鸡FATP1/FATP4基因的克隆、表达及其与屠体性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长链脂肪酸如同信号分子一样,也是重要的代谢产物。研究发现在长链脂肪酸摄取中一些候选蛋白如脂肪酸易位酶(FAT/CD36),脂肪酸合成蛋白(FABP),长链脂肪酰基辅酶A合成酶(ACSL)和脂肪酸转运蛋白(FATP)对长链脂肪酸的摄取和代谢具有重要作用,但都不如FATP对脂质代谢和脂肪相关疾病的影响,为此,当前对FATP基因家族的研究也逐渐成为了热点。
     本研究以四川山地乌骨鸡为试验材料,通过生物信息学分析,获取四川山地乌骨鸡FATP4蛋白的部分序列,以pMD-18T为载体,在DH5α菌株中进行FATP4蛋白CDS区的分子克隆,并对其质粒进行了序列测定。运用蛋白质组学分析工具,对CDS区的基本性质、糖基化位点、磷酸化位点、二级结构等进行了预测,确定该序列具有FATP家族的结构特点,是鸡FATP家族成员蛋白。
     本研究以地方品种四川山地乌骨鸡和培育优质鸡“大恒”S01系为试验材料,采用SYBR greenⅠ定量PCR分析FATP1基因和FATP4基因在10周龄这个时间点两品种间的表达差异,同时分析了四川山地乌骨鸡0周龄,2周龄,4周龄,6周龄,8周龄,10周龄和12周龄等这7个时间点FATP1和FATP4基因表达的组织差异,以及在胸肌,腿肌,心脏,肝脏等组织中FATP1和FATP4基因表达量的发育性变化。结果表明:FATP1和FATP4在两个品种间的表达差异不显著(P>0.05)。FATP1和FATP4在不同阶段各有优势表达组织,同一组织中也有表达的优势时间点。
     本研究运用PCR-SSCP及测序技术检测突变位点。根据FATP1基因组序列共设计10对引物,在8个大恒优质肉鸡群体中,只有4对引物检测到多态,共检测到5处突变,分别为49360bp(SNP1,G/A),48195 bp(SNP2,G/A),46847bp(SNP3,A/G),46818bp(SNP4,A/G)和46555bp(SNP5,A/G)。检测到的突变分别位于外显子3、内含子5、内含子7、内含子7和外显子8内。由于SNP4变异位点的个体数少,为此我们没有对该位点进行后续的分析。FATP1基因突变位点与屠宰性状关联分析结果显示:SNP1位点:在70d鸡群中,GG型个体的胸肌重,腿肌重和胸肌率均显著高于AA和AG型个体(P<0.05);在91d鸡群中,AG型个体的活重,屠体重,半净膛重,全净膛重,腿肌重和腿肌率显著高于GG型个体(P<0.05);在所有鸡群中,AA基因型个体的活重,屠体重,半净膛重和全净膛重显著高于AG和GG型个体(P<0.05),GG型个体的胸肌率显著高于AA和AG型个体(P<0.05)。SNP2位点:在70d鸡群中,NN型个体的胸肌重,腿肌重,胸肌率和腿肌率显著高于MM和MN型个体(P<0.05);在91d鸡群中,NN型个体的活重,屠体重,半净膛重和全净膛重显著高于MM和MN型个体(P<0.05),而MN型个体的皮脂厚和腹脂率显著高于NN型个体(P<0.05);在所有鸡群中,NN型个体的活重,屠体重,半净膛重,全净膛重,腿肌重,胸肌率和腿肌率显著高于MM和MN型个体(P<0.05)。SNP3位点:在70d和91d鸡群中,3种基因型个体与所有屠体性状之间都没有显著差异(P>0.05);在所有鸡群中,AA型个体的活重和屠体重显著高于AG型个体(P<0.05)。SNP5位点:在70d鸡群中,MN型个体的活重,屠体重和全净膛重显著高于MM型个体(P<0.05),而NN型个体的腿肌率显著高于MN型个体(P<0.05);在91d鸡群中,NN型个体的活重,屠体重,半净膛重,全净膛重和腿肌率显著高于MM和MN型个体(P<0.05),同时MN型个体的胸肌率显著高于NN型个体(P<0.05);在所有鸡群中,NN型个体的腿肌率显著高于MN和NN型个体(P<0.05)。单倍型与8个群体的屠宰性状关联分析结果显示:在70d鸡群中,单倍型组合对活重,屠体重,全净膛重,胸肌重,腿肌重,皮脂厚,胸肌率和腿肌率的遗传效应达到显著水平(P<0.05);在91d鸡群中,单倍型组合对活重,屠体重,全净膛重,半净膛重,皮脂厚,腿肌率和腹脂率的遗传效应达到显著水平(P<0.05);在所有鸡群中,单倍型组合对活重,屠体重,全净膛重,半净膛重,皮脂厚,腿肌率和胸肌率的遗传效应达到显著水平(P<0.05)。
     同样运用PCR-SSCP及测序技术检测突变位点,根据FATP4基因组序列共设计15对引物,在8个鸡群中,有6对引物检测到多态,共检测到8处突变,分别为5108778bp(G/A),5108695(G/A),5108287(C/-),5107545(T/C),5106740(C/T),5106005(A/G),5105481(G/A)和5105454(C/T)。在FATP4基因的8个突变中,等位基因A、C、C和A依次为SNP2,SNP3,SNP5和SNP7的优势等位基因。FATP4基因单突变位点与屠体性状关联分析结果显示,SNP1位点(G5108778A):在70d鸡群中,3种不同基因型与胸肌率和腿肌率显著相关(P<0.05);在90d鸡群中,SNP1对胸肌率和腹脂率的遗传效应达到显著水平(P<0.05);在所有鸡群中,3种基因型与活重,屠体重,半净膛重,全净膛重,腹脂重,胸肌率,腿肌率和皮脂厚显著相关(P<0.05)。SNP2位点(G5108695A):在70d和91d鸡群中,3种基因型与所有屠体性状都没有达到显著相关水平(P>0.05),在所有鸡群中,GG型个体的腹脂重和皮脂厚显著高于AG型个体(P<0.05)。SNP3位点(C5108287-):在70d鸡群中,SNP3对腹脂重,腿肌率和腹脂率的遗传效应达到显著水平(P<0.05);在91d鸡群中,TT型个体的胸肌率显著高于CT型个体(P<0.05);在所有鸡群中,TT型个体的腹脂重,胸肌率,腿肌率和腹脂率显著高于CT和CC型个体(P<0.05)。SNP4位点(T5107545C):在70d鸡群中,TT型个体的胸肌重,腿肌重和腿肌率显著高于CC型个体(P<0.05),而TC型个体的皮脂厚显著高于CC型个体(P<0.05);在91d鸡群中,TT型个体的屠体重,活重,半净膛重和全净膛重显著高于CC型个体(P<0.05);在所有鸡群中,TC型个体的活重,活重和全净膛重显著高于TT型个体,而TT型个体的腿肌率显著高于CC型个体(P<0.05)。SNP5位点(C5107640T):在70d鸡群中,不同基因型只与胸肌率显著相关(P<0.05);在所有鸡群中,SNP5对应的不同基因型间的皮脂厚性状差异显著(P<0.05)。SNP6位点(A5106005G):在70d鸡群中,AG型个体的胸肌重和胸肌率显著高于AA和GG型个体(P<0.05);在91d和所有鸡群中,GG型个体的活重,屠体重,半净膛重,全净膛重和腿肌重显著高于AA型个体(P<0.05)。SNP7位点(G5105481A):在70d和90d鸡群中,GG型个体的活重和全净膛重显著高于AG型个体(P<0.05);在所有鸡群中,AG型个体的胸肌率显著高于AA型个体(P<0.05)。SNP8位点(C5105454T):在3个鸡群中不同基因型个体的所有屠宰性状之间差异不显著(P>0.05)。单倍型与8个群体的屠宰性状关联分析结果显示:在70d鸡群中,单倍型组合对活重,屠体重,全净膛重,胸肌重,腿肌重,腹脂率,胸肌率和腿肌率的遗传效应达到显著水平(P<0.05);在91d鸡群中,单倍型组合对活重,屠体重,全净膛重,半净膛重,腹脂重,皮脂厚,胸肌率,腿肌率和腹脂率的遗传效应达到显著水平(P<0.05);在所有鸡群中,单倍型组合对活重,屠体重,全净膛重,半净膛重,腹脂重,腿肌重,皮脂厚,胸肌率,腿肌率和腹脂率的遗传效应达到显著水平(P<0.05)。
Long-chain fatty acids(LCFA) are both important metabolites and signaling molecules.At present,several candidate proteins have been proposed to be involved in the uptake process of LCFAs including fatty acid translocase(FAT/CD36),fatty acid binding protein(FABPs),long-chain fatty acyl-CoA synthetases(ACSL) and fatty acid transport proteins(FABPs).Although many of the above-mentioned proteins have important role in the proceeding of LCFAs uptake and metabolism,recent in vivo studies have particularly highlighted the contribution of FATPs to lipid metabolism and fatty acid-associated disorders.So,the studies about FATP are being focused in today because of FATP special character and biological function.
     In the studies,we adopted Sichuan Mountains Black-Bone chicken as materials. The code sequences of FATP4 protein were gained by bioinformatics analysis.The sequences were cloned with pMD18-T vector in E.coli DH5a and sequenced.Then, the basic physical parameters,glycosylation sites,phosphorylation sites, hydrophobicity and second structure were predicted by proteome analysis tools. Through analysis,we concluded that it was the protein of chicken FATP4.
     The present study also took Sichuan Mountainous Black-Bone chicken and S01 of Daheng chicken as materials.We used the real-time PCR(SYBR greenⅠ) method to test the expression quantity of FATP1 and FATP4 gene in different breed of above-mentioned at 10 week.And we tested the expression quantity of FATP1 and FATP4 gene in different tissues and the expression quantity at different growth points. The results showed that the expression quantity of FATP1 and FATP4 had no significant difference between the two breeds.Moreover,there was advantageous tissue for gene expression at each growth point and there was also advantageous growth point for gene expression in a certain tissue.
     The current study adopted eight different populations of Daheng high-quality chicken in Sichuan province as samples.Five SNPs in FATP1 gene were identified using PCR-SSCP method,including 49360bp(SNP1,G/A),48195 bp(SNP2,G/A), 46847bp(SNP3,A/G),46818bp(SNP4,A/G) and 46555bp(SNP5,A/G), respectively.Because the sample number of A46818G was few,we didn't analyze this mutation.The results of single locus analysis showed that at SNP1(G 49360A) locus, GG genotype had significantly higher(P<0.05) breast muscle weight(BMW),leg muscle weight(LMW) and the percentage of breast muscle weight(BMWP) than AA and AG genotypes in 70d chicken populations;AG genotype had significantly higher live weight(LW),carcass weight(CW),semi-eviscerated weight(SEW), eviscerated weight(EW),LMW and the percentage of leg muscle weight(LMWP) than GG genotype in 91d chicken samples;AA genotype had significantly higher (P<0.05) LW,CW,SEW and EW than AG and GG genotype,moreover,GG genotype had significantly higher BMWP than AA and AG(P<0.05) in all examined samples.At SNP2(G48195A) locus,NN genotype had significantly higher(P<0.05) BMW,LMW, BMWP and LMWP than MM and MN genotypes in 70d chicken populations;NN genotype had significantly higher LW,CW,SEW and EW than MM and MN genotype, while the NN genotype had significantly lower subcutaneous fat thickness(SFT) and the percentage of abdominal fat weight(AP) than that of MN genotype(P<0.05) in 91d chicken samples;NN genotype had significantly higher(P<0.05) LW,CW,SEW, EW,LMW,BMWP and LMWP than MM and MN genotype in all samples.At SNP 3 (A46847G) locus,in 70d and 91d chicken populations,there was no significantly association between genotype and carcass traits(P>0.05);while AA genotype had significantly higher LW and CW than AG genotypes(P<0.05) in all samples.At SNP5 (A46555G) locus,in 70d chicken populations,MN genotype had significantly higher (P<0.05) LW,CW and EW than MM genotypes,but had lower LMWP when compared with NN genotype;in 91d chicken populations,NN genotype had significantly higher LW,CW,SEW,EW and LMWP than MM and MN genotypes, while the NN genotype had significantly lower BMWP than that of MN genotype (P<0.05);in all chicken populations,NN genotype had significantly higher(P<0.05) LMWP than MM and MN genotypes.The haplotype analysis indicated that in 70d chicken populations,the haplotype combinations had significant genetic effects on LW, CW,EW,BMW,LMW,SFT,BMWP and LMWP(P<0.05);in 91d chicken populations,the haplotype had significant genetic effects on LW,CW,SEW,EW,SFT, LMWP and AP(P<0.05);in all chicken populations,the haplotype had significant genetic effects on LW,CW,SEW,EW,SFT,BMWP and LMWP.
     Eight SNPs were detected at 5108778bp(G/A),5108695bp(G/A),5108287bp (C/-),5107545bp(T/C),5106740bp(C/T),5106005bp(A/G),5105481bp(G/A) and 5105454bp(C/T) in FATP4 gene.The allele A,C,C and A were the predominate allele in SNP2,SNP3,SNP5 and SNP6,respectively.The single locus analysis indicated that single nucleotide polymorphisms at SNP1(G5108778A) locus were significantly associated with BMWP and LMWP(P<0.05) in 70d chicken populations;SNP1 was associated significantly with BMWP and AP(P<0.05) in 91d chicken populations; SNP 1 was associated significantly with LW,CW,SEW,EW,AW,BMWP,LMWP and SFT(P<0.05) in all samples.At SNP2(G5108695A) locus,there was no significantly association between genotypes and carcass traits(P>0.05) in 70d and 91d chicken populations;while AW and SFT of the GG genotype were significantly higher than those with the AG genotype(P<0.05) in all samples.At SNP3(C5108287-) locus, genotypes at this locus were significantly associated with AW,LMW-P and AP(P<0.05) in 70d chicken populations;while,the TT genotype had higher BMWP than that of CT (P<0.05) in 91d chicken populations;TT genotype had significantly higher AW, BMWP,LMWP and AP than CT and CC genotype(P<0.05) in all chicken populations. At SNP4(T5107545C) locus,TT genotype had significantly higher(P<0.05) BMW, LMW and LMWP than CC genotypes in 70d chicken populations,moreover,the SFT of chicken with the TC genotype was significantly higher than that of CC genotype; TT genotype had significantly higher LW,CW,SEW and EW than CC genotype in 91d chicken populations;TC genotype had significantly higher(P<0.05) LW,CW and EW than TT genotype,moreover,TT genotype had significantly higher LMWP than CC(P<0.05) in all chicken populations.At SNP5(C5106740T) locus,SNP at this locus was only significantly associated with BMWP(p<0.05) in 70d chicken populations;in all chicken populations,single nucleotide polymorphisms were significantly associated with SFT(p<0.05).At SNP 6(A5106005G) locus,AG genotype had significantly higher BMW and BMWP than AA and AG genotype (P<0.05) in 70d chicken populations;GG genotype had significantly higher LW,CW, SEW,EW and LMW than AA genotypes(P<0.05) in 91d chicken populations.At SNP7(G5105481A) locus,GG genotype had significantly higher(P<0.05) LW and EW than AG genotypes in both 70d and 91d chicken populations;in all chicken populations,AG genotype had significantly higher(P<0.05) BMWP than AA genotype. At SNP8(C5105454T) locus,there were no significant difference among all samples (P>0.05).The haplotype analysis indicated that in 70d chicken populations,the haplotype combinations had significant genetic effects on LW,CW,EW,BMW,LMW, AP,BMWP and LMWP(P<0.05);in 91d chicken populations,the haplotype had significant genetic effects on LW,CW,SEW,EW,AW,SFT,BMWP,LMWP and AP (P<0.05);in all chicken populations,the haplotype had significant genetic effects on LW,CW,SEW,EW,LMW,AW,SFT,BMWP,LMWP and AP(P<0.05).
引文
Abumrad N, Harmon C, Ibrahimi A. Membrane transport of long-chain fatty acids: evidence for a facilitated process. Journal of Lipid research. 1998, 39: 2309-2318.
    
    Alaoui-Jamali MA, Xu YJ. Proteomic technology for biomarker profiling in cancer: an update. J Zhejiang Univ Sci B. 2006, 7: 411-420.
    
    Babbitt PC, Kenyon GL, Martin BM, et al. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl: adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry. 1992, 31: 5594-5604.
    
    Bago B, ZipfelW, Williams RM, et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology. 2002, 128: 108-124.
    
    Ballard AL, Fry NK, Chan L, et al. Detection of Legionella pneumophila using a real-time PCR hybridization assay. J Clin Microbiol. 2000,38: 4215-4218.
    
    Bartov J, Bomstein J, Lipstein B. Effect of calorie to protein ratio on the degree of fatness in broilers feed on practical diets. Br Poultry Sci. 1974,15: 107-117.
    
    Berger J, Truppe C, Neumann H, et al. A novel relative of the very-long-chain acyl-CoA synthetase and fatty acid transporter protein genes with a distinct expression pattern. Biochem Biophys Res Commun. 1998,247: 255-260.
    Binnert C, Koistinen HA, Martin G, et al. Fatty acid transport protein-1 mRNA expression in skeletal muscle and in adipose tissue in humans. Am J Physiol. 2000, 279: 1072-1079.
    Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Molecular Biology. 1999, 294(5): 1351-1362.
    Bonen A, Luiken JJ, Arumugam Y, et al. Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem. 2000,275: 14501-1450.
     Bovenhuis H, Weller JI. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. Genetics. 1994,136: 267-275.
     Bower JF, Davis JM, Hao E, et al. Differences in transport of fatty acids and expression of fatty acid transporting proteins in adipose tissue of obese black and white women. Am J Physiol Endocrinol Metab. 2006, 290: E87-E91.
    Brinkmann JF, Abumrad NA, Ibrahimi A, et al. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J. 2002, 367: 561-570.
    Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000, 25: 169-193.
    Bustin SA.. Quantitation of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol. 2002,29: 23-39.
    Bustin SA, Nolan T. Pitfalls of quantitative real-time reversetrasncription polymerase chain reaction. J Biomol Tech. 2004,15: 155-166.
    
    Cameron-Smith D, Burke LM, Angus DJ, et al. A short-term, high-fat diet upregulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr. 2003, 77:313-318.
    Cerit H, Altinel A, Elmaz O, et al. Polymorphism evaluation of various genomic loci in the kivircik sheep breed of Turkey. Turk J Vet Anim Sci. 2004,28: 415-425.
    Coburn CT, Hajri T, Ibrahimi A, et al. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci. 2001,16:117-121.
    Coe NR, Smith AJ, Frohnert BI, et al. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem. 1999, 274: 36300-36304.
    Chiu HC, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001,107: 813-822.
    Chiu HC, Kovacs A, Blanton RM. Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res. 2005,96:225-233.
    Clark AG. The role of haplotypes in candidate gene studies. Gene. Epidemiol. 2004, 27: DOI: 10.1002/gepi.20025 Published online in Wiley InterScience (www.interscience.wiley.com).
    Cleary TJ, Roudel G, Casillas O, et al. Rapid and specific detection of Mycobacterium tuberculosis by using the Smart Cycler instrument and a specific fluorogenic probe. J Clin Microbiol. 2003,41: 4783-4786.
    Cupp D, Kampf JP, Kleinfeld AM. Fatty acid-albumin complexes and the determination of the transport of long chain free fatty acids across membranes. Biochemistry. 2004, 43: 4473-4481.
    Coe N, Smith A, Frohnert B, et al. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem. 1999, 274: 36300-36304.
    Coort SL, Willems J, Coumans WA, et al. Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem. 2002, 239: 213-219.
    Chen GH, Wu XS, Hou SS. Comparison on relative muscle fatty acids content in Chinese native chickens. Chinese Journal of Animal Science. 1999,35(3): 27-28 (in Chinese).
    Chen R, Huang W, Lin Z, et al. Development of a novel real-time RT-PCR assay with LUX primer for the detection of swine transmissible gastroenteritis virus. J Virol Methods. 2004,122:57-61.
    Daly MJ, Rioux JD, Schafmer SF. High-resolution haplotype structure in the human genome. Nat Genet. 2001,29: 229-232.
    Doege H, Baillie RA, Ortegon AM, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology. 2006,130: 1245-1258.
    Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology (Bethesda). 2006, 21: 259-268.
    
    DiRusso C, Black P. Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem.1999,192: 41-52.
    
    Dirusso CC, Connell EJ, Faergeman NJ, et al. Murine FATP alleviates growth and biochemical deficiencies of yeast fatldelta strains. Eur J Biochem. 2000, 267: 4422-4433.
    Espy MJ, Teo R, Ross TK, et al. Diagnosis of varicella-zoster virus infections in the clinical laboratory by LightCycler PCR. J Clin Microbiol. 2000, 38: 3187-3189.
    Evans AJ. In vitro lipogenesis in the liver and adipose tissues of the female Aylesbury duck at different ages. Br. Poultry Sci. 1972,13: 595-602.
    Fabris R, Nisoli E, Lombardi AM, et al. Preferential channeling of energy fuels toward fat rather than muscle during high free fatty acid availability in rats. Diabetes. 2001, 50: 601-608.
    Firouzi M, Groenewegen WA. Gene polymorphisms and cardiac arrhythmias. Europace. 2003, 5: 235-242.
    Fisher RM, Gertow K. Fatty acid transport proteins and insulin resistance. Curr Opin Lipidol. 2005,16:173-178.
    Freeman WM, Walker SJ, Vrana KE. Quantitative RTPCR: pitfalls and potential. Biotechniques. 1999,26:112-122,124-115.
    
    Frohnert BI, Hui TY, Bernlohr DA. Identification of a functional peroxisome proliferator-response element in the murine fatty acid transport protein gene. J Biol Chem. 1999,274: 3970-3977.
    Gachon C, Mingam A, Charrier B. Real-time PCR: what relevance to plant studies? Journal of experimental botany. 2004, 55: 1445-1545.
    
    Gertow K, Skoglund-Andersson C, Eriksson P, et al. A common polymorphism in the fatty acid transport protein-1 gene associated with elevated post-prandial lipaemia and alterations in LDL particle size distribution. Atherosclerosis. 2003,167: 265-273.
    Gertow K, Bellanda M, Eriksson P. Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome. J Clin Endocrinol Metab. 2004, 89: 392-399.
    
    Gertow K, Rosell M, Sjogren P. Fatty acid handling protein expression in adipose tissue, fatty acid composition of adipose tissue and serum, and markers of insulin resistance. Eur J Clin Nutr. 2006, 60: 1406-1413.
    Gimeno RE, Ortegon AM, Patel S, et al. Characterization of a heart-specific fatty acid transport protein. J Biol Chem. 2003,278: 16039-16044.
    Gimeno RE. Fatty acid transport proteins. Curr Opin Lipidol. 2007,18: 271-276.
    Ginzinger DG, Godfrey TE, Nigro J, et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis. Cancer Res. 2000,60: 5405-5409.
    Giulietti A, Overbergh L, Valckx D, et al. An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods. 2001, 25: 386-401.
    Glatz JF, Schaap FG, Binas B, et al. Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiol Scand. 2003,178: 367-371.
    Glatz JF, Storch J. Unravelling the significance of cellular fatty acidbinding proteins. Curr Opin Lipidol. 2001, 12: 267-274.
    Gray IC, Campbell DA, Spurr NK. Single nucleotide polymorphisms as tools in human genetics. Human molecular genetics. 2000,16: 2403-2408.
    
    Griffin HD, Guo K, Windsor D. Adipose tissue lipoge and fat deposition in leaner broiler chickens. JNutr. 1992,122: 363-368
    
    Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing. 2002, 7: 310-322.
    Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. 2004, http://www.cbs.dtu.dk/services/NetNGlvc/.
    Hall AM, Smith AJ, Bernlohr DA. Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein 1. J Biol Chem. 2003,278: 43008-43013.
    Hamilton JA. Transport of fatty acids across membranes by the diffusion mechanism. Prostaglandins Leukot Essent Fat Acids. 1999,60: 291-297.
    Harmon CM, Luce P, Beth AH, et al. Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J Membr Biol. 1991,121: 261-268.
    Hatch GM, Smith AJ, Xu FY. FATP-1 channels exogenous FA into 1, 2, 3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res. 2002,43:1380-1389.
    
    Hayashi K, Yandell DW. How sensitive is PCR-SSCP? Human Mutat. 1993,2: 338-346.
    Heather LC, Cole MA, Lygate CA. Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc Res. 2006, 72: 430-437.
    Heid CA, Stevens J, Livak K J. Real time quantitative PCR. Genome Res. 1996, 6: 986-994.
    Heinzer AK, Watkins PA, Lu JF. A very long-chain acyl-CoA synthetasedeficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Gen. 2004, 12: 1145-1154.
    Herrmann T, Buchkremer F, Gosch I, et al. Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene. 2001, 270: 31-40.
    Herrmann T, van der Hoeven F, Grone HJ, et al. Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol. 2003,161:1105-1115.
    Herrmann T, Grone HJ, Langbein L, et al. Disturbed epidermal structure in mice with temporally controlled fatp4 deficiency. J Invest Dermatol. 2005,125: 1228-1235.
    Hestekin CN, Barron AE. The potential of electrophoretic mobility shift assays for clinical mutation detection. Electrophoresis. 2006,27: 3805-3815.
    Hirsch D, Stahl A, Lodish HF. A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA. 1998,95: 8625-8629.
    Huang ZG, Xie Z. The development of animal adipose related genes. Animal Husbandry and Veterinary Medicine. 2004,4:41-43. (in Chinese).
     Huang Q, Fu YX, Boerwinkle E. Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum Genet. 2003, 113 (3): 253-257.
    
    Hubbard B, Doege H, Punreddy S. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology. 2006,130: 1259-1269.
    
    Koonen DP, Benton CR, Arumugam Y, et al. Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. Am J Physiol Endocrinol. Metab. 2004,286: E1042-E1049.
    Koonen DPY, Glate JFC, Bonen A, et al. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et Biophysica Acta. 2005, 1736: 163-180.
    Khanna C, Helman LJ. Molecular approaches in pediatric oncology. Annu Rev Med. 2006, 57: 83-97.
    Kim JK, Gimeno RE, Higashimon T. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest. 2004,113: 756-763.
    Landegren ULF, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998, 8: 769-776.
    Legoff J, Bouhlal H, Gresenguet G, et al. Real-time PCR quantification of genital shedding of herpes simplex virus (HSV) and human immunodeficiency virus (HIV) in women coinfected with HSV and HIV. J Clin Microbiol. 2006, 44: 423-432.
    Lewis SE, Listenberger LL, Ory DS, et al. Membrane topology of the murine fatty acid transport protein 1. J Biol Chem. 2001, 276: 37042-37050.
    Lichten MJ, Fox MS. Detection of non-homology-containing heteroduplex molecules. Nucleic Acids Res. 1983,11: 3959-3971.
    Liefers GJ, Tollenaar RAEM. Cancer genetics and their application to individualized medicine. Eur J Cancer. 2002, 38: 872-879.
    Liu ZJ, Cordes JF. Erratum to DNA technologies and their applications in aquaculture genetics. Aquaculture. 2004, 242: 735-736.
    Lobo S, Wiczer BM, Smith AJ. Fatty acid metabolism in adipocytes: Functional analysis of fatty acid transport proteins 1 and 4. J Lipid Res. 2006,48: 609-620.
     Luiken JJ, Schaap FG, van Nieuwenhoven FA, et al. Cellular fatty acid transport in heart and skeletal muscle as facilitated by proteins. Lipids. 1999,34: S169-S175 (Suppl).
    Luiken JJ, Arumugam Y, Dyck DJ, et al. Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem. 2001, 276: 40567-40573.
    Lunge VR, Miller BJ, Livak KJ, et al. Factors affecting the performance of 5-nuclease PCR assays for Listeria monocytogenes detection. J Microbiol Methods. 2002, 51: 361-368.
    Mackay IM. Real-time PCR in the microbiology laboratory. Clin Microbiol Infect. 2004, 10: 190-212.
    Mackay TFC, Langley CH. Molecular and phenotypic variation in the achaete-scutpregion of Drosophila melnnogaster. Nature. 1990, 348: 64-66.
    Maeda N, Shimomura I, Kishida K. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002, 8: 731-737.
    Malorny B, Tassios PT, Radstrom P, et al. Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol. 2003, 83: 39-48.
    Marotta M, Ferrer-Martnez A, Parnau J, et al. Fiber type- and fatty acid composition-dependent effects of high-fat diets on rat muscle triacylglyceride and fatty acid transporter protein-1 content. Metabolism. 2004,53:1032-1036.
    Martin G, Schoonjans K, Lefebvre AM, et al. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem. 1997,272:28210-28217.
    Martin G, Nemoto M, Gelman L, et al. The human Fatty acid transport protein-1 (SLC27A1; FATP-1) cDNA and gene: organization, chromosomal localization and expression. Genomics. 2000,66: 296-304.
    Man MZ, Hui TY, Schaffer JE, et al. Regulation of the murine adipocyte fatty acid transporter gene by insulin. Mol Endocrinol. 1996,10:1021- 1028.
    Meirhaeghe A, Martin G, Nemoto M, et al. Intronic polymorphism in the fatty acid transport protein 1 gene is associated with increased plasma triglyceride levels in a French population. Arterioscler Thromb Vasc Biol. 2000,20: 1330-1334.
    Meirhaeghe A, Cottel D, Amouyel P, et al. Lack of association between certain candidate gene polymorphisms and the metabolic syndrome. Mol Genet Metab. 2005, 86: 293-299.
    Memon RA, Feingold KR, Moser AH, et al. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol. 1998, 274:210-217.
    Mihalik SJ, Steinberg SJ, Pei Z. Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J Biol Chem. 2002, 277: 24771-24779.
     Milger K, Herrmann T, Becker C. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci. 2006,119: 4678-4688.
    
    Motojima K, Passilly P, Peters JM, et al. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem. 1998, 273:16710-16714.
    Moulson CL, Martin DR, Lugus JJ, et al. Cloning of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial roles for fatty acid transport protein 4 in skin and hair development. Proc Natl Acad Sci USA. 2003,100: 5274-5279.
    Mossab A, Lessire M, Guillaumin S. Effect of dietary fats on hepatic lipid metabolism in
    the growing turkey. Comp Biochem Physiol Biochem Mol Biol. 2002, 132: 473-483.
    Nisoli E, Carruba MO, Tonello C, et al. Induction of fatty acid translocase/CD36, peroxisome proliferatoractivated receptor-gamma2, leptin, uncoupling proteins 2 and 3, andtumor necrosis factor-alpha gene expression in human subcutaneous fat by lipid infusion. Diabetes. 2000, 49: 319-324.
    Ohnmacht GA, Wang E, Mocellin S, et al. Short-term kinetics of tumor antigen expression in response to vaccination. J Immunol. 2001,167:1809-1820.
    
    O'Donovan MC, Oefner PJ, Roberts SC, et al. Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics. 1998, 52: 44-49.
    
    Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrohporesis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA. 1989,86:2766-2770.
    
    Pang XL, Lee B, Boroumand N, et al. Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. J Med Virol. 2004, 72: 496-501.
    
    Pei Z, Fraisl P, Berger J. Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem. 2004,279: 54454-54462.
    Reischl U, Wittwer CT, Cockerill F. Rapid Cycle Real-time PCR: Methods and Applications; Microbiology and Food Analysis. New York: Springer-Verlag. 2002.
    Rothschild MF, Jacobson DA. Vaske CK, et al. A major gene for litter size in pigs. 5th World Congress Genet Appl Livestock Prod. 1994,21: 225-228.
    
    Pohl J, Fitscher BA, Ring A, et al. Fatty acid transporters in plasma membranes of cardiomyocytes in patients with dilated cardiomyopathy. Eur J Med Res. 2000, 5: 438-442.
    Pohl J, Ring A, Hermann T, et al. Role of FATP in parenchymal cell fatty acid uptake. Bioch et Biophy Acta. 2004,1686: 1-6.
    
    Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993, 265: E38O-E391.
    
    Qiu FF, Nie QH, Luo CL, et al. Association of Single nucleotide polymorphisms of the insulin gene with chicken early growth and fat deposition. Poultry science. 2006, 85: 980-985.
    Richards MR, Harp JD, (Dry DS, et al. Fatty acid transport protein 1 and long-chain acyl coenzyme A synthetase 1 interact in adipocytes. J Lipid Res. 2006, 47: 665-672.
    Richards MR, Listenberger LL, Kelly AA, et al. Oligomerization of the murine fatty acid transport protein 1 (FATP1). J Biol Chem. 2003,278: 10477-10483.
    Pitt JI. Toxigenic fungi and mycotoxins. Br Med Bull. 2000, 56: 184-192.
    Schaap FG, Binas B, Danneberg H, et al. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res. 1999, 85: 329-337.
    Schaffer JE, Lodish HF. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell. 1994, 79: 427-436.
    
    Schmutzhard J, Riedel HM, Wirgart BZ, et al. Detection of herpes simplex virus type 1, herpes simplex virus type 2 and varicella-zoster virus in skin lesions. Comparison of real-time PCR, nested PCR and virus isolation. J Clin Virol. 2004,29:120-126.
    Schroeder F, Jolly C, Cho T, et al. Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids. 1998.92:1-25.
    
    Sorrentino D, Stump D, Potter BJ, et al. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J Clin Invest. 1998, 82: 928- 935.
    Song YZ, Feng JY, Zhou LH, et al. Molecular cloning and ontogenesis expression of fatty acid transport protein-1 in yellow-feathered broilers. J Genet Genomic. 2008, 35: 327-333.
    Spitsberg VL, Matitashvili E, Gorewit RC. Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem. 1995, 230: 872-878.
    Stahlberg A, Zoric N, Aman P, et al. Quantitative real-time PCR for cancer detection: the lymphoma case. Expert Rev Mol Diagn. 2005, 5: 221-230.
    Stahl A. A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 2004, 447: 722-727.
     Stahl A, Evans JG, Pattel S, et al. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev Cell. 2002, 2: 477-488.
    Stahl A, Gimeno RE, Tartaglia LA, et al. Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab. 2001, 12: 266-273.
    Stahl A, Hirsch DJ, Gimeno RE, et al. Identification of the major intestinal fatty acid transport protein. Mol Cell. 1999, 3: 299-308.
    Stemgarjd H, Zerbaj KE, Pekkane CN, et al. Apolipoprotein E polymorphism predicts death from coronary heart disease in a longitudinal study of elderly Finnish men. Circulation. 1995, 91: 265-269.
    Stremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest. 1988, 81: 844-852.
    Stephens M, Smith N, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001a, 68: 978-989.
    
    Stephens JC, Schneider JA, Tanguay DA, et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science. 2001b, 293 (5529): 489-493.
    Stuhlsatz-Krouper SM, Bennett NE, Schaffer JE. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem. 1998,273: 28642-28650.
    Stuhlsatz-Krouper S, Bennett N, Schaffer J. Molecular aspects of fatty acid transport: mutations in the IYTSGTTGXPK motif impair fatty acid transport protein function. Prostaglandins Leukot Essent Fatty Acids. 1999,60: 285-289.
    Sukhotnik I, May N, Gork AS, et al. Effect of bowel resection and high-fat diet on heart CD36/fatty-acid translocase expression in a rat model of short-bowel syndrome. Pediatr Surg Int. 2002,18:620-623.
    Turcotte LP, Kiens B, Richter EA. Saturation kinetics of palmitate uptake in perfused skeletal muscle. FEBS Lett. 1991,279: 327-329.
    Turcotte LP, Swenberger JR, Tucker MZ, et al. Muscle palmitate uptake and binding are saturable and inhibited by antibodies to FABP (PM). Mol Cell Biochem. 2000, 210: 53-63.
    Uchiyama A, Aoyama T, Kamijo K, et al. Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem. 1996, 271: 30360-30365.
    Uchiyama A, Aoyama T, Kamijo K, et al. Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem. 1996,271: 30360-30365.
     Underhill PA, Jin AA, Mehdi SQ, et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high performance liquid chromatography. Genome Res. 1997,7:996-1005.
    
    Valasek MA, Repa JJ. The power of real-time PCR. Adv Physiol Educ. 2005,29: 151-159.
    van Doornum GJ, Guldemeester J, Osterhaus AD, et al. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 2003,41: 576-580.
    Vignal A, Milan D, Cristobal MS, et al. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel. 2002, 34: 275-305.
    Wang DG, Fan JB, Siao CJ, et al. Largescale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998, 280: 1077-1082.
    Wang T, Brown MJ. mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection. Analytical Biochemistry. 1999, 269: 198-201.
    Watkins PA, Lu JF, Steinberg SJ, et al. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem. 1998, 273: 18210-18219.
    Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997, 63: 3741-3751.
    Wolfe RR, Klein S, Carraro F, et al. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol. 1990, 258: E382- E389.
    Wu Q, Ortegon AM, Tsang B. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol. 2006,26: 3455-3467.
     Yong HW, Keren AB, Antonio R. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mammalian Genome. 2005,16: 201-210.
    Zakim D. Fatty acids enter cells by simple diffusion. Proc Soc Exp Biol Med. 1996, 212: 5-14.
    
    Zou Z, DiRusso CC, Ctmacta V, et al. Fatty acid transport in Saccharomyces cerevisiae. Directed mutagenesis of FAT 1 distinguishes the biochemical activities associated with Fat1p. J Biol Chem. 2002, 277: 31062-31071.
    Zhang WD. Research on biochemical characteristics of fatty acid metabolism in porcine as auxiliary factors of fat deposition [Dissertation]. 1995. Beijing: China Agricultural University.
    Zhang WH, Collins A, Morton NE. Does haplotype diversity predict power for association mapping of disease susceptibility. Hum Genet. 2004,115: 157-164.
    Zhou SL, Stump D, Sorrentino D. Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid-binding protein. J Biol Chem. 1992,268:14456-14461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700