H Byers, Sol-gel and ultrafine particle formation via dielectric tuning of inorganic salt-alcohol-water solutions. J. Colloid Interface Sci., 2000, 222: 20-36.
    [22] Y J He, B L Yang, G X Cheng, Controlled synthesis of CeO2 nanoparticles from the coupling route of homogenous preicpitation with microemulsion. Mater. Lett., 2003, 57: 1880-1884.
    [23] D S Bae, B S Lim, B I Kim, K S Han, Synthesis and characterization of ultrfine CeO2 particles by glycothermal process. Mater. Lett., 2002, 56: 610-613.
    [24] C H Wang, S S Lin, Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Appl. Catal. A: Gen., 2004, 268: 227-233.
    [25] D Andreeva, R Nedyalkova, L. Ilieva, M V Abrashev, Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A: Gen., 2003, 246: 29-38.
    [26] D Andreeva, R Nedyalkova, L Ilieva, M V Abrashev, Gold-vanadia catalysts supported on ceria-alumina for complete benzene oxidation. Appl. Catal. B: Environ., 2004, 52: 157-165.
    [27] S Carrettin, P Concepcion, A Corma, J M L Nieto, V F Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed., 2004, 43: 2538-2540.
    [28] J Guzman, S Carrettin, A Corma, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc., 2005, 127: 3286-3287.
    [29] J Guzman, S Carrettin, J C Fierro-Gonzalez, Y L Hao, B C Gates, A Corma, CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed., 2005, 44: 4778-4781.
    [30] E Matijevic, Monodispersed colloids: Art and Science. Langmuir, 1986, 2: 12-20.
    [31] C W Sun, H Li, Z X Wang, L Q Chen, X J Huang, Synthesis and characterization of polycrystalline CeO2 nanowires. Chem. Lett., 2004, 33: 662-663.
    [32] J E Spanier, R D Robinson, F Zhang, S W Chan, I P Hereman, Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering. Phys. Rev. B, 2001, 64: 245407.
    [33] A Nakajima, A Yoshihara, M Ishigame, Defect-induced Raman spectra in doped CeO2. Phys. Rev. B, 1994, 50: 13297-13307.
    [34] W H Weber, K C Hass, J R Mcbride, Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B, 1993, 48: 178-185.
    [35] V V Pushkarev, V I Kovlchuk, J L d’Itri, Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B, 2004, 108: 5341-5348.
    [36] M D Hernandez-Alonso, A B Hungria, A Martinez-Arias, J M Coronado, J C Conesa, J Soria, M Fernandez-Garcia, Confinement effects in quasi-stoichiometric CeO2 nanoparticle. Phys. Chem. Chem. Phys., 2004, 6: 3524-3529.
    [37] R Q Lon, Y P Huang, H L Wan, Surface oxygen species over cerium oxide and their reactivites with methane and ethane by means of in situ confocal microprobe Raman spectroscopy. J. Raman Spectroscopy, 1997, 28: 29-32.
    [38] Y Namai, K I Fukui, Y Iwasawa, Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2 (111) surfaces. Catal. Today, 2003, 85: 79-91.
    [39] H C Yao, Y F Y Yao, Ceria in automative exhaust catalysts: I oxygen storage. J. Catal.,1984, 86: 254-265.
    [40] F Giordano, A Trovarelli, C de Leitenburg, M Giona, A model for the temperature-programmed reduction of low and high surface area ceria. J. Catal., 2000, 193: 273-282.
    [41] F Esch, S Fabris, L Zhou, T Montini, C Africh, P Fornasiero, G Comelli, R Rsei, Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752-755.
    [42] M Daturi, E Finocchio, C Binet, J C Lavalley, F Fally, V Perrichon, Study of bulk and surface reduction by hydrogen of CexZr1-xO2 mixed oxides followed by FTIR spectroscopy and magnetic balance. J. Phys. Chem. B, 1999, 103: 4884-4891.
    [43] J T Hu, T W Odom, C M Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res., 1999, 32: 435-445.
    [44] Z L Wang, Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater., 2000, 12: 1295-1298.
    [45] Y N Xia, P D Yang, Y G Sun, Y Y Wu, B Mayers, B Gates, Y D Yin, F Kim, H Q Yan, One-dimensional nanostructures: Synthesis, Characterization, and Applications. Adv. Mater., 2003, 15: 353-389.
    [46] G R Patzke, F Krumeich, R Nesper, Oxidic nanotubes and nanorods-anisotropic modules for a future Nanotechnology. Angew. Chem. Int. Ed., 2002, 41: 2446-2461.
    [47] C N R Rao, A K Cheetham, Science and technology of nanomaterials: Current status and future prospects. J. Mater. Chem., 2001, 11: 2887-2894.
    [48] S C Shen, K Hidajat, L E Yu, S Kawi, Simple hydrothermal synthesis of nanostructured and nanorod Zn-Al complex oxides as novel nanocatalysts. Adv. Mater., 2004, 16: 541-545.
    [49] Y Wang, J Y Lee, H C Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater., 2005, 17: 3899-3903.
    [50] K B Zhou, X Wang, X M Sun, Q Peng, Y D Li, Enhanced catalytic activity of ceriananorods from well-defined reactive crystal planes. J. Catal., 2005, 229: 211-217.
    [51] S C Kuiry, S D Patil, S Deshpande, S Seal, Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation. J. Phys. Chem. B, 2005, 109: 6936-6939.
    [52] A Vantomme, Z Y Yuan, G H Du, B L Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir, 2005, 21: 1132-1135.
    [53] R J La, Z A Hu, H L Li, X L Shang, Y Y Yang, Template synthesis of CeO2 ordered nanowire arrays. Mater. Sci. Eng. A, 2004, 368: 145-148.
    [54] G S Wu, T Xie, X Y Yuan, B C Cheng, L D Zhang, An improved sol-gel template synthetic route to large-scale CeO2 nanowires. Mater. Res. Bull., 2004, 39: 1023-1028.
    [55] J J Miao, H Wang, Y R Li, J M Zhu, J J Zhu, Ultrasonic-induced synthesis of CeO2 nanotubes. J. Crystal. Growth., 2005, 281: 525-529.
    [56] B Tang, L H Zhuo, J C Ge, G L Wang, Z Q Shi, J Y Niu, A surfactant-free route to single-crystalline CeO2 nanowires. Chem. Comm., 2005, 28: 3565-3567.
    [57] H C Wang, C H Lu, Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique. Mater. Res. Bull., 2002, 37: 783-792.
    [58] S F Chen, S H Yu, B Yu, L Ren, W T Yao, H Colfen, Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route. Chem. Eur. J., 2004, 10: 3050-3058.
    [59] A Sayari, P Liu, Non-silica periodic mesostructured materials: recent progress. Microporous Mater., 1997, 12: 149-177.
    [60] J Y Ying, C P Mehnert, M S Wong, Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed., 1999, 38: 56-77.
    [61] X Y Liu, P Bennema, Theoretical consideration of the growth morphology of crystals. Phys. Rev. B, 1996, 53: 2314-2325.
    [62] Z L Wang, X D Feng, Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B, 2003, 107: 13563-13566.
    [63] T X T Sayle, S C Parker, D C Sayle, Oxidising CO to CO2 using ceria nanoparticles. Phys. Chem. Chem. Phys., 2005, 7: 2936-2941.
    [64] E Aneggi, J Llorca, M Boaro, A Trovarelli, Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders. J. Catal., 2005, 234: 88-95.
    [1] I Fangmark, B stromberg, N Berge, C Rappe, Influence of postcombustion temperature profiles on the formation of PCDDs, PCDFs, PCBzs, and PCBs in a pilot incinerator. Environ. Sci. Technol., 1994, 28: 624-629.
    [2] E Wikstrom, S Marklund, Secondary formation of chlorinated dibenzo-p-dioxins, dibenzfurans, biphenyls, benzenes, and phenols during MSW combustion. Environ. Sci. Technol., 2000, 34: 604-609.
    [3] P Subbanna, H Greene, F Desal, Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol., 1988, 22: 557-561.
    [4] L Jin, M A Abraham, Low-temperature catalytic oxidation of 1,4-dichlorobenzene. Ind. Eng. Chem. Res., 1991, 30: 89-95.
    [5] Y Ide, K Kashiwabara, S Okada, T Mori, M Hara, Catalytic decomposition of dioxin from MSW incinerator flue gas. Chemosphere, 1996, 32: 189-198.
    [6] L Becker, H Forster, Oxidative decomposition of chlorobenzene catalyzed by palladium containing zeolite Y. J. Catal., 1997, 170: 200-203.
    [7] P Papaefthimiou, T Ioannides, X E Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Appl. Catal. B: Environ., 1997, 13: 175-184.
    [8] S F Tahir, C A Koh, Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere, 1999, 38: 2109-2116.
    [9] T Takeguchi, S Aoyama, J Ueda, R Kikuchi, K Eguchi, Catalytic combustion of volatile organic compounds on supported precious metal catalysts. Top. Catal., 2003, 23: 159-162.
    [10] K Okumura, T Kobayashi, H Tanaka, M Niwa, Tolunene combustion over palladium supported on various metal oxide supports. Appl. Catal. B: Environ., 2003, 44: 325-331.
    [11] R W van den Brink, R Louw, P Mulder, Formation of polychlorinated benzenes during the catalytic combustion of chlorobezene using a Pt/Al2O3 catalyst. Appl. Catal. B: Environ., 1998, 16: 219-226.
    [12] R W van den Brink, P Mulder, R Louw, Catalytic combustion of chlorobenzene on Pt/Al2O3 in the presence of aliphatic hydrocarbons. Catal. Today, 1999, 54: 101-106.
    [13] S Scire, S Minico, C Crisafulli, Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B: Environ., 2003, 45: 117-125.
    [14] M Okunura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada. Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B: Environ., 2003, 41: 43-52.
    [15] Y Liu, M F Luo, Z B Wei, Q Xin, P L Ying, C Li, Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B: Environ., 2001, 29: 61-67.
    [16] Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst: MnOx/TiO2-Al2O3. J. Catal., 2001, 202: 200-204.
    [17] S Krishnamoorthy, M D Amiridis, Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts. Catal. Today, 1999, 51: 203-214.
    [18] J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal., 2004, 223: 296-308.
    [19] G J Hutchings, C S Heneghan, I D Hudson, S H Taylor, Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature, 1996, 384: 341-343.
    [20] S H Taylor, C S Heneghan, G J Hutchings, I D Hudson, The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catal. Today, 2000, 59: 249-259.
    [21] S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal., 2000, 193: 264-272.
    [22] C T Campbell, C H F Peden, Oxygen vacancies and catalysis on ceria surfaces. Science, 2005, 309: 713-714.
    [23] A Trovarelli, C de Leitenburg, M Boaro, G Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today, 1999, 50: 353-367.
    [24] C H Wang, S S Lin, Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Appl. Catal. A: Gen., 2004,268: 227-233.
    [25] S Carrettin, P Concepcion, A Corma, J M Lopez Nieto, V F Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew.Chem. Int. Ed., 2004, 43: 2538-2540.
    [26] J Guzman, S Carrettin, A Corma, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc., 2005, 127: 3286-3287.
    [27] J Guzman, S Carrettin, J C Fierro-Gonzalez, Y L Hao, B C Gates, A Corma, CO oxidation catalyzed by supported gold: Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoixde and peroxide species. Angew. Chem. Int. Ed., 2005, 44: 4778-4781.
    [28] D Andreeva, R Nedyalkova, L Ilieva, M V Abrashev, Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A: Gen., 2003, 246: 29-38.
    [29] B M Reddy, A Khan, Y Yamada, T Kobayashi, S Loridant, J C Volta, Surface characterization of CeO2/SiO2 and V2O5/CeO2/SiO2 catalysts by Raman, XPS, and other techniques. J. Phys. Chem. B, 2002, 106: 10964-10972.
    [30] B M Reddy, A Khan, Y Yamada, T Kobayashi, S Loridant, J C Volta, Structural charactereization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J. Phys. Chem. B, 2003, 107: 5162-5167.
    [31] H Bosch, B J Kip, J G van Ommen, P J Gellings, Factors influencing the temperature-programmed reduction profiles of vanadium pentoxide. J. Chem. Soc. Faraday Trans., I 1984, 80: 2479-2488.
    [32] D Andreeva, R Nedyalkova, L Ilieva, M V Abrashev, Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A: Gen., 2003, 246: 29-38.
    [33] M V Martinez-Huerta, J M Coronado, M Fernandez-Garcia, A Iglesias-Juez, G Deo, J L G Fierro, M A Banares, Nature of the vanadia-ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J. Catal., 2004, 225: 240-248.
    [34] D Courcot, A Ponchel, B Grzybowska, Y Barbaux, M Rigole, M Guelton, J P Bonnelle,Effect of the sequence of potassium introduction to V2O5/TiO2 catalysts on their physicochemical properties and catalytic performance in oxidative dehydrogenation of propane. Catal. Today, 1997, 33: 109-118.
    [35] Y J Zheng, A D Jensen, J E Johnsson, Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst regeneration. Ind. Eng. Chem. Res., 2004, 43: 941-947.
    [36] W J Shan, Z C Feng, Z L Li, J Zhang, W J Shen, C Li, Oxidative steam reforming of methanol on Ce0.9Cu0.1Oy catalysts prepared by deposition-precipitation, coprecipiation, and complex-combustion methods. J. Catal., 2004, 228: 206-217.
    [37] K Everaert, J Baeyens, Catalytic combustion of volatile organic compounds. J. Hazard. Mater. B, 2004, 109: 113-139.
    [1] R Craciun, Characterization of mixed amorphous/crystalline cerium oxide supported on SiO_2. Solid State Ionics, 1998, 110: 83-93.
    [2] A Martinez-Arias, M Fernandez-Garcia, L N Salamanca, R X Valenzuela, Structural and redox properties of ceria in alumina-supported ceira catalyst supports. J. Phys. Chem. B, 2000, 104: 4038-4046.
    [3] S Damyanova, C A Perez, M Schmal, J M C Bueno, Characterization of ceria-coated alumina carrier. Appl. Catal. A: Gen., 2002, 234: 271-282.
    [4] G A H Mekhemer, H M Ismail, Dispersion of ceria and lanthana on silica and alumina supports-X-ray diffractomety and nitrogen sorptometry studies. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 235: 129-136.
    [5] J Y Chane-Ching, M Airiau, A Sahibed-dine, M Daturi, E Brendle, F Ozil, A Thorel, A Corma, Surface characterization and properties of ordered arrays of CeO2 nanoparticles embedded in thin layers of SiO2. Langmuir, 2005, 21: 1568-1574.
    [6] A Aboukais, E A Zhilinskaya, J F Lamonier, I N Filimonov, EPR study of ceria-silica and ceria-alumina catalysts: Localization of superoxide radical anions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 260: 199-207.
    [7] K M S Khalil, L A Elkabee, B Murphy, Formation and characterization of different ceria/silica composite materials via dispersion of ceria gel or soluble ceria precursors in silica sols. J. Colloid & Interface Sci., 2005, 287: 534-541.
    [8] B M Reddy, P Lakshmanan, A Khan, C Lopez-Cartes, T C Rojas, A Fernandez, Structural characterization of CeO2-ZrO2/TiO2 and V2O5/CeO2-ZrO2/TiO2 mixed oxide catalysts by XRD, Raman spectroscopy, HREM, and other techniques. J. Phys. Chem. B, 2005, 109: 1781-1787.
    [9] B M Reddy, A Khan, P Lakshmanan, M Aouine, S Loridant, J C Volta, Structuralcharacterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalyst by XRD, Raman, and HRTEM techniques. J. Phys. Chem. B, 2005, 109: 3355-3363.
    [10] A Piras, S Colussi, A Trovarelli, V Sergo, J Llorca, R Psaro, L Sordelli, Structural and morphological investigation of ceria-promoted Al2O3 under severe reducing/oxidizing conditions. J. Phys. Chem. B, 2005, 109: 11110-11118.
    [11] S Bose, Y J Wu, Synthesis of Al2O3-CeO2 mixed oxide nano-powders. J. Am. Ceram. Soc., 2005, 88: 1999-2002.
    [12] L Dong, Y Hu, M Shen, T Jin, J Wang, W Ding, Y Chen, Dispersion behaviors of copper oxide on the mixed “CeO2 + Al2O3” support. Chem. Mater., 2001, 13: 4227-4232.
    [13] S Damyanov, J M C Bueno, Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3 supported Pt catalysts. Appl. Catal. A: Gen., 2003, 253: 135-150.
    [14] I P Chen, S S Lin, C H Wang, L Chang, J S Chang, Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Appl. Catal. B: Environ., 2004, 50: 49-58.
    [15] L Chang, I P Chen, S S Lin, An assessment of the suitable operationg conditions for the CeO2/Al2O3 catalyzed wet air oxidation of phenol. Chemosphere, 2005, 58: 485-492.
    [1] G W Huber, S Iborra, A Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev., 2004, 106: 4044-4098.
    [2] C H Christensen, B Jorgensen, J Rass-Hansen, K Egeblad, R Madsen, S K Klitgaard, S M Hansen, M R Hansen, H C Andersen, A Riisager, Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem. Int. Ed., 2006, 45: 4648-4651.
    [3] D Zhao, J Feng, Q Huo,N Melosh, G H Fredrickson, B F Chmelka, G D Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-552.
    [4] R Zanella, A Sandoval, P Santiago, V A Basiuk, J M Saniger, New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B, 2006, 110: 8559-8565.
    [5] Y Li, Z C Feng, Y X Lian, K Q Sun, L Zhang, G Q Jia, Q H Yang, C Li, Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions. Micropor. Mesopor. Mater., 2005, 84: 41-49.
    [6] T Mallat, A Baiker, Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev., 2004, 104: 3037-3058.
    [7] G C Bond, C Louis, D T Thompson, Catalysis by Gold. Catal. Sci. Ser., Vol. 6, Imperial College Press, 2006.
    [8] B Zhan, M A White, T Sham, J A Pincock, R J Doucet, K V R Rao, K N Robertson, T S Cameron, Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc., 2003, 125: 2195-2199.
    [9] L Prati, M Rossi, Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal., 1998, 176: 552-560.
    [10] C Bianchi, F Porta, L Prati, M Rossi, Selective liquid phase oxidation using gold catalysts. Top. Catal., 2000, 13: 231-236.
    [11] S Carrettin, P McMorn, P Johnston, K Griffin, C J Kiely, G. J Hutchings, Selectiveoxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun., 2002: 696-697.
    [12] G J Hutchings, S Carrettin, P Landon, J K Edwards, D Enache, D W Knight, Y J Xu, A F Carley, New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. Top. Catal., 2006, 38: 223-230.
    [13] A Abad, P Concepcion, A Corma, H Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed., 2005, 44: 4066-4069.
    [14] A Corma, M E Domine, Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chem. Commun., 2005: 4042-4044.
    [15] M Comotti, C D Pina, R Matarrese, M Rossi, The catalytic activity of “Naked” gold particles. Angew. Chem. Int. Ed., 2004, 43: 5812-5815.
    [16] H Tsunoyama, H Sakurai, Y Negishi, T Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc., 2005, 127: 9374-9375.
    [17] Q Fu, H Saltsburg, M Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301: 935-938.
    [18] S Scire, S Minico, C Crisafulli, C Satriano, A Pistone, Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B: Environ., 2003, 40: 43-49.
    [19] M Chatterjee, Y Ikushima, Y Hakuta, H Kawanami, In situ synthesis of gold nanoparticles inside the pores of MCM-48 in supercritical carbon dioxide and its catalytic application. Adv. Synth. Catal., 2006, 348: 1580-1590.
    [20] N F Zheng, G D Stucky, A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc., 2006, 128: 14278-14280.
    [21] I E Wachs, R J Madix, The oxidation of ethanol on Cu(110) and Ag(110) catalysts. Appl. Surf. Sci., 1978, 1: 303-328.
    [22] X Xu, C M Friend, Selective beta-elimination in the reaction of 2-propanol to acetone on Rh(111)-p(2×1)-O Surf. Sci., 1992, 260: 14-22.
    [23] M K Weldon, C M Friend, Probing surface reaction mechanisms using chemical and vibrational methods: alkyl oxidation and reactivity of alcohols on transitions metal surfaces. Chem. Rev., 1996, 96: 1391-1411.
    [24] K H Choi, B Y Coh, H I Lee, Properties of adsorbed oxygen on Au/SiO2. Catal. Today, 1998, 44: 205-213.
    [25] Y Matsumura, K Hashimoto, S Yoshida, Selective dehydrogenation of ethanol over dehydrated silica. J. Chem. Soc. Chem. Commun., 1987: 1599-1600.
    [26] A Taguchi, F Schuth, Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater., 2005, 77: 1-45.
    [27] A Vinu, K Z Hossain, K Ariga, Recent advances in functionalization of mesoporous silica. J. Nanosci. Nanotech., 2005, 5: 347-371.
    [28] A Vinu, T Krithiga, V Murugesan, M Hartmann, Direct synthesis of novel FeSBA-1 cubic mesoporous catalyst and its high activity in the tert-butylation of phenol. Adv. Mater., 2004, 16: 1817-1821.
    [29] A Vinu, D P Sawant, K Ariga, K Z Hossain, S B Halligudi, M Hartmann, M Nomura, Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves. Chem. Mater., 2005, 17: 5339-5345.
    [30] A Vinu, T Krithiga, V V Balasubramanian, A Asthana, P Srinivasu, T Mori, K Ariga, G. Ramanath, P G. Ganesan, Characterization and catalytic performances of three-dimensional mesoporous FeSBA-1 catalysts. J. Phys. Chem. B, 2006, 110: 11924-11931.
    [31] P Van Der Voort, P I Ravikovitch, K P De Jong, M Benjelloun, E Van Bavel, A H Janssen, A V Neimark, B M Weckhuysen, E F Vansant, A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B, 2002, 106: 5873-5877.
    [32] E J M Hensen, Q Zhu, R A J Janssen, P C M M Magusin, P J Kooyman, R A van Santen,Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites. 1. On the role of iron and aluminum. J. Catal., 2005, 233: 123-135.
    [33] S L Yao, F O Yang, S Shimumora, H Sakurai, K Tabata, E Suzuki, A kinetic study of methanol oxidation over SiO2. Appl. Catal. A, 2000, 198: 43-50.
    [34] M Bowker, H Houghton, K C Waugh, Temperature-programmed reaction studies of the interaction of methyl formate and ethanol with polycrystalline zinc oxide. J. Chem. Soc. Faraday Trans. I, 1982, 78: 2573-2582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700