内含HCV RNA部分核酸序列的病毒样颗粒的构建及实时荧光RT-PCR分型检测方法的系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建无生物传染危险性且耐RNase的HCV-RNA 1b、2a和6型病毒样颗粒。将病毒样颗粒用于丙型肝炎病毒核酸标准物质和室间质量评价样本的制备,研究其适用性。建立HCV-RNA实时荧光RT-PCR分型(1b、2a和6型)检测方法。
     方法
     一、内含HCV RNA部分核酸序列的病毒样颗粒的构建
     将定量检测试剂盒所检测的区域HCV 5'UTR区和分型检测NS5b区进行overlap连接,并且引入酶切位点。PCR产物进行T载体克隆后用限制性内切酶酶切获得所需要的目的片段,与用酶切后的表达载体相连,构建一新的表达载体。在IPTG诱导下,组装成病毒样颗粒,并验证包装的核酸为HCV reRNA。
     二、病毒样颗粒在标准物质的研究及室间质量评价中的应用
     靶值的确定:与国家标准物质同时检测,多点比对定值。
     稳定性的研究方法:将上述三种不同倍比稀释的质控物置于4℃(对照)、-20℃、室温、37℃、-70℃及-70℃/室温反复冻融3次的条件下保存不同时间观察其稳定性。
     室间质量评价方法:向全国开展HCV RNA检测的实验室发放5份样本。所有发放的阳性样本的定量结果根据一级定量标准系列确定,对检测结果进行统计分析。
     三、实时荧光RT-PCR分型检测方法
     检索已知HCV 1b、2a和6型序列,采用BioEdit软件进行比对,获取HCV 1b、2a和6型序列的保守区域序列。再利用软件Primer Express 3.0进行实时荧光PCR引物和探针设计,初步建立实时荧光PCR检测体系。
     结果
     一、内含HCV RNA部分核酸序列的病毒样颗粒的构建
     成功构建了含有HCV 5'UTR区和NS5b区的三种基因型重组原核表达载体,并转化到BL21-DE3感受态细菌中,得到了可模拟临床样本的HCV RNA病毒样颗粒。
     二、质控物的稳定性研究以及应用于临床实验室的PCR检测室间质量评价
     采用三种方法分别对VLPs定值,根据系列国家标准品含量,得到待测样本的浓度。在稳定性实验中将检测组与对照组(4℃)数据分别作t检验,结果表明检验组与对照组差异无统计学意义(P>0.05)。从室间质量评价结果可以看出,整体定量结果与靶值接近,但是不同基因型样本的符合率有所不同。此外,不同试剂和不同仪器检测样本的结果也有差异。
     三、实时荧光RT-PCR分型检测方法
     通过序列比对设计了三种HCV基因型特异的探针和引物,建立的基因型特异探针和引物基本能检测出已构建的HCV三种基因型的病毒样颗粒。
     结论
     建立了三种不同基因型的病毒样颗粒,在不同条件下放置依然保持良好的稳定性。与目前冻干血清的标准物质相比,同样具有良好的临床适用性。因此可有效地用于临床实验室HCV-RNA RT-PCR检测的室内质量控制、室间质量评价以及分型检测方法评价。
     初步建立了HCV三种基因型特异探针和引物。今后,对于HCV临床治疗有指导意义,具有良好的应用前景。
Objective
     To develop the Non-infectious and RNase-resistant 1b, 2a and 6 HCV virus-like particles (VLPs), which were used for positive controls, external quality assessment (EQA) and genotype detections for clinical labs. Meanwhile, we established a new real-time PCR assay for determination of HCV genotypes, and used the VLPs as an internal control.
     Methods
     1. The VLPs containing HCV genotype 1b, 2a and 6 RNA sequences.
     According to the 5' UTR and NS5b sequences of HCV genotypes 1b,2a and 6,which are the prevalent genotypes in China, we designed primers to amplify HCV 5'UTR and NS5b regions by RT-PCR. Restricted sequences were incorporated into the primers. The PCR product was purified and then cloned into T-easy vector. The digested fragments were purified from Gel after digesting the T-easy vector with restriction enzyme. The pET-MS2 previously digested with restriction enzyme was combined with the digested fragment to create a new expression plasmid. Under the induction of IPTG, it assembled with HCV reRNA into VLPs. Then, we examine whether HCV reRNA was packaged into the VLPs.
     2. The study in the stability of VLPs and the EQA for HCV RNA test in clinical labs
     The VLPs with different concentration were quantified three times with commercialkits for PCR detection. Meanwhile, the stability data of VLPs in different conditions were summarized and evaluated. The EQA involved in HCV RNA test was developed as well. Serum panels were delivered to the clinical laboratories which performed HCV RNA detection in China. Each panel made up of 5 coded samples. All laboratories were requested to carry out the detection within the required time period and report on testing results. All the positive samples were calibrated against the 1st National Standard for HCV RNA.
     3. The research on determination of HCV three mainly genotypes in China by real-time reverse transcriptase-PCR
     We searched HCV 1b, 2a and 6 sequences from NCBI website. After the alignment of each genotype sequences of HCV by BioEdit software, we determined the consensus sequences of HCV genome. With regard to the consensus sequences, oligonucleotides were designed with Primer Express 3.0 software. Then the real-time reverse transcriptase-PCR for HCV genotyping was primary developed.
     Results
     1. The construction of virus-like particles containing HCV genotype 1b, 2a and 6 RNA sequences.
     The recombinant plasmids for 3 genotypes VLPs containing HCV RNA 5'UTR and NS5b regions were successfully constructed. The experiment has proved that the VLPs are surely packaging RNA.
     2. The study in the stability of VLPs and the EQA for HCV RNA test in clinical labs.
     The VLPs concentration were quantified against the first National Standard. The stability testing data indicated the quality control materials were stable at least for one month when stored at4℃,-20℃, room temperate, 37℃, -70℃and -70℃freeze-thaw cycles been repeated 3 times. Frome the result of EQA, we can conclude that the whole results are close to the target value, but different genotypes have different percent of pass. Meanwhile, we compared different reagents and different instruments.
     3. The research on determination of HCV three mainly genotypes in China by real-time reverse transcriptase-PCR
     The specific probes and primers of HCV 3 genotypes were designed according to the alignment of HCV sequences.The VLPs which we have constructed could be tested by the specific probes and primers.
     Conclusions
     The internal control of HCV 1b, 2a and 6 genotypes which is Non-infectious and RNase-resistance performed good stability, and it would be help to the quality control, EQA and genotyping detection related to HCV RNA test.
     We primary established HCV genotyping assay, and it could be widely used for the clinical diagnose and therapy in the future.
引文
[1] Simmonds P, Holmes EC, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region [J]. J Gen Virol. 1993, 74(11): 2391-2399.
    
    [2] Hraber PT, Fischer W, et al. Comparative analysis of hepatictis C virus phylogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes [J]. Virol J. 2006,14(3):103-111.
    
    [3] Laperche S, Lunel F, et al. Comparison of hepatitis C virus NS5b and 5' noncoding gene sequencing methods in a multicenter study [J]. J Clin Microbiol. 2005,43(2):733-739.
    
    [4] Zein NN. Clinical significance of hepatitis C virus genotypes [J]. Clin Microbiol Rev.2000, 13(2):223-235.
    
    [5] Tanaka Y, Agha S, et al. Exponential spread of hepatitis C virus genotype 4a in Egypt [J]. J Mol Evol. 2004, 58(2):191-195.
    
    [6] Lu L, Nakano T,et al. Hepatitis C virus genotype distribution in China: predominance of closely related subtype lb isolates and existence of new genotype 6 variants [J]. J Med Virol. 2005, 75(4):538-549.
    
    [7] McHutchison JG, Gordon SC, et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group[J]. N Engl J Med. 1998,339(21):1485-1492.
    
    [8] Mellor J, Walsh EA, et al. Survey of type 6 group variants of hepatitis C virus in Southeast Asia by using a core-based genotyping assay [J] J Clin Microbiol.1996, 34(2): 417-423.
    
    [9] Chen Z, Week KE. Hepatitis C virus genotyping: interrogation of the 5' untranslated region cannot accurately distinguish genotypes 1a and 1b [J]. J Clin Microbiol.2002,40(9): 3127-3134.
    
    [10] Zekri AR, El-Din HM,et al. TRUGENE Sequencing Versus INNO-LiPA for Sub-Genotyping of HCV Genotype-4. Journal of Medical Virology [J]. 2005,75(3):412-420.
    
    [11] Noppornpanth S, Sablon E, et al. Genotyping hepatitis C viruses from SoutheastAsia by a novel line probe assay that simultaneously detects core and 5' untranslated regions [J]. J Clin Microbiol. 2006,44(11):3969-3974.
    
    [12] Germer JJ, Majewski DW, et al. Evaluation of the invader assay for genotyping hepatitis C virus [J]. J Clin Microbiol. 2006,44(2):318-323.
    [13] Schroter M, Zollner B, et al. Genotyping of hepatitis C virus types 1, 2, 3, and 4 by a one-step LightCycler method using three different pairs of hybridization probes [J]. J Clin Microbiol. 2002,40(6):2046-2050.
    
    [14] Haverstick DM, Bullock GC, et al. Genotyping of hepatitis C virus by melting curve analysis: analytical characteristics and performance [J]. Clin Chem.2004, 50(12): 2405-2407.
    
    [15] Lindh M, Hannoun C. Genotyping of hepatitis C virus by Taqman real-time PCR [J].J. Clin.Virol.2005, 34(2): 108-114.
    
    [16] Rolfe KJ, Alexander GJ, et al. A real-time Taqman method for hepatitis C virus Genotyping [J]. J Clin Virol. 2005, 34(2): 115-121.
    
    [17] Moghaddam A, Reinton N, et al. A rapid real-time PCR assay for determination of hepatitis C virus genotypes 1, 2 and 3a [J]. J Viral Hepat. 2006, 13(4): 222-229.
    
    [18] Robertson B, Myers G, et al. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy [J].Arch Virol. 1998,143(12): 2493-2503.
    
    [19] Simmonds P, Alberti A, et al. A proposed system for the nomenclature of hepatitis C viral genotypes [J]. Hepatology. 1994, 19(5): 1321-1324.
    
    [20] Hietala SK, Crossley BM. Armored RNA as virus surrogate in a real-time reverse t ranscriptase PCR assay proficiency panel [J]. J Clin Microbiol. 2006, 44(1): 67-70.
    
    [21] Pickett GG , Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein [J]. Nucleic Acids Res.1993,21(19): 4621-4626.
    
    [22] Peabody DS. Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch Biochem Biophys [J]. 1997, 347(1):85-92.
    
    [23] Damen M, Sillekens P, et al. Characterization of the quantitative HCV NASBA assay [J]. J Virol Methods. 1999, 82(1): 45-54.
    
    [24] Caliendo AM, Valsamakis A,et al. Multilaboratory comparison of hepatitis C virus viral load assays [J]. J Clin Microbiol. 2006, 44(5): 1726-1732.
    
    [25] Monteiro L, Bonnemaison D, et al. Complex polysaccharides as PCR inhibitors infeces: Helicobacter pylori model [J]. J Clin Microbiol. 1997, 35(4): 995-998.
    
    [26] Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells [J]. J Clin Microbiol. 2001, 39(2): 485-493.
    
    [27] Khan G, Kangro HO, et al. Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA [J]. J Clin Pathol. 1991,44(5): 360-365.
    
    [28] Schneider D, Tuberk C, et al. Selection of high affinity RNAligands to the bacteriophage R17 coat protein [J]. J Mol Biol. 1992, 228(3): 862-869.
    
    [29] Parrott AM, Lago H, et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour [J]. Nucleic Acids Res. 2000, 28(2):489-497.
    
    [30] Beckett D , Uhlenbeck OC. Ribonucleoprotein complexes of Rl 7 coat protein and a translational operator analog [J]. J molec Biol. 1988, 204(4):927-938.
    
    [31] Witherell GW, Gott JM, et al. Specific interaction between RNA phage coat proteins and RNA [J]. Proc Nuc Acid Res molec Biol.1991,40: 185-220.
    
    [32] Stockley PG, Stonehouse NJ, Walton C, et al. Molecular mechanism of RNA-phage morphogenesis. Biochem Soc Trans. 1993;21(3): 627-633.
    
    [33] Peabody DS. The RNA binding site of bacteriophage MS2 coat protein [J]. EMBO J1.1993, 12(2): 595-600.
    
    [34] Peabody DS. Role of the coat protein-RNA interacion in the life cycle of bacteriophage MS2 [J]. Mol Gen Genet.1997,254(4): 358-364.
    
    [35] WalkerPeach CR, Winkler M,et al. Ribonuclease-resistant RNA controls (Armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus [J]. Clin Chem. 1999 ,45(12):2079-2085.
    
    [36] Pickett GG , Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein [J]. Nucleic Acids Res.1993; 21(19):4621-4626.
    
    [37] Valegard K, Liljas L, et al. The three-dimensional stucture of the bacterial virus MS2 [J]. Nature. 1990, 345(6270): 36-41.
    
    [38] Wang Lunan, Deng Wei, et al Two quantitative Hepatitis C Virus RNA reverse transcription PCR assays [J]. Chin J Lab Med. 2001, 24(3): 146-147.
    
    [39] J. Saldanha, N. Lelie, et al. Establishment of the first international standard for nucleic acid amplification technology (NAT) assay for HCV RNA [J]. Vox Sanguinis.1998,76(3): 149-158.
    
    [40] Wang Lunan, Li Jinming, et al. External quality assessment for detection of hepatitis C virus RNA by RT-PCR in clinical laboratories of China [J]. Chin J Lab Med, 2003,26(12):777-779.
    
    [41] Wang Lunan, Zheng Huaijing, et al. Quanlity control of plasma(serum) specimen for the detection of HCV RNA with PCR [J]. Chin J Hepatol, 1999, 7(4):221-223.
    
    [42] Saldanha J, Heath A, et al. World Health Organization collaborative study to establish a replacement WHO international standard for hepatitis C virus RNA nucleic acid amplification technology assays [J]. Vox Sang, 2005, 88(3):202-204.
    [43] Saldanha J, Heath A, et al. Calibration of HCV Working reagents for NAT Assays against the HCV International Standard [J]. Vox Sang, 2000, 78(4):217-24.
    
    [44] Jorgen PA, Neuwald PD. Standardized hepatitis C virus RNA panels for nucleic acid testing assays [J]. J Clin Virol, 2001, 20(1-2):35-40.
    
    [45] Saldanha J, Heath A. Collaborative Study Group. Collaborative study to calibrate hepatitis C virus genotypes 2-6 against the HCV International Standard, 96/790 (genotype 1) [J]. Vox Sang, 2003, 84(1):20-27.
    
    [46] Lieven Stuyver, Ann Wyseur, et al. Second-generation line probe assay for Hepatitis C Virus genotyping [J]. J Clin Microbiol, 1996,34(9): 2259-2266.
    
    [47] Cook L, Sullivan K, et al. Multiplex real-time reverse transcription-PCR assay for determination of hepatitis C virus genotypes [J]. J Clin Microbiol. 2006, 44(11):4149-4156.
    [1]Simmonds P,Holmes EC,Cha TA,et al.Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region[J].J Gen Virol.1993,74(11):2391-2399.
    [2]Simmonds P.Genetic diversity and evolution of hepatitis C virus-15 years on[J].J Gen Virol.2004,85(11):3173-3188.
    [3]Farci P,Shimoda A,et al.The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies[J].Science.2000,288(5464):339-344.
    [4]Bukh J,Miller RH,et al.Genetic heterogeneity of hepatitis C virus:quasispecies and genotypes[J].Semin Liver Dis.1995,15(1):41-63.
    [5] Mellor J, Walsh EA, et al. Survey of type 6 group variants of hepatitis C virus in Southeast Asia by using a core-based genotyping assay [J]. J Clin Microbiol. 1996, 34(2):417-423.
    
    [6] Simmonds P, Holmes EC, et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region [J]. J Gen Virol. 1993, 74(11):2391-2399.
    
    [7] Hraber PT, Fischer W, et al. Comparative analysis of hepatitis C virus phytogenies from coding and non-coding regions: the 5' untranslated region (UTR) fails to classify subtypes [J]. Virol J. 2006, 14(3): 103-111.
    
    [8] Laperche S, Lunel F, et al. Comparison of hepatitis C virus NS5b and 5' noncoding gene sequencing methods in a multicenter study [J]. J Clin Microbiol. 2005,43(2):733-739.
    
    [9] Revie D, Alberti MO, et al. Discovery of significant variants containing large deletions in the 5'UTR of human hepatitis C virus(HCV) [J]. Virology Journal 2006,29(3): 82-86.
    
    [10] Corbet S, Bukh J, et al. Hepatitis C virus subtyping by a core-envelope 1-based reverse transcriptase PCR assay with sequencing and its use in determining subtype distribution among Danish patients [J]. J Clin Microbiol. 2003,41(3): 1091-1100.
    
    [11] Noppornpanth S, Sablon E, et al. Genotyping hepatitis C viruses from Southeast Asia by a novel line probe assay that simultaneously detects core and 5' untranslated regions [J]. J Clin Microbiol. 2006,44(11): 3969-3974.
    
    [12] Saracco G, Olivero A, et al. Therapy of chronic hepatitis C: a critical review [J].Curr Drug Targets Infect Disord. 2003, 3(1):25-32.
    
    [13] McHutchison JG, Gordon SC, et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group [J]. N Engl J Med. 1998, 339(21): 1485-1492.
    
    [14] Shiffman ML, Di Bisceglie AM, et al. Hepatitis C Antiviral Long-Term Treatment Against Cirrhosis Trial Group. Peginterferon alfa-2a and ribavirin in patients with chronic hepatitis C who have failed prior treatment [J]. Gastroenterology. 2004, 126(4):1015-1023.
    
    [15] Pawlotsky JM. Hepatitis C virus genetic variability: pathogenic and clinical implications [J]. Clin Liver Dis. 2003, 7(1): 45-66.
    
    [16] Pawlotsky JM. The nature of interferon-alpha resistance in hepatitis C virus infection [J]. Curr Opin Infect Dis. 2003,16(6): 587-592.
    [17] Zein NN. Clinical significance of hepatitis C virus genotypes [J]. Clin Microbiol Rev. 2000, 13(2):223-235.
    
    [18] Tanaka Y, Agha S, et al. Exponential spread of hepatitis C virus genotype 4a in Egypt [J]. J Mol Evol. 2004, 58(2):191-195.
    
    [19] Lu L, Nakano T, et al. Hepatitis C virus genotype distribution in China:predominance of closely related subtype 1b isolates and existence of new genotype 6 variants [J]. J Med Virol. 2005, 75(4):538-549.
    
    [20] Bukh J, Purcell RH, et al. At least 12 genotypes of hepatitis C virus predicted by sequence analysis of the putative El gene of isolates collected worldwide [J]. Proc Natl Acad Sci U S A. 1993, 90(17):8234-8238.
    
    [21] Pol S, Thiers V, et al. The changing relative prevalence of hepatitis C virus genotypes: evidence in hemodialyzed patients and kidney recipients [J]. Gastroenterology.1995, 108(2):581-583.
    
    [22] Pawlotsky JM, Tsakiris L, et al. Relationship between hepatitis C virus genotypes and sources of infection in patients with chronic hepatitis C [J]. J Infect Dis. 1995,171(6):1607-1610.
    
    [23] Watson JP, Brind AM, et al. Hepatitis C virus: epidemiology and genotypes in the north east of England [J]. Gut. 1996,38(2):269-276.
    
    [24] Berg T, Hopf U, et al. Distribution of hepatitis C virus genotypes in German patients with chronic hepatitis C: correlation with clinical and virological parameters [J]. J Hepatol. 1997,26(3):484-491.
    
    [25] Nakano T, Lu L, et al. Viral gene sequences reveal the variable history of hepatitis C virus infection among countries [J]. J Infect Dis. 2004,190(6): 1098-108.
    
    [26] Pybus OG, Charleston MA, et al. The epidemic behavior of the hepatitis C virus [J].Science. 2001,292(5525):2323-2325.
    
    [27] Robertson B, Myers G, et al. Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy [J]. Arch Virol. 1998,143(12):2493-2503.
    
    [28] Simmonds P, Alberti A, et al. A proposed system for the nomenclature of hepatitis C viral genotypes [J]. Hepatology. 1994,19(5):1321-1324.
    
    [29] Chen Z, Weck KE. Hepatitis C virus genotyping: interrogation of the 5' untranslated region cannot accurately distinguish genotypes la and lb [J]. J Clin Microbiol. 2002,40(9):3127-3134.
    
    [30] Smith DB, Mellor J, et al. Variation of the hepatitis C virus 5' non-coding region: implications for secondary structure, virus detection and typing. The International HCV Collaborative Study Group [J]. J Gen Virol. 1995, 76 (7): 1749-1761.
    
    [31] Prescott LE, Berger A, et al. Sequence analysis of hepatitis C virus variants producing discrepant results with two different genotyping assays [J]. J Med Virol. 1997,53(3): 237-244.
    
    [32] Vatteroni M, Maggi F, et al. Comparative evaluation of five rapid methods for identifying subtype lb and 2c hepatitis C virus isolates [J]. J Virol Methods. 1997,66(2):187-194.
    
    [33] Halfon P, Trimoulet P, et al. Hepatitis C virus genotyping based on 5' noncoding sequence analysis (Trugene) [J]. J Clin Microbiol. 2001, 39(5):1771-1773.
    
    [34] Anderson JC, Simonetti J, et al. Comparison of different HCV viral load and genotyping assays [J]. J Clin Virol. 2003,28(1):27-37.
    
    [35] Haushofer AC, Berg J, et al. Genotyping of hepatitis C virus-comparison of three assays [J]. J Clin Virol. 2003,27(3):276-285.
    
    [36] Nolte FS, Green AM, et al. Clinical evaluation of two methods for genotyping hepatitis C virus based on analysis of the 5' noncoding region [J]. J Clin Microbiol. 2003,41(4): 1558-1564.
    
    [37] Gargiulo F, De Francesco MA,et al. Determination of HCV genotype by direct sequence analysis of quantitative PCR products [J]. J Med Virol. 2003, 69(2):202-206.
    
    [38] Schroter M, Zollner B, et al .Genotyping of hepatitis C virus types 1,2,3, and 4 by a one-step LightCycler method using three different pairs of hybridization probes [J]. J Clin Microbiol, 2002,40(6):2046-2053.
    
    [39] Bullock GC, Bruns DE, et al. Hepatitis C genotype determination by melting curve analysis with a single set of fluorescence resonance energy transfer probes [J]. Clin Chen,2002,48 (12) :2147-2153.
    
    [40] Rolfe KJ, Alexander GJ, et al. A real-time Taqman method for hepatitis C virus genotyping [J]. J Clin Virol, 2005, 34(2):115-121.
    
    [41] Lindh M, Hannoun C. Genotyping of hepatitis C virus by Taqman real-time PCR [J].J Clin Virol, 2005, 34(2): 108-119.
    
    [42] Moghaddam A, Reinton N, et al. A rapid real-time PCR assay for determination of hepatitis C virus genotypes 1,2 and 3a [J]. J Viral Hepat, 2006,13 (4): 222-229.
    
    [43] Fujigaki H, Takemura M, et al. Genotyping of hepatitis C virus by melting curve analysis with SYBR Green I [J]. Ann Clin Biochem, 2004,41(2):130-137.
    
    [44] Abdel Rahaman, N.Zekri, et al. TRUGENE Sequencing Versus INNO-LiPA for Sub-Genotyping of HCV Genotype-4 [J]. Journal of Medical Virology, 2005, 75(3): 412-420.
    
    [45] Bouchardeau F, Cantaloube JF, et al. Improvement of hepatitis C virus (HCV) genotype determination with the new version of the INNO-LiPA HCV assay [J]. J Clin Microbiol. 2007,45(4): 1140-1145.
    
    [46] Stelzl E, van der Meer C, et al. Determination of the hepatitis C virus subtype:comparison of sequencing and reverse hybridization assays [J]. Clin Chem Lab Med.2007,45(2): 167-170.
    
    [47] Payne DA, Seifert SL, et al. Effects of storage and viral load on hepatitis C viral genotyping [J]. J Clin Lab Anal. 2001;15(6):331-333.
    
    [48] Comanor L, Elkin C, et al. Successful HCV genotyping of previously failed and low viral load specimens using an HCV RNA qualitative assay based on transcription-mediated amplification in conjunction with the line probe assay [J]. J Clin Virol. 2003,28(1): 14-26.
    
    [49] Ross RS, Viazov S, et al. Transcription-mediated amplification linked to line probe assay as a routine tool for HCV typing in clinical laboratories [J]. J Clin Lab Anal. 2007,21(5):340-347.
    
    [50] Haushofer AC, Berg J, et al. Genotyping of hepatitis C virus-comparison of three assays [J]. J Clin Virol. 2003,27(3):276-285.
    
    [51] Tang YW, Li H, et al. Detection of hepatitis C virus by a user-developed reverse transcriptase-PCR and use of amplification products for subsequent genotyping [J]. J Clin Virol. 2004, 31(2): 148-152.
    
    [52] Sandres-Saune K, Deny P, et al. Determining hepatitis C genotype by analyzing the sequence of the NS5b region [J]. J Virol Methods. 2003,109(2):187-193.
    
    [53] Othman SB, Trabelsi A, et al. Evaluation of a prototype HCV NS5b assay for typing strains of hepatitis C virus isolated from Tunisian haemodialysis patients [J]. J Virol Methods. 2004,119(2): 177-181.
    
    [54] Muller Z, Deak J, et al. Hepatitis C virus genotypes in Hungarian and Austrian patients with chronic hepatitis C [J]. J Clin Virol. 2003,26(3):295-300.
    
    [55] Murphy DG, Willems B, et al. Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/El and 5' untranslated region sequences [J]. J Clin Microbiol. 2007,45(4): 1102-1112.
    
    [56] Germer JJ, Majewski DW, et al. Evaluation of the invader assay for genotyping hepatitis C virus [J]. J Clin Microbiol. 2006,44(2):318-323.
    
    [57] Yen-Lieberman B, Roberto A, et al. Clinical validation of the INVADER HCV genotyping assay [J]. J .Mol. Diagn. 2004,6(4): 425.
    [58] Barth D, Zhang F, et al. Comparison of the Bayer VERSANT HCV genotyping assay (LiPA) and the Third Wave Invader HCV genotyping assays [J]. J. Mol. Diagn.2004,6(4): 425.
    
    [59] Cook L, Sullivan K, et al. Multiplex real-time reverse transcription-PCR assay for determination of hepatitis C virus genotypes [J]. J Clin Microbiol. 2006,44(11):4149-4156.
    
    [60] Radziewicz H, Notle FS. Genotyping of hepatitis c virus (HCV) using a real-time polymerase chain reaction(PCR) assay [J]. J. Mol. Diagn. 2004, 6(4): 425.
    
    [61] Sabato MF, Shifman ML, et al. HCV genotyping using real time PCR technology [J].J. Mol. Diagn. 2004, 6(4): 425.
    
    [62] Melan MA, Weck KE, et al. Comparison of three methods for the determination of HCV genotyping [J]. J. Mol. Diagn. 2004,6(4): 425.
    
    [63] Martro E, Gonzalez V, et al. Evaluation of a new assay in comparison with reverse hybridization and sequencing methods for hepatitis C virus genotyping targeting both 5' noncoding and nonstructural 5b genomic regions [J]. J Clin Microbiol. 2008,46(1):192-197.
    
    [64] Viazov S, Zibert A, et al. Typing of hepatitis C virus isolates by DNA enzyme immunoassay [J]. J Virol Methods. 1994,48(1): 81-91.
    
    [65] Le Pogam S, Dubois F, et al. Comparison of DNA enzyme immunoassay and line probe assays (Inno-LiPA HCV I and II) for hepatitis C virus genotyping [J]. J Clin Microbiol. 1998, 36(5):1461-1463.
    
    [66] Dixit V, Quan S, et al. Evaluation of a novel serotyping system for hepatitis C virus:strong correlation with standard genotyping methodologies [J]. J Clin Microbiol. 1995,33(11): 2978-2983.
    
    [67] Stamenkovic G, Guduric J, et al. Analysis of 5' non-coding region in hepatitis C virus by single-strand conformation polymorphism and low-stringency single specific primer PCR [J]. Clin Chem Lab Med. 2001, 39(10):948-952.
    
    [68] Gish RG, Qian KP, et al. Concordance between hepatitis C virus serotyping assays [j]. J Viral Hepat. 1997,4(6):421-422.
    
    [69] Songsivilai S, Kanistanon D, et al. A serotyping assay for hepatitis C virus in Southeast Asia [J]. Clin Diagn Lab Immunol. 1998, 5(5): 737-739.
    
    [70] Beld M, Penning M, et al. Hepatitis C virus serotype-specific core and NS4 antibodies in injecting drug users participating in the Amsterdam cohort studies [J]. J Clin Microbiol. 1998, 36(10): 3002-3006.
    
    [71] Nemcova J, Nemecek V. HCV genotyping by combination of the Cobas Amplicor HCV 2.0 test and the reverse hybridization Versant HCV Genotype Assay [J]. Epidemiol Mikrobiol Imunol. 2005, 54(1): 34-38.
    
    [72] Ben Moussa M, Barguellil F, et al. Comparison of two hepatitis C virus typing assays in a Tunisian population [J]. Ann Biol Clin (Paris). 2003, 61(2):234-238.
    
    [73] Okamoto H, Sugiyama Y, et al. Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources [J]. J Gen Virol. 1992, 73(3):673-679.
    
    [74] Widell A, Shev S, et al. Genotyping of hepatitis C virus isolates by a modified polymerase chain reaction assay using type specific primers: epidemiological applications [J]. J Med Virol. 1994,44(3):272-279.
    
    [75] Kleter GE, van Doom LJ, et al. Rapid genotyping of hepatitis C virus RNA-isolates obtained from patients residing in western Europe [J]. J Med Virol. 1995,47(1):35-42.
    
    [76] Forns X, Maluenda MD, et al. Comparative study of three methods for genotyping hepatitis C virus strains in samples from Spanish patients [J]. J Clin Microbiol. 1996,34(10): 2516-2521.
    
    [77] Nakao T, Enomoto N, et al. Typing of hepatitis C virus genomes by restriction fragment length polymorphism [J]. J Gen Virol. 1991, 72(9): 2105-2112.
    
    [78] Pohjanpelto P, Lappalainen M, et al. Hepatitis C genotypes in Finland determined by RFLP [J]. Clin Diagn Virol. 1996, 7(1):7-16.
    
    [79] Buoro S, Pizzighella S, et al. Typing of hepatitis C virus by a new method based on restriction fragment length polymorphism [J]. Intervirology. 1999, 42(1):1-8.
    
    [80] Antonishyn NA, Ast VM, et al. Rapid genotyping of hepatitis C virus by primer-specific extension analysis.J Clin Microbiol. 2005,43(10):5158-5163.
    
    [81] Hu YW, Balaskas E, et al. Comparison and application of a novel genotyping method, semiautomated primer-specific and mispair extension analysis, and four other genotyping assays for detection of hepatitis C virus mixed-genotype infections [J]. J Clin Microbiol. 2000, 38(8):2807-2813.
    
    [82] Elahi E, Pourmand N, et al. Determination of hepatitis C virus genotype by Pyrosequencing [J]. J Virol Methods. 2003, 109(2):171-176.
    
    [83] Haverstick DM, Bullock GC, et al. Genotyping of hepatitis C virus by melting curve analysis: analytical characteristics and performance [J]. Clin Chem. 2004,50(12):2405-2407.
    
    [84] Liew M, Erali M, et al. Hepatitis C genotyping by denaturing high-performance liquid chromatography [J]. J Clin Microbiol. 2004,42(1): 158-163.
    
    [85] White PA, Zhai X, et al. Simplified hepatitis C virus genotyping by heteroduplex mobility analysis [J]. J Clin Microbiol. 2000, 38(2):477-482.
    
    [86] Margraf RL, Erali M, et al. Genotyping hepatitis C virus by heteroduplex mobility analysis using temperature gradient capillary electrophoresis [J]. J Clin Microbiol. 2004,42(10):4545-4551.
    
    [87] Ilina EN, Malakhova MV, et al. Matrix-assisted laser desorption ionization-time of flight (mass spectrometry) for hepatitis C virus genotyping [J]. J Clin Microbiol. 2005,43(6):2810-2815.
    
    [88] Mao HJ, Gu SM, et al. Establishing DNA chip technique for detecting hepatitis C virus genotypes and primary application [J]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003, 17(4): 375-377.
    
    [89] Mao H, Lu Z, et al. Colorimetric oligonucleotide array for genotyping of hepatitis C virus based on the 5' non-coding region [J]. Clin Chim Acta. 2008, 388(l-2):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700