饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禾本科牧草及禾谷类作物具有极其重要的经济价值和生态作用,但其均为嗜氮、磷植物。百十年来,化肥一直是提供这类植物氮、磷素的主要途径。然而,随着化肥使用量的不断增大,其副面影响日益明显。因此,探寻新的肥源,尤其是生物肥源,以替代或部分替代化肥的研究倍受关注。本研究利用气相色谱仪(GC)、高压液相色谱仪(HPLC)等先进仪器设备和最可能数法(MPN)、荧光免疫技术(FA)、随机扩增DNA(RAPD)技术、15N同位素稀释等方法,对饲用燕麦和小麦根际PGPR菌进行了分离鉴定和特性研究及其生物菌肥的初步研制。结果表明:
     1.燕麦和小麦根际存在PGPR菌。燕麦根际分离获得10个菌株,分属Azotobacter(4个)、Pseudomonas(4个)和Azospirillus(2个)属;小麦根际分离到15个PGPR菌株,分属Azotobacter(5个)、Pseudomonas(4个)、Azospirillus(4个) 、Zoogloea(1个)和Alcaligenes(1个)属。
     2.根际不同部位PGPR菌株的种类分布有差异,其种类数量为:RP>RS>NRS≥HP。分离到的菌株多数(48%)为根表土壤(RS)与根系表面(RP)共有的,少数(20%)只分离自根系表面(RP,12%)或土壤(NRS,8%),个别(8%)分离自根内(HP)。也有一些(24%)菌株在土壤、根表土壤和根系表面均有分布。
     3.绝大多数(92%)菌株在LB、NFM和CCM培养基,尤其是在LB培养基生长速度较快。所有菌株(除ChW4只在甘露醇外)均可在以甘露醇、糖浆、葡萄糖、蔗糖及1/2甘露醇+1/2蔗糖取代蛋白胨制成的不同碳源培养
    
     基上良好生长,但一些菌株,在以半乳糖或麦芽糖或木糟取代蛋白陈制成的
     碳源培养基上不生长或生长不良。
     4.多数G2o/o)菌株为产碱菌株,部分(24%)为中性菌抹,其它(24%)
     为产田菌株。产陨茵诛中77o/o来自于小麦根际,产酸菌株中6批来自于薪麦
     根际。
     5.自然状况下(未接种人燕麦和小麦根际各部位均存在着固氮菌类群,
    刃 但数量差异较大且相对较少*乙10‘个ig干土或根);种群数量分布趋势为:
     RP> RS>NRS >HP;根际各部位固氮菌占该部位总异氧菌的比例趋势为:HP>
    丫
     RP>RS>NR。
     6.Chwl eons Sp.)菌株是一种相对广谱的菌株,在燕麦和小麦
     根际不同部位(除薄麦根内(HP)外)均有分布,但其戮量除在裔麦和小麦
     根系表面(RP)较多*叭旷 饨干土或根)外,其它部位均很少W103个
     伯干土或榔。ChW闲仰咖earp.)酉株是一种分布谱相对较窄的菌株,只分
     布于小麦的根表上壤(RS)和根系表面(RP),对小麦的专化性相对较强。
     7,虽然自然状况下慈麦和小麦根际存在着固氮菌株,但因其数量少*0-
     l炉他干土或榔,固氮量很少,不能满足植物生长发育所需的氮量。因而
     应通过使用固氨菌接种剂以提高蒸麦和小麦根际固氮菌种群数量,增强种群
     的竟争力,同时槽加根际微生物的固氮总量,满足或基本满足植物生长发育
     所需的氮量。
     8.分离到的茵株绝大部分0啊具有固氰性能,但固氮酶活性相差较大,
     具有较高固氨酶活性的酉株相对较少。分离自慈麦根际菌株,固氮醇活性在
     *.5~l!47.9 nmo p之间,大于 300 if’mt po的菌株有 6个
     (6(N入 ChO3的固氨酶活性最高,ChO6固氯醇活性最低;分离自小麦根
     际酉株,固氨酌活性在oo.卜七5!石Dmfq闪W血之间,大于300——!Q巳
     巾人d的苗株有5个Q3%入ChW的固氮酶活性最高,ChW固氮醇活性最
     低.从苗抹固氮酶活住来看,CbO、CbO、CbO6和CbO7等在研制蒸麦
     臼回和 CkW6、Cliwl卜 CliWS和 Cllwl等在研制小麦回回方面具有狠大的
     v
     子
    
    开发潜力。
     9.溶磷菌株较少(燕麦3个,小麦2个),其分解磷酸盐的能力差异较
    大。接种溶磷菌对燕麦和小麦苗期生长有明显的促进作用。
     10.绝大多数菌株具有分泌植物生长素(IAA)的能力,但能力相差较大,
    具有较高能力的菌株相对较少。分离自燕麦的菌株均具有分泌植物生长素的
    能力,其大小在 2二6叫.3lpg /nilZ间,大于 spg /ml的有 4个N0%人 ChO3
     【
    分泌植物生长素的量最高,而ChOZ最低;分离自小麦菌株中,73.3%具有分
    泌植物生长素的能力,其值在 l·40叶·13ug alZ间,大于 SPg /ml只有 4个 丫
    Q6.7%人ChW15分泌植物生长素的量最高,ChW14最低。从菌株分泌植
    物生长素(IAA)能力来看,Chwls,ChWS、ChwlZ、ChW6等在研制小
    麦菌肥和ChO3、ChO6、ChOS、ChOg等在研制燕麦菌肥方面?
Grasses are the most important plants in the world because of their economic and ecological function. However, the plants need more nitrogen and phosphorus in their life. To provide more nitrogen and phosphorus for plant growth, chemical fertilizers play an important role. Unfortunately, chemical fertilizers produce more pollution and other disadvantage as well. Therefore, exploiting other source to supply part or all nitrogen and phosphorus for plant is more important.
    The present study tries to isolate and characterize PGPR strains that can be used as biofertilizer for oat and wheat by using advanced equipment and facilities like GC & HPLC as well as reliable method such as NPM, FA, RAPD and I5N-isotope dilution. The results obtained are as follows:
    1. There are PGPR strains colonized on root rhizosphere and in histoplant of oat and wheat. Total lOstrains isolated from oat, and they locate to Azotobacter (4strains), Pseudomonas (4 strains) and Azosprillus (2 strains). Total 15 PGPR strains obtained from wheat as well, and all of them belong to Azotobacter (5 strains), Pseudomonas (4 strains), Azosprillus (4 strains), Alcaligems (1 strain) and Tjjoglea (1 strain).
    2. Strains distribution vary with fractions (NRS, RS, RP and HP), and the amount tendency is as RP>RS>NRS > HP. Most of them (48%) attached on the
    
    
    
    rhizosphere (RS & RP); Some of them (20%) only exist in soil (NRS, 8%) or on the root surface (RP, 12%); Few of them (8%) colonize in histoplan (HP); And still some of them (24%) lie hi soil (MRS) as well as rhizosphere (RS & RP).
    3. Most of strains (92%) obtained fast grow on LB, NFM and CCM media, especially on LB medium. All the strains (except ChW4) can growth well on different LB medium which peptone was replaced with any one of other carbon source, that is mannitol, molasses, glucose, sucrose, and l/2mannitol +l/2sucrose. While some strains are poor growth on LB medium which peptone was replaced with xylose or galactose or maltose.
    4. Out of 25 strains, there are 13 alkaline producer strains (77% from wheat), 6 acid producer strains (67% from oat), and 6 neutral strains.
    5. In natural condition (without inoculate), there are diazotrophs exist in root -soil system, but the amount is significant difference and rather low (02~106 bacteria /g dry soil or root) with fractions. Tendency of diazotrophs quantity and nitrogen fixer percent is as RP>RS>NRS>HP and HP >RP>RS>NRS respectively.
    6. Generally, ChWl (Pseudomonas sp.) is widely distribution strains compared with ChW6 (Zoogloea sp.). ChWl was easily isolated from different fractions of oat and wheat (except HP), but ChW6 only be isolated from the fractions (RS and RP) of wheat. It means that ChW6 has certain special combined with wheat.
    7. In natural condition, although there are diazotrophs exist hi root-soil system, the amount is rather low (lOMO6bacteria /g dry soil or root). Therefore, it is necessary to inoculate proper inoculum to increase diazotrophs quantity so as to improve competition of diazotrophs as well as quantity of fixing nitrogen.
    8. Most (80%) of strains show positive nitrogenaes activity though only a few of diem show high value by using GO Nitrogenase activity is 112.5-1147.9 nmol C2H4/h/ml and 124.6~651.6 nmol C2H4 / h / ml of wheat strains and oat strains
    
    
    respectively. There are 6 and 5 strains, which nitrogenase activity are higher than 300 nmol C2H4/h/mls, hi oat and wheat respectively. Strains ChO3, ChO5, Ch09, ChO7 and ChW6, ChWll, ChW5, ChWl show more potential used as producing biofertilizer for oat and wheat respectively according to their nitrogenase activity.
    9. A few (5 strains) of phosphorus-solubilizing strains were obtained. Seedling growth was promoting by inoculate the phosphate solubilizing strains.
    10. Most of strains have ability to produce phytohormone (IAA) although a few of strains show high IAA concentration by HPLC. IAA concentration is 2.16~17.31ug /ml andl.40~15.13ug/ml of oat and wheat strains respectively. There are 4 strains from oat and 4 strains
引文
1.章家恩,刘文高.微生物资源的开发利用与农业可持续发展[J].土壤与环境,2001,10(2):154~157
    2.章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256
    3.赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7~11
    4.唐勇,陆玲,杨启银等.解磷微生物及其应用的研究进展[J].天津农业科学,2001,7(2):1~4
    5. Malik K.A., Bilal R. Association of Nitrogen-Fixing Plant Growth Promoting Rhizobateria (PGPR) with Kallar Grass and Rice [J]. Plant and Soil, 1997, 194: 37~44.
    6. Mehnaz S., Mirza M.S., Hassan U. et al. Detection of Inoculated Plant Growth Promoting Rhizobateria in the Rhizosphere of Rice. In: Proceedings 7th int. Symp. on "Nitrogen Fixation with Nonlegumes" [C]. Eds. Malik K.A., Mirza S.M. and Ladha J.K. Kluwer Publishers, The Netherlands. 1998:75~83
    7. Hussain S., Mirza M.S. and Malik K.A.. Production of Phytohormones by the Nitrogen Fixation Bacteria Isloated from Sugarcan [J]. Biohorizons, 1999,2(1-4): 61~76
    8. Dobereiner J., Day J.M. and Dart P.J. Nitrogenase Activity and Oxygen Sensitivity of Paspalum notatum-Azotobacter Association [J]. J.Gen. Microbiol., 1972,71:103~116
    9.王子芳.细菌植物联合固氮研究进展[J].微生物学通报,1982,9(4):176~181
    10. Crouch I.J., Smith M.T., VanS.J, et al. Identification of Auxins in commercial seaweed concentrates [J]. J. Plant Physoil. 1992,139:590~594
    11. Malik K. A., Rasul G., Hassan U. et al. Role of N2 Fixation and Growth Hormones Producing Bacteria in Improving Growth of Wheat and Rice. In: Proceedings of 6th int. Symp. On "Nitrogen Fixation with Non-legumes" [C]. Eds. Hegazi N.A., Fayez M, Monib M. Ismailia, Egypt. 1994:409~422
    12. Rasul G., Mirz M.S., Latif F. et al. Identification of Plant Growth Hormones Produced by Bacterial Isolates from Rice, Wheat and Kallar Grass. In: Proceedings 7th int. Symp. on "Nitrogen Fixation with Nonlegumes" [C]. Eds. Malik K.A., Mirza M. S. and Ladha J.K. Kluwer Publishers, The Netherlands. 1998:25~37
    
    
    13. Hafeez F.Y., Malik K.A. Manual on Biofertilizer Technology [M]. NIBGE, Pakistan. 2000: 35~37
    14. Ali S., Hamid N., Nagina N. and Malik K.A. Screening of Phosphate Solublizing Microorganisms Using Different Original and Modified Culture Media [J]. Biologia, 1998a,44(102):110~122
    15.林敏,尤崇杓.根际联合固氮作用的研究进展[J].植物生理通讯,1992,28(5):323~329
    16. Song W., Yang H.L., Sun Y.S. et al. The Rice Endophytic Diazotroph and PCPR. In: Proceedings 7th int. symp, on "Nitrogen Fixation with Nonlegumes" [C]. Eds. Malik K.A., Mirza M.S. and Ladha J.K. Kluwer Publishers, The Netherlands. 1998:41~48
    17 窦新田编著.生物固氮[M].北京:农业出版社,1989
    18.徐丽华,姜成林编.微生物资源学[M].北京:科学出版社,1997
    19. Lipman C.B. and Taylor J.K. Proof of the Power of Wheat Plant to Fix Atmosphere Nitrogen [J]. Agri. J. India, 1923,18:155~157
    20.863计划成果-联合固氮生物菌肥产业化取得重大进展[J].生物工程进展,2000,20(5):4
    21. Sperber J.I. The Incidence of Apatite Solubiliing Organisms in the Rhizosphere and Soil [J]. Australia Journal of Agricultural Research, 1958,9:778~787
    22. Kobus J. The Distribution of Microorganisms Motbilizing Phosphorus in Different Soil [J]. Acta Microbiologia Plolonica, 1962,11:255~264
    23. Sundarad W.V., Rao B. and Sinha M.K. phosphate Disoolving Microorganism in the Rhizosphere and Soil [J]. India J. Agric. Sci., 1963,33(4):272~278
    24. Kucey R.M.N. phosphate-solubilizing Bacteria and Fungi in Various Cultivated and Virgin Alberta Soils [J]. Canadian Journal of Soil Science, 1983,63.671~678
    25. Elliott JM.,Mathre D.E. and Sands D.C.Identification Charcterization of Rhizosphere-Competent Bacteria of Wheat[J]. Appl. Environ. Microbiol., 1987, 53:2793~2799
    
    
    26.尹瑞龄.我国旱地土壤的溶磷微生物[J].土壤,1988.20(5):243~246.
    27.张高峡,卢振祖.作物根际联合固氮芽孢杆菌的分离鉴定及生态分布[J].氨基酸和生物资源,1998,20(1):12~15
    28.林凡,王正芳,宋末等.联合固氮菌的应用效益与增产机理[J].中国农学通报,1998,140(3):32~34
    29.林启美,赵小蓉,孙炎鑫等.四种不同生态系统的土壤解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34~37
    30.蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究[J].土壤通报,2002,33(1):44~46
    31.尤崇杓,丘元盛.粪产碱菌与水稻幼苗的联合固氮作用[J].中国农业科学,1982,(6):1~5
    32.尤崇杓,李信,王有为.粪产碱菌的培养及其生理特性[J].原子能农业应用,1983,(4):27~33
    33.尤崇杓.水稻根际联合固氮[M].北京:农业出版社,1990
    34.张跃林,莫小真,廖苏华等.粪产碱菌A-15与水稻根的结合作用[J].植物生理学通讯,1984,(6):32~34
    35.周淑萍,莫小真,叶松广等.粪产碱菌和阴沟肠菌与水稻联合共生的15N2作用[J].作物学报,1981,7(1):59~62
    36.Watanabe I.产脂固-氮螺菌和假单胞菌属接种水田水稻的效果[J].原子能农业译丛,1985,(3):34~37
    37.王子芳,曾宽容,扬一平.水稻根表固氮的研究[J].微生物学通报,1987,14(6):241~243
    38.吴文礼,陈汉清.德克斯氏菌一新种[J].微生物学报,1990,30:243~248
    39. Rasul G., Mirza M.S., Hassan U. et al. Inoculation, Survival and Colonization of Plant Growth Promoting Rhizobacteria CPGPR) in the Rice Rhizosphere. In: Biohorizons [C] Proceedings of First Sescob Conference: Biochemistry and Biotechnology-Its Role and Need in the 21st Century. Science, Educational & Social Council of Biochemists, University of Agriculture Faisalabad, Pakistan. 1999:107~116
    40.杨海莲,孙晓璐,宋未等.水稻内生联合固氮细菌的筛选、鉴定及其分布特性[J].植物学报,1999,41(9):927~931
    
    
    41.海伟力,王耀东,尤崇邵.水稻根际联合固氮细菌的研究[J].微生物学报,1993,33(2):79~85.
    42.崔宗均,苏宝林,海威力等.北方水稻田固氮细菌资源的研究[J].中国农业大学学报,1996,3:64,80
    43.李艳琴,赵春贵,梁丽韫等.能产生植物抗性诱导蛋白harpin的自生工程固氮菌的构建[J].高技术通讯,2000,7:20~23
    44.刘荣昌,李凤汀,李春辉等.小麦接种联合固氮菌增产效果研究[J].华北农学报,1989,4(3):74~80
    45.罗孝扬,蒋亚平,杨宝玉等.固氮螺菌突变株cwv-22对提高小麦固氮的初步研究[J].微生物学报,1989,29(2):137~140
    46.崔阵,徐玲玫,樊蒽等.固氮微生物进入小麦类根瘤的特性探索[J].土壤肥料,1994,4:46~48.
    47.陈婉华,徐晶,陈廷伟.绿黄隆诱发小麦结瘤与固氮初步探讨[J].土壤肥料,1994,6:34~36
    48.TaHuoBa O.H.春大麦品种间固氮活性的变异[T].国外农学—麦类作物,19952:19~21
    49.李淑华,李权.生物固氮肥在大、小麦上的应用效果[J].大麦科学,1996,4:30~31.
    50.郑林用,张庆玉,甘炳成.水稻和小麦根际的联合固氮作用[J].西南农业学报,1999,12:98~101
    51.Bremer E.等.关于联合固氮作为长期小麦种植田中主要氮源的研究[T].国外农学-麦类作物.1996(4):29~31
    52. Webster G. et al. Interactions of Rhizobium with Rice and Wheat [J]. Plant and Soil, 1997, 194(1-2):57~64
    53. Bilal R. and Malik K.A. Seasonal Variation in Rhizospheric Population of Diazotrophs and Root Associated Nitrogenase Activity of Some Wheat Mutants [J]. Pak. J. Bot., 1987 19(1):29~41
    54. Ahmad T., Hafeez F.Y., Mahmood T. et al. Residual Effect of Nitrogen Fixed by Mungbean (Vigna Radiata) and Blackgram (Vigna Mungo) on Subsequent Rice and Wheat Crops [J]. Australian Journal of Experimental Agriculture, 2001,41:245~248.
    
    
    55. Hafeez F.Y. Biofertilier: Biopower for Wheat. Pak. Food and Agriculture [J] Rev. Wheat Special Issue, 2000:1~3
    56.张宏,宋明芝,刘淑环.玉米根际固氮活力的研究(第一报:玉米根部的固氮活力和固氮部位)[J].吉林农业科技,1980,(1):70~75
    57.马玉珍,史清亮.山西省玉米根基固氮特性研究[J].土壤肥料,1994,1:43~46,48
    58.李凤汀,刘容昌,杨则媛等.32P标记玉米联合固氮菌在植株内分布的研究[J].土壤,1997,6:263~295.
    59.倪礼斌,施振云,陈志忠.玉米应用联合固氮菌增产效果探讨[J].上海农业科技,1999,1:62
    60.海伟力,潘佩平,朱世琴等.两种联合固氮菌剂对玉米的拌种实验[J].山西农业科学,1999,27(3):48~50
    61.李永兴,王继文,李久蒂等.玉米根际联合固氮菌57-7菌株的基本特性的研究[J].微生物学报,1993,33(6):151~158
    62. Laheurte F. and Berthelin J. Effect of a Phosphate Solubilizing Bacteria on Maize Growth and Root Exudation over Four Levels of Labile Phosphorus [J]. Plant and Soil, 1988, 105:11~17
    63. El-komy H.M.A., Moharram T.M.M. and Safwat M.S.A. Effect of Azospirillum Inoculation on Growth and N Fixation of Maize Sujected to Different Levels of FYM Using 15NDillution Method. In: Proceedings 7th int. Symp. On "Nitrogen Fixation with Nonlegumes" [C].Eds. Malik K.A., Mirza M.S. and Ladha J.K. Kluwer Publishers, The Netherlands. 1998:49~59
    64. Zafar Y., Wahid A., Rasul E. et al. Root Associated Nitrogen Fixation by Sugarean (Sacchanrum officinarum L var Col-54) in Pakistan [J]. Pak.J.Bot., 1986,18(2):221~228
    65. Hussain S., Mirza M. S., Malik K.A. Production of Phytohormones by the Nitrogen Fixing Bacteria Isolated from Sugarcane (Saccharum Officinarum L.) In: Biohorizons Proceedings of First Sescob Conference: Biochemistry and biotechnology-its role and need in the 21st Century [C]. Science, Educational & Social Council of Biochemists, University of Agriculture Faisalabad, Pakistan. 1999:61~76
    
    
    66. Boddy R.M. Biological Nitrogen Fixation Associated with Sugarcane and Rice: Contribuations and Prospects for Improvement [J]. Plant and Soil, 1995,174:195~209
    67.刘荣昌,汪文燕,李凤汀等.谷子根系联合固氮菌分离及其初步应用[J].微生物学报 1989,29(4):303~306
    68.樊庆笙主编.固氮微生物学[M].北京:农业出版社,1992
    69.梁绍芬,姜瑞波,葛诚主编.微生物肥料的生产和发展及存在的问题[M].北京:中国农业科技出版社,1996,61~65.
    70. Paul N.B., Sundara R.W. Phosphate-dissolving Bacteria in the Rhizosphere of Some Cultivated Legumes [J]. Plant and Soil, 1971,35:127~132
    71.赵小蓉,林启美,孙焱鑫.细菌解磷能力测定方法的研究[J].微生物学通报,2001,28(1):1~3
    72. Illmer P. and Schinner F., Solubilization Chanisms [J]. Soi. Biol. biochem., 1995,27(3):257~263
    73. Piccini D, Azcon R. Effect of Phosphate-solubilizing Bacteria and Vesicular-arbuscular Mycorrhizal Fungi on the Utilization of Bayovar Rock Phosphate by Alfalfa Plants Using a Sand-vermiculite Medium [J]. Plant and Soil., 1987,101:45~50.
    74. Mollam A.Z。Microbial Mineralization of Organic Phosphate in Soil[J]。Plant and Soil, 1978:393~399
    75. Thomas G.V. Occurrence and Ability of Phosphate-Solubilizing Fungi from Coconut Plant Soil [J]. Plant and Soil, 1985,87:357~364
    76. Illmer P., Schinner F. Solubilization of Inorganic Phosphates by Microorganisms Isolated from Forest Soil [J]. Soil Biology and Biochemistry, 1992,24(4):389~395
    77. Wahid A., Rasul E., Ali I., Zafar Y. and Malik K.A. Associative Nitrogen Fixation in Some Grasses and Cereals Growing Around Faisalabad [J]. Area Pak. J. Agri. Sci., 1985, 22(3):126~132
    
    
    78 刘荣昌,李风汀.植物叶际固氮与农业生产[J].微生物学杂志,1985,5(1):56~59
    79.刘中柱主编.生物固氮译从[T].北京:农业出版社,1982.
    80.黄隆广.浅谈植物的根瘤[J].植物生理学通讯,1983,(1):10~14
    81.窦新田.早熟禾根系固氮活性和根瘤内生菌的观察[J].土壤通报,1981,(6):33
    82. Zafar Y., Malik K.A., Niemann.E.G. Studies on N2-Fixing Bacteria Associated with the Salt-tolerant Grass Leptochloa Fusa(L.)Kun [J]. Mirce and Journal, 1987,3:45~46
    83. Bilal R., Rasul G., Malik K.A. Nitrogenase Activity and Nitrogen—Fixing Bacteria Associated with the Roots of Atriplex spp Growing Insaline Soil of Pakistan [J]. Bio. Ferti Soils, 1990,9:315~300.
    84. Chalk P.M. Dynamics of Biologically Fixed N in Legume-Cereal Rotations: A Review [J]. Aust. J. Agric. Res., 1998,49:303~316
    85. Mcneil A.L., Zhu C.Y. and Fillery R.P. A New Approach to Quantifying the N Benefit from Pasture Legumes to Succeeding Wheat [J]. Aust. J. Agric. Res., 1998,49:429~36
    86. Bertum V.P. and Day J.M. Nitrogenase Activity Associated with the Soil Cores and Grass in Brazil [J]. Soil Biol.Biochem., 1980,12:137~140.
    87. Bertum V.P and Bohlool B.B. Evalution of Nitrogen Fixation by Bacteria in Association with Roots of Tropical Grasses [J]. Microbiol. Rev. 1980,12:491~517
    88. Dobereiner J. and Day J.M. Associative Symbiosis in Tropical Grasses Characterization of Microorganisms and Dinitrogen Fixing Sites. In: Proceedings of the First Int. Symp. on Nitrogen Fixation [C]. Eds. Newton W.E. and Nyman C.J. Washington State Univ. Press. 1976:518~538
    89. Lindberg T. and Granhall U. Isolation and Characterization of Dinitrogen Fixing Bacteria from the Rhizosphere of Temperate Cereals and Forage Grass [J]. Applied and Environmental Microbiology, 1984,48:683~689
    90. Wahid A., Rasul E., Zafar Y. et al. Associative Nitrogen Fixation in Some Grasses and Cereals Growing around Faisalabad Area [J]. Pak. J. Agri. Sci.,. 1985,22(3):126~132
    
    
    91. Capone D.G. and Teylor D.F. Nitrogen Fixation in the Rhizosphere of Thalassia Testudinum [J]. Can. J. Microbial., 1980,26:998~1005
    92. Hubbell D.H. and Gaskins M.H. Associative N2-Fixation with Azospirillum [C]. In: Biological Nitrogen Fixation. Eds. Alexander M. New York: Plenum Publishing. 1984:201~224
    93. Dart P, J. Nitrogen Fixation Associated with Non-Legumes in Agriculture [J]. Plant and Soil, 1986:303~334
    94.陈婉华,徐晶,陈廷伟.绿黄隆诱发小麦结瘤初步探讨[J].土壤肥料,1994,(6):34~36
    95.崔阵,徐玲枚,樊蕙等.固氮微生物进入小麦类根瘤的特性探索[J].土壤肥料,1994,(4):46~48
    96. Hafeez F.Y.,Malik K.A. Manual on biofertilizer technology[M].NIBGE,Pakistan. 2000
    97.周德庆主编.微生物学实验手册[K].上海:上海科学技术出版社,1986
    98.东秀珠,蔡妙英等.常见细菌系统鉴定手册[K].北京:科学出版社,2001.
    99.R.E.布坎南,N.E.吉本斯等编.中国科学院研究所《伯杰细菌鉴定手册》翻译组译.伯杰细菌鉴定手册[K].北京:科学出版社,1984
    100. Tanveer A. Application of RAPD for Genomic Analysis of Microorgnisms Used in Bioprocess Technology [D]. Ph.D. Thesis, NIBGE & QZ University, Pakistan. 2001
    101. Williams J.G., Kubelik A.R., Livak K.J. et al. Polymorphism Amplified by Arbitrary Primers Are Useful as Genetic Markers [J]. Nucleic Acid Research, 1990:18:6531~6535
    102. Sambrook J., Fritsch E.F. and Maniatis T. Molecular Cloning [K]. A Laboratory Manual (3nd). Cold Spring Harbor Laboratory Press, USA. 1989
    103. Bilal R. Associative Biological Nitrogen Fixation in Plants Growing in Saline Soils [D]. Ph.D.Thesis. Punjab University, Lahore, Pakistan. 1988
    104. Malik K.A., Zafar Y., Bilal R., et al. Use of ~(15)N-isotope Dilution for Quantification of N_2 Fixation Associated with Roots of Kallar Grass (Loptochloa fusall.) [J]. Biol. Fertil. Soil, 1987,(4):103~108
    105.曾宽容,吴杰,王子芳.水稻根表固氮螺菌的鉴定[J].微生物学通报,1987,14(6):244~246
    
    
    106. Bilal R., Rasul G., Qurshi J.A. et al. Characterization of Azospirirlum and Relate Diazotrophs Associated with Root of Plant Growing in Saline Soils [J]. World J. of microbiology and Biotechnology, 1990,6:46~52
    107. Hassan U., Mirza M.S., Mehnaz S. et al. Isolation and Identification of Diazotrophic Bacteria from Rice, Wheat, and Kallar Grass. In: Proceedings 7th int. Symp. on "Nitrogen Fixation with Nonlegumes"[C]. Eds. Malik K.A., Mirza M. S. and Ladha J.K.. Kluwer Publishers, The Netherlands. 1998:197~205
    108. Bilal R., Rasul G., Mirza M.S. et al. Attachment, Colonization and Proliferation of Azospirillum Brasilense and Entrobacter spp. on Foot Surface of Grass [J]. World J. of Microbiology and Biotechnology, 1993,9:63~69
    109. Malik K.A., Bilal R., Rasul G. et al. Associative N_2-Fixation in Plants Growing in Saline Sodic Soils and Its Relative Quantification Based on ~(15)N Natural Abundance [J]. Plant and Soil, 1991,137:67~74
    110. Rao R. and Rao J. I. Nitrogen Fixation in Soil Samples from Rhizosphere of Rice Grown under Alternate Flloded and Non Flooded Conditions [J]. Plant and Soil, 1984,81:111~118
    111. Reinhold B., Hurek T., Niemann E.G. et al. Close Association of Azospirllum and Diazotrophic Rods with Different Zones of Kallar Grass [J]. Appl. Environ. Microbiol., 1986,52:520~526
    112. Malik K.A., Bilal R. Survival and Colonization of Inoculated Bacteria in Kallar Grass Rhizosphere and Quantification of N_2-Fixation. In: Nitrogen Fixation with Nonlegumes [C]. Eds. Skinner F.A., Bodderand R.M., Fendrik I. Kluwer Academic Publishers, The Netherlands. 1989:301~310
    113.朱德才,周庆银,王明新.小麦根际联合固氮菌肥的增产效果[J].江苏农业科学,1991,(5):42~43
    114.方萍,Omar A.M.N.培养基铁浓度对不同非共生固氮菌株与小麦基因型联合固氮效率的影响[J].浙江农业大学学报,1997,23(6):716~720
    
    
    115.丘元盛,周淑萍,莫小真等.水稻根际固氮细菌的研究[J].科学通报,1980,25(1):1008
    116. Malik K.A., Zafar Y. and Hussain A. Nitrogenase Activity in the Rhizosphere of Kallar Grass (Diplachme Fusca (linn.)Beav) [J]. Biologia, 1980,107~112
    117. Haahtela K, Kari K. The Role of Root Associated Klebsiella Pneumoniae in the Nitrogen Nutrition of Poe Pretensis and Triticum Aestivum as Estimated by Method of 15N Isotope Dilution [J]. Plant and Soil, 1986,90:245~254
    118. Lethbridge G., Davidson M.S. Root Associated Nitrogen Fixing Bacteria and Their Role in the Nitrogen Nutrition of Wheat Estimated by 15N Isotope Dilution [J]. Soil Biol Biochem, 1983,15:365~374
    119.李阜棣,胡正嘉主编.微生物学(第五版)[M].北京:中国农业出版社.2000
    120. Bergersen F.J. Methods for Evaluating Biological Nitrogen Fixation [M]. John Wiley and 1980
    121. Fett W.F., Osman S.F., Dunn M.F. Auxin Production by Plants Pathogenic Psendomonas and Xanthomonas [J]. Appl.Environ. Microbial., 1987,53:1839~1845
    122. Hartmann A., Singh M., Klingmuller W. Isolation and Characterization of Azospirillum Mutants Excreting High Amounts of Indoleactic Acid [J].Can. J. Microbiol., 1983, 29: 916~923
    123. Okon Y. Azospirillum ns a Potential lnoculant for Agriculture [J]. Trends Biotechnol, 1985,3:223~228
    124. Okon Y., Kapulnik Y. Development and Function of Azospirillum Inoculateed Roots [J]. Plant & soil, 1986,90:3~16
    125. Gorgon S.A., Weber R. P. Colorimetric Estimation of Indoleactic Acid [J]. Plant Physiol., 1951,26:192~195
    126.周永红.10种披碱草属植物的RADD分析及其系统学意义[J].植物分类学报,1999,39(5):425~532
    127.周永红.用RADD分子标记探讨鹅观草属的种间关系[J].植物学报,1999,41(10):1076~1081.
    
    
    128.张继益.旱麦草属种质资源的随机扩增多态性DNA(RAPDS)分析[J].遗传学报,1999,26(1):54~60.
    129. Baird E.S., Copper B., Waugh R. et al. Molecular Characterization of Inter and Intraspecific Somatic Hybrids of Potato Using Randomly Amplified Polymorphic DNA (RAPD) Markers [J]. Genet, 1992(233): 469~475
    130.陈洪.RAPD标记构建水稻分子连锁图[J].植物学报,1995,37(9):677~684
    131. Chaprro J.K. Targeted Mapping and Linkage Analysis of Morphological Isozyme and RAPD Markers in Peach [J]. Theor Appl Genet, 1994 (87): 686~690
    132.鲍晓明.用RAPD技术鉴定两个小冰麦异位系[J].遗传学报,1993,20(1):81~87
    133.李松涛.用新的分子标记方法(RAPD)分析小麦抗白粉病基因的近等基因系[J].遗传学报,1995,22(2):103~788.
    134. Penner G.A., Identification of an RAPD Marker for the Crown Rust Resistance Gene Pc68 in Oat [J]. Gemone, 1993,36(5):818~820
    135. Pobell S., Otto A. and Kutschke S. Identification and Discrimination of Thiobacilli Using ARDREA, RAPD and Rep-APD [J]. Journal of Applied Microbiology, 1997,84:1085~1091
    136. Echeverrrigaray S., Paese-Toresan S. and Carrau J.L. RAPD Marker Polymorphism Among Commercial Winery Yeast Strain [J]. World Joural of Microbiol.&Biot., 2000,16:143~146
    137. Clark A.G. and Lanignan M.S. Prospects for Estimating Nucleotide Divergence with RAPDs [J]. Molecular Biology and Evolution, 1993,10:1096~1111
    138. Hafeez F.Y., Mohammed. H.S. Comparison of Direct and Indirect Methods of Measuring Nitrogen Fixation in Field Grown Chickpea Genotypes [J]. Pak. J. Bot., 1998, 30(2):199~207
    139. Shrestha R.K. and Ladha J.K. Genotypic Variation in Promotion of Rice Dinitrogen Fixation as Determined by Nitrogen-15 Dilution [J]. Soil Sci. Soc.Am.J., 1996, 60:1815~1821
    
    
    140. Hafeez F.Y., Shah N.H., Malik K.A. Field Evaluation of Lentil Cultivars Inoculated with Rhizobium Leguminosarum Bv.viciae Strains for Nitrogen Fixation Using Nitrogen-15 Isotope Dilution [J]. Biol Fertil Soils, 2000,31:65~69.
    141. Hardarson G. Use of Nuclear Techniques in Studies of Soil-Plant Relationships [M]. International Atomic Energy Agency, Vienna. 1990.
    142. Rennie R.J. 15N Isotope Dilution as a Measure of Dinitrogen Fixation by Azospirillum Brasilense Associated with Maize [J]. Can. J. Bot., 1980,58:21~24
    143. Malik K.A., Bilal R., Azam F. Quantification of N2-fixation and Survival of Inoculated Diazotrophs Associated with Roots of Kallar Grass [J]. Plant and soil, 1988,108:43~51
    144. Malik K.A. and Zafar Y. Quantification of Root Associated Nitrogen Fixation in Kallar Grass as Estimated by 15N Isotope Dilution. In: Nitrogen and Environment [M] Eds. Malik K.A. Naqvi M. NIAB Pakistan. 1985:161~171
    145. Rennie R.J., Freitas J.R., Ruschel A.P., Vose P.V. 15N Dilution to Quantify Dinitrogen (N2) Fixation Associated with Canadian and Brazilian Wheat [J]. Can. J. Bot., 1983, 61:1667-1671
    146. Giller K.E., Wani S.P., Day J.M. Use of Isotope Dilution to Measure Nitrogen Fixation Associated with the Roots of Sorghum and Millet Genotypes [J]. Plant and Soil, 1986, 90:255~264
    147. Van B.P. and Bohloo B.B. Evaluation of Nitrogen Fixation by Bacteria Association with Roots of Tropical Grasses [J]. Microbiol. Rev., 1980,12:491~517
    148.黄大肪主编.农业微生物基因工程[M].北京:科学出版社,2001.2
    149.林稚兰,黄秀梨主编.现代微生物学与实验技术[m].北京:科学技术出版社,2000.6
    150.瞿礼嘉,顾红雅,胡苹,陈章良等.现代生物技术导论[M].北京:高等教育出版社;柏林:施普林格出版社,1998
    151. Polsinelli M., Matvassi R Nitrogen fixation[C]. Kluwer Academic Publishers, The Netherlands. 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700