伊犁河谷灌区土壤盐渍化与地下水调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是世界干旱、半干旱农业区最突出的生态环境问题之一,是自然因素与人为因素综合作用对区域水盐运动产生影响的结果。土壤盐渍化与地下水条件密切相关。因此,不少学者进行了大量研究,分析了土壤盐渍化与地下水条件之间的关系,并取得了重要突破,但大部分主要集中于单一的针对地下水埋深或者地下水质对土壤盐渍化的影响方面的研究。对地下水埋深及其矿化度综合作用条件下的土壤盐渍化与地下水条件之间的关系有待进一步研究。
     近年来,随着伊犁河谷部分灌区不合理的水土开发,区域内土壤盐渍化日益加重,明显阻碍了区域农业可持续发展。针对研究区目前的土壤盐渍化问题,在生态水文学、数理统计学理论的基础上,以地下水为主线,定量研究土壤盐渍化与地下水条件的关系,阐明土壤盐渍化的原因,确定研究区地下水最佳调控模式,提出有效防止土壤盐渍化的措施,对伊犁河谷生态保育和水土资源可持续开发利用有重要意义。本文主要研究成果如下:
     1)通过对研究区土壤盐分以及地下水、地表水检测资料的分析,探讨了土壤盐分特征及离子组成之间的定量关系,分析了不同土地利用类型,不同灌溉方式与不同灌溉时期土壤盐分特征。结果表明:研究区46.32%土壤为盐渍化土壤,盐渍化土壤类型主要为硫酸盐渍土。土壤阴离子以SO42-、Cl-为主,阳离子以Mg2+、Na+、Ca2+离子为主。不同土地利用类型条件下,耕层土壤盐分含量从高到低依次为:草地、旱田、稻田、林地。不同灌溉期耕层土壤含盐量从高到低依次为:春灌前、夏灌期、秋灌后、秋灌期;渠灌农田土壤含盐量比井灌农田小。研究区不合理的人类活动是导致土壤盐渍化的主要原因。
     2)研究区地下水化学类型主要为氯化钠-硫酸钠型水,阴离子以SO42-与Cl-为主,阳离子以Mg2+与ca2+离子为主。不同土地利用类型条件下,地下水矿化度从高到低依次为:草地、旱田、稻田、林地;不同灌溉期地下水矿化度从高到低依次为:春灌前、秋灌后、秋灌期、夏灌期。地下水埋深9-3月呈现增加的趋势,并3月达到最大值,之后开始减小,并6月达到最小值。本文提出了“地下水位活动期”的概念,并从而表达了研究区地下水埋深动态变化特征。
     3)在空间、时间尺度上研究了地下水埋深,地下水与土壤盐分分布规律,为研究区地下水资源的管理以及防止土壤盐渍化提供了科学依据。研究区地下水、土壤盐分时空变化特征基本相似。地下水与土壤盐分主要集中于研究区的中、西部区域,并形成了区域“积盐中心”。从时间尺度上,土壤含盐量春灌前最大,秋灌期最小;地下水矿化度春灌前最大,夏灌期最小。研究区垂直、平行河道方向各采样线土壤含盐量与地下水环境呈现总体一致的变化趋势,说明了土壤含盐量与地下水矿化度之间的关系密切。因子分析与灰色关联分析结果来看,地下水矿化度、EC、地下水埋深、Cl-与Na+浓度对研究区土壤盐渍化的影响较明显。
     4)结合研究区地下水条件以及土壤盐分检测资料的分析,采用对数正态分布模型,分析了土壤盐渍化与地下水埋深及其矿化度之间的关系,建立了不同地下水矿化度条件下,土壤盐渍化与地下水埋深之间的关系模型,确定了地下水调控深度,为研究区地下水人为调控提供技术支持。对数正态分布模型拟合结果表明:为了防止土壤次生盐渍化,当地下水矿化度介于1-3 g/L、3-6 g/L、6-10 g/L与1-10g/L时,地下水埋深应该分别控制在2.06 m、2.49 m、2.66 m与2.24 m以上。地下水矿化度越大,可在较大的地下水埋深范围内会出现土壤盐渍化。研究区不同时期地下水动态调控深度来看,夏灌期地下水调控深度为1.5-2.0m,秋灌期、春灌前、秋灌后均为2.0-2.5m是比较适宜的。结合前人研究结果,2.50m可作为干旱、半干旱区防止土壤盐渍化的地下水调控深度。
     5)在研究区整体盐胁迫不十分强烈情况下,可优先考虑采用地势较低的积盐洼地进行排盐。针对研究土壤盐渍化特征,从不同角度提出了土壤盐渍化的调控对策。这些对策对改善农业生产条件和生态环境,发展生态、可持续农业,促进区域可持续发展具有重要意义。
Soil salinization is one of the major eco-environmental problems in arid and semi-arid agricultural lands in the world. It resulted from the effects of regional natural conditions and human activities on water-salt movement. Soil salinization is related closely to groundwater conditions. Therefore, many researchers have studied the relations between soil salinization and groundwater conditions, and have achieved some important results. But most of the studies have been concentrated mainly on the effects of groundwater depth or quality on soil salinization. Studies of the relations between soil salinization and groundwater under the co-effectivies of groundwater depth and salinity still need more specific studies.
     In recent years, with the improper exploitation of water and soil resources in some irrigation areas of Ili River Valley, soil salinization in the area has been gradually increased, and apparently obstructed the agricultural sustainable development. Aimed at the current situations of soil salinization in Ili River Valley, based on the theories of eco-hydrology and mathematical statistics, take groundwater as the main clue, the changes of groundwater conditions and soil salinization were studied, and the relations between groundwater conditions and soil salinization were quantitatively analyzed, the main causes of soil salinization were clarified. The ecological water table for the study area was confirmed, and the effective measures for control of soil salinization were analyzed. Results of the study could provide good scientific basic for ecological protection and sustainable use of soil, water resources in Ili River Valley. The main results of the study were as follows:
     1) Based on the analysis of the measurement datum from soil, groundwater and surface water, the quantitative relations between soil salinity and ion components were discussed, the characters of soil salinity under different land use types, irrigation methods and different periods were analyzed. Results showed that:46.32% of soil samples in the study area were salinized, and the main type of saline soil was sulphate saline soil. Anions were mainly SO42- and Cl- while cations were mainly Mg2+, Na+, and Ca2+ in the soil. The abundance of salinity of root zone soil layer for different land use types was in the following order:grassland> glebe field> paddy field> forest land. The abundance of salinity of root zone soil layer for different period was in the following order:before spring irrigation> summer irrigation> after autumn irrigation> during autumn irrigation. The salinity of root zone soil layer of farmlands irrigated with surface water was lower than farmlands irrigated with groundwater. Improper human activities were the main causes of soil salinization in the study area.
     2) The main type of groundwater was sodium chloride-sodium sulfate water. Anions were mainly SO42- and Cl- while cations were mainly Mg2+ and Ca2+ for groundwater. The abundance of groundwater salinity for different land use type was in the following order: grassland> glebe field> paddy field> forest land. The abundance of groundwater salinity for different period was in the following order:before spring irrigation> after autumn irrigation> during autumn irrigation> summer irrigation. Groundwater depth were increased from September to March in the study area, and reached to the maximum value in March, and then it declined and reached to the minimum value in June. The conception of "groundwater level active period" was put forward, and the dynamics of groundwater depth were evaluated.
     3) The distribution of salinity of soil and groundwater was analyzed at spatial and temporal scale. It will provide scientific basic for groundwater management and control of soil salinization. The spacio-temporal variations of salinity of soil and groundwater were essentially similar. Salinity of soil and groundwater was concentrated mainly at the central and western parts of the study area, and formed regional "salt center". In the temporal scale, the soil salinity showed maximum value before spring irrigation, and showed minimum value during autumn irrigation while the groundwater salinity showed maximum value before spring irrigation period, and showed minimum value during summer irrigation period. The trend for the changes of the salinity of soil and groundwater for each sampling lines which vertical and parallel with riverbed showed almost the same trends. It explained the close relations between the salinity of soil and groundwater. Results of factor analysis and compositor analysis explained that:groundwater salinity, EC, groundwater level, Cl" and Na+ concentration have much influence on soil salinization.
     4) The relationship between groundwater level and soil salinity were analyzed integrated with the analysis of the measurement of soil salinity and groundwater conditions in the study area, and adopted the logarithmic normal distribution model. The relationship models between groundwater level and soil salinity under different groundwater salinity were established. It will helpful for providing technical support for groundwater control in the study area. Results of logarithmic normal distribution model showed that:the groundwater depth should be sustained more that 2.06 m,2.49 m,2.66 m and 2.24 m for control of soil salinization while the groundwater salinity is 1-3 g/L,3-6 g/L,6-10 g/L and 1-10 g/L, respectively. The probability of the emergency of soil salinization was higher with higher groundwater salinity. According to the dynamic control of groundwater level for different periods, groundwater level might be controlled within 1.5-2.0 m during summer irrigation, and 2.0-2.5 m for autumn irrigation, before spring irrigation and after autumn irrigation. According to the results of similar researches,2.5m could be the critical groundwater depth for controlling soil salinization in arid and semi-arid zone.
     5) It is prior consideration to the control of soil salinization at lowlands with low salt stress in the study area. According to current status of soil salinization in the study area, the countermeasures of salt-affected soil put forward, they were much significant not only for improving the agricultural production conditions and ecological environment, but also for developing ecological, sustainable agriculture and for promoting regional sustainable development of the study area.
引文
[1]Masoud A A, Koike K. Arid land salinization detected by remotely-sensed land cover changes:A case study in the Siwa Region, NW Egypt [J]. Journal of Arid Environments,2006,66:151-167.
    [2]姜凌,李佩成,胡安众,等.干旱区绿洲土壤盐渍化分析评价[J].干旱区地理,2009,32(2):234-239.
    [3]翁永玲,宫鹏.土壤盐渍化遥感应用研究进展[J].地理科学,2006,26(3):369-375.
    [4]Jonathan L H. Physiological response to groundwater depth varies among species and with river flow regulation [J]. Ecological Applications,2001,11(4):1046-1059.
    [5]海米提·依米提,潘晓玲,塔西甫拉提·特依拜,等.塔里木盆地水土资源开发及其生态环境效应[J].资源科学,2002,24(6):48-54.
    [6]陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
    [7]朱庭芸.灌区土壤盐渍化防治[M].北京:农业出版社,1992.32-38.
    [8]Szabolcs I. Salinization of soil and water and its relation to desertification [J]. Desertification Control Bulletin,1992,21:32-37.
    [9]鲁春霞,于云江,关有志.甘肃省土壤盐渍化及其对生态环境的损害评估[J].自然灾害学报,2001,10(1):99-102.
    [10]许志坤.新疆盐渍土的形成、分类、特点和利用改良[C].国际盐渍土改良学术讨论会论文集,1985,5:109-112.
    [11]付秋萍,张江辉,王全九,等.塔里木盆地土壤盐分变化特征分析[J].自然科学进展,2007,17(8):1091-1097.
    [12]丁建丽,张飞,江红南,等.塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究-以渭干河-库车河三角洲绿洲为例[J].干旱区地理,2008,31(4):624-632.
    [13]古丽格娜·哈力木拉提,海米提·依米提,阿布都沙拉木·加拉力丁,等.于田绿洲盐渍化土壤盐分动态变化特征分析[J].水土保持研究,2008,45(3):541-546.
    [14]塔西甫拉提·特依拜,张飞,丁建丽,等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理.2007,30(4):544-551.
    [15]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究-以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [16]刘国华,海米提·依米提,王庆峰,等.于田绿洲土壤盐分特征分析[J].水土保持研究,2009,16(3):260-263.
    [17]王宏伟,张小雷,乔木,等.基于GIS的伊犁河流域生态环境质量评价与动态分析[J].干旱区
    地理,2008,31(2):215-221.
    [18]Ramsis B S, Claus J O, Robert W F. Contributions of groundwater conditions to soil and water salinization [J]. Hydrogeology Journal,1999,7:46-64.
    [19]陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报,1997,5:77-84.
    [20]宋长春,邓伟.吉林西部地下水特征及其与土壤盐渍化的关系[J].地理科学,2000,20(3):246-250.
    [21]Prendergast J B, Calvin W R, William L H. A model for conjunctive use of groundwater and surface for control of irrigation salinity [J]. Irrigation Science,2004,14:167-175.
    [22]Ibrakhimov M, Khamzina A, Forkutsa I, et al. Groundwater table and salinity:Spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin) [J]. Irrigation Drainage System,2007,21:219-236.
    [23]陈亚宁,张宏锋,李卫红,等.新疆塔里木河下游物种多样性变化与地下水位的关系[J].地球科学进展,2005,20(2):158-165.
    [24]徐海量,宋郁东,陈亚宁,等.生态输水后塔里木河下游合理水位探讨[J].水土保持通报,2003,23(5):22-25.
    [25]Horton J L. Physiological response to groundwater depth varies among species and with river flow regulation [J]. Ecological Applications,2001,11(4):1046-1059.
    [26]Feng Q, Endo K H, Cheng G D. Soil water and chemical characteristics of sandy soils and their significance to land reclamation [J]. Journal of Arid Environments,2002,51:35-54.
    [27]Lammerts E J, Maas C, Grootjans A P. Groundwater variables and vegetation in dune slacks [J]. Ecological Engineering,2001,17(1):33-47.
    [28]朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社.2003:189-199.
    [29]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社.1999:1-10.
    [30]王青海,沈军辉,季恒玉.我国西北地区土地盐渍化与水资源利用[J].四川环境,2000,19(4):40-42.
    [31]任加国,郑西来,许模,等.新疆叶尔羌河流域土壤盐渍化特征研究[J].土壤,2005,37(6):635-639.
    [32]郭占荣,刘花台.西北内陆灌区土壤次生盐渍化与地下水动态调控[J].农业环境保护,2002,21(1):45-48.
    [33]Grant R C. Differential effects of salinity on leaf elongation kinetics of three grass species [J]. Plant and Soil,2003,253:233-44.
    [34]Lambnert K, Karim S. Irrigation and salinity:a perspective review of the salinity hazards of irrigation development in the arid zone [J]. Irrigation and Drainage Systems,2002,16:161-174.
    [35]Dennis W. An economic model of water logging and salinization in arid regions [J]. Ecological Economics,1999,30:475-491.
    [36]Romy G, Oscar C. On the efficient use of a catchment's land and water resources--dry land salinization in Australia [J]. Ecological Economics,2001,38:441-458.
    [37]Ali K S. A dynamic model of salinization on irrigated lands [J]. Ecological Modelling,2001,139: 177-199.
    [38]石元春,李韵珠.盐渍土研究的现状和发展趋势[J].干旱区研究,1986,(4):38-44.
    [39]T Jie, L Nianfeng. Some problems of ecological environmental geology in arid and semiarid areas of China. Environmental Geology,1995,26:64-67.
    [40]Rhoades J D, Raats P A C, Prather R J. Effects of Liquid-Phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity [J]. Soil Science Society of America Journal,1976,40(5):651-655.
    [41]毛任钊,田魁祥.盐渍土盐分指标及其与化学组成的关系[J].土壤,1997,6:326-330.
    [42]刘广明.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,5(3):384-389.
    [43]Shimojima E, Yoshioka R, Tamagawa I. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation [J]. Journal of Hydrology,1996,178:109-136.
    [44]王遵亲.中国盐渍土[M].北京:科学出版社,1993:6-10.
    [45]Mondala M K, Bhuiyan S I, Franco D T. Soil salinity reduction and prediction of salt dynamics in the coastal rice lands of Bangladesh [J]. Agricultural Water Management,2001,47:9-23.
    [46]赵丹,邵东国,代涛.干旱灌区水盐动态模拟与实验研究[J].灌溉排水学报,2004,23(2):42-46.
    [47]史海滨,陈亚新.吸附作用与不动水体对土壤溶质运移影响的模拟研究[J].土壤学报,1993,8:49-55.
    [48]Sylla M, Stein A, Breemen N. Spatial variability of soil salinity at different scales in the mangrove rice agro-ecosystem in West Africa [J]. Agriculture, Ecology and Environment,1995,54:1-15.
    [49]Jordan M M, Navarro P J. Spatial dynamics of soil salinity under arid and semi-arid conditions geological and environmental implications [J]. Environmental Geology,2004,45:448-456.
    [50]Herbst M, Diekkruger B. Modelling the spatial variability of soil moisture in micro-scale catchments and comparison with field data using geostatistics [J]. Physics and Chemistry of the Earth,2003,8: 239-245.
    [51]Miyamoto S, Chacon A, Hossain M, et al. Soil salinity of urban turf areas irrigated with saline water [J]. Landscape and Urban Planning,2005,71:233-241.
    [52]白由路,李保国,胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究[J].土壤肥料,1999,3:22-25.
    [53]张乃明,李保国,胡克林.太原污灌区土壤重金属和盐分含量的空间变异特征[J].环境科学学报,2001,21(3):349-353.
    [54]杨贵羽,陈亚新.土壤水分盐分空间变异性与合理采样数研究[J].干旱区农业研究,2002,20(4):64-66.
    [55]盛建东,杨玉玲,陈冰,等.土壤总盐、pH值与总碱度的空间变异性研究[J].土壤,2005,37(1):69-73.
    [56]方生,陈秀玲.防治灌区土壤盐碱化与水资源开发利用[J].河北水利科技,1997,18(2):11-15.
    [57]张长春,邵景力,李慈君,等.华北平原地下水生态环境水位研究[J].吉林大学学报(地球科学版),2003,33(3):323-326.
    [58]荣丽杉,束龙仓,王茂枚,等.合理地下水生态水位的估算方法研究-以塔里木河下游为例[J].地下水,2009,31(1):12-16.
    [59]宋郁东,樊自立,雷志栋,等.中国塔里木河水资源与生态问题研究[M].乌鲁木齐:新疆人民出版社,2000:249-259.
    [60]Prathapar S A, Qureshi A S. Modeling the effects of deficit irrigation on soil salinity, depth to water table transpiration in semi-aid zone with Monsoonal rains [J]. Water Resources Development,1999, 15(1):141-159.
    [61]Tyree. Use of positive pressures to establish vulnerability curve:further support for the air-seeding hypothesis and implications for pressure-volume analysis [J]. Plant Physiology,1992,100:205-209.
    [62]Jonathan L H. Physiological response to groundwater depth varies among species and with river flow regulation [J]. Ecological Applications,2001,11(4):1046-1059.
    [63]陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
    [64]Clive A, Ewan A. Water Resources in Arid Realm [M]. Routledge Press, London and Newyork,1992: 136-184.
    [65]Janine G, Jacues M, Fred F. Groundwater, Surface Water Ecotones:Biological and Hydrological Interactions and Management Option [M]. Cambridge University Press,1997:183-224.
    [66]樊自立,马英杰,张宏,等.塔里木河流域生态地下水位及其合理深度确定[J].干旱区地理,2004,27(1):8-13.
    [67]张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004,24(1):110-113.
    [68]陈永金,陈亚宁,李卫红,等.塔里木河下游输水条件下浅层地下水化学特征变化与合理生态水位探讨[J].自然科学进展,2006,16(9):1130-1137.
    [69]姚荣江,杨劲松.黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J].农业工程学报,2007,23(8):45-51.
    [70]郝兴明,陈亚宁,李卫红,等.塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应[J].地理学报,2008,63(11):1123-1129.
    [71]Lamontagne S, Cook P G, O'Grady A, et al. Groundwater use by vegetation in a tropic savanna riparian zone (Daly River, Australia) [J]. Journal of Hydrology,2005,310:280-293.
    [72]王姣妍,路京选.伊犁河流域水资源开发利用的水文及生态效应分析[J].自然资源学报,2009,24(7):1297-1307.
    [73]张军民.伊犁河流域气候资源特点及其时空分布规律研究[J].干旱气象,2006,24(2):1-4.
    [74]金海龙,焦黎,许豫东.伊犁河谷绿洲的形成演化与开发利用研究[J].新疆师范大学学报(自然科学版),1999,18(2):35-40.
    [75]孟凤轩,马兴旺,罗新湖.伊犁河流域新垦区盐渍化土壤的改良培肥[J].新疆农业科学,2008,45(S3):29-32.
    [76]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [77]关元秀,刘高焕,王劲峰.基于GIS的黄河三角洲盐碱地改良分区[J].地理学报,2001,56(2):198-205.
    [78]王遵亲,祝寿泉,尤文瑞,等.中国盐渍土[M].北京:科学出版社,1993.
    [79]逯忠斌,侯志广,王秀梅.新农药HW-02在土壤中的吸附[J].环境科学研究,2009,22(7):851-855.
    [80]姚春霞,陈振楼,许世远.上海市郊保护地土壤盐分研究[J].环境科学,2007,28(6):1372-1376.
    [81]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002,30-35.
    [82]Grattan S R, Grieve C M. Salinity-mineral nutrient relations in horticultural crops [J]. Scientia Horticulturae,1999,78:127-157.
    [83]郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望[J].土壤,2004,36(1):25-29.
    [84]余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究[J].土壤学报,2006,43(4):571-576.
    [85]马兴旺,朱靖蓉,李保国.绿洲土地利用对地下水矿化度时空变化影响的定量评估[J].自然资源学报,2009,24(3):466-475.
    [86]何贵平,陈益泰,黄一青,等.杭州湾海涂造林后土壤盐分和水分动态变化[J].林业科学研究,2006,19(2):257-260.
    [87]Agnieszka P. Inland halophilous vegetation as indicator of soil salinity [J]. Basic and Applied Ecology, 2003,4:525-536.
    [88]Prathapar S A, Qureshi S. Modelling the effects of deficit irrigation on soil salinity, depth to water table and transpiration in semi-arid zones with monsoonal rains [J]. Water Resources Development, 1998,15:141-159.
    [89]Ayars J E, Christen E W, Soppe R W, et al. The resource potential of in situ shallow ground water use in irrigated agriculture:a review [J]. Irrigation Science,2006,24(3):147-160.
    [90]Laxmi N S, Kumar D N, Sudhindra N P, et al. Optimal crop planning and conjunctive use of water resources in a coastal river basin [J]. Water Resources Management,2002,16:145-169.
    [91]Jorenush M H, Sepaskhah A R. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions [J]. Agricultural Water Management,2003,61:125-141.
    [92]Wang Y R, Kang S Z, Li F S. Saline water irrigation scheduling through a crop-water-salinity production function and a soil-water-salinity dynamic model [J]. Pedosphere,2007,17(3):303-317.
    [93]翁永玲,宫鹏.黄河三角洲盐渍土盐分特征研究[J].南京大学学报(自然科学),2006,42(6):602-610.
    [94]刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究[J].土壤通报,2001,32(6):85-87.
    [95]李贻学,东野光亮,李新举.黄河三角洲盐渍土可持续利用对策[J].水土保持学报,2003,17(2):55-61.
    [96]周颖,张侠,周峰.江苏省耕地地力等级划分[J].南京大学学报(自然科学版),2003,39(4):580-586.
    [97]Dehaan R L, Taylor, G R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization [J]. Remote Sensing of Environment,2002,80:406-417.
    [98]Gebre M Z, Lauren J. Chapman z, Colin A C. Conductivity as a predictor of a total cations and salinity in Ethiopian lakes and rivers:revisiting earlier models [J]. Limnologica,2002,32:21-26.
    [99]郑建民,邢云朋,王洪悦,等.灌区地下水位上升引发的特殊环境问题-土壤次生盐渍化[J].环境水利,2006,6:38-39.
    [100]Bernard J P, Calvin W R, William L H. A model for conjunctive use of groundwater and surface for control of irrigation salinity [J]. Irrigation Sciences,1994,14:167-175.
    [101]Mamattursun Eziz, Hamid Yimit, Gulgina Halmurat, et al. The landscape patterns change of Tarim Populus Nature Reserve and its eco-environmental effects, Xinjiang, China [C]. Geoinformatics 2008.
    [102]张明.区域土地利用结构及其驱动因子的统计分析[J].自然资源学报,1999,14(4):381-384.
    [103]Harun T. Agricultural land use change and sustainable use of land resources in the mediterranean region of Turkey [J]. Journal of Arid Environments,2003,54:553-564.
    [104]Didier D, Patrick L. Land cover and land use changes in relation to social evolution-a case study from Northern Chile [J]. Journal of Arid Environments,2004,56:193-211.
    [105]海米提·依米提.塔里木盆地绿洲水资源利用与环境可持续发展研究[D].博士论文,中国科学院,2006:47-83.
    [106]张从.环境评价教程[M].北京:中国环境科学出版社,2002,100-115.
    [107]李韵珠,陆锦文,吴金绥.河北曲周盐渍土区的地下水化学特征[J].土壤学报,2001,38(3)341-351.
    [108]Hamid Yimit. Groundwater depth variation and effects on the condition of soil and vegetation in Qira Oasis[C]. Proceedings of SPIE Vol.4890, (1.2004), SPIE-The International Society for Optical Engineering, Bellingham, Washington, USA.
    [109]黄锡荃.水文学[M].北京:高等教育出版社,1985,20-22.
    [110]Benyamini Y, Mirlas V, Marish S. A survey of soil salinity and groundwater level control systems in irrigated fields in the Jezre'el Valley, Israel [J]. Agricultural Water Management,2005,76:181-194.
    [111]Tedeschi A, Aquila R D. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics [J]. Agricultural Water Management,2005,77:308-322.
    [112]Xu H L, Ye M, Li J M. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River [J]. Journal of Environmental Sciences, 2007,19:1199-1207.
    [113]Heuvelink G B M, Webster R. Modelling soil variation:past, present, and future [J]. Geoderma,2001, 100:269-301.
    [114]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-240.
    [115]Li L, Revesz P. Interpolation methods for spatio-temporal geographic data [J]. Computers, Environment and Urban Systems,2004,28:201-227.
    [116]Bi H X, Li X Y, Liu X, et al. A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China:A geostatistical approach [J]. International Journal of Sediment Research, 2009,24:63-73.
    [117]Mehmet C, TurgutY. Hydrochemical evaluation of groundwater quality in the Cavuscayi basin, Sungurlu-Corum, Turkey [J]. Environmental Geology,2006,50:323-330.
    [118]Rouhani Sh., Wackernagel H. Multivariate geostatistical approach to space-time data analysis[J]. Water Resources Research,1990,26:585-591.
    [119]侯景儒,黄竟先.实用地质统计学[M].北京:地质出版社,1998.
    [120]李哈滨.空间异质性定量研究理论与力法[J].应用生态学报,1998,9(6):651-657.
    [121]黄元仿,周志宇,苑小勇,等.干旱荒漠区土壤有机质空间变异特征[J].生态学报,2004,24(12):2773-2781.
    [122]李小玉,宋冬梅,肖笃宁.石羊河下游民勤绿洲地下水矿化度的时空变异[J].地理学报,2005,16(2):320-327.
    [123]Li B G, Bai Y L, Hu K L, et al. Spatial variability and distribution of nitrate content of shallow groundwater in Huang-Huai-Hai Plain [J]. Engineering Science,2001,3(4):42-45.
    [124]苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的时空变异特征[J].地理学报,2003,58(6):854-860.
    [125]Caruso C, Quarta F. Interpolation methods comparison [J]. Computers and Mathematics with Applications,1998,35(12):109-126.
    [126]Pucci A A, Murashige J A E. Application of universal kriging to an aquifer study in New Jersey [J]. Ground Water,1987,25:672-678.
    [127]Theodossiou N, Latinopoulos P. Evaluation and optimisation of groundwater observation networks using the Kriging methodology [J]. Environmental Modelling and Software,2006,21(7):991-1000.
    [128]Triantafilis J, Odeh I O A, Warr B, et al. Mapping of salinity risk in the lower Namoi valley using non-linear kriging methods [J]. Agricultural Water Management,2004,69:203-231.
    [129]胡玉福,邓良基,张世熔,等.四川盆地西缘浅层地下水铁、锰含量的空间变异特征[J].生态
    学报,2009,29(2):797-803.
    [130]瓦哈甫·哈力克,海米提·依米提,塔西甫拉提·特依拜,等.绿洲耕地变化趋势及其驱动力-塔里木盆地南部策勒绿洲为例[J].地理学报,2004,59(4):608-614.
    [131]张宏锋,李卫红,葛洪涛,等.塔里木河下游地下水位与水化学成分关联度排序分析[J].干旱区地理,2003,26(3):260-263.
    [132]Zha J M. Grey relational matrix analysis:grey judgment model [J]. The Journal of Grey System, 1995,7(4):323-330.
    [133]刘思峰,韩天榜,党耀国.灰色系统理论极其应用[M].北京:科学出版社,1999,40-71.
    [134]王密侠,李新.北方旱区地下水位调控与盐渍化防治[J].地下水,1994,16(4):172-175.
    [135]王明娜,向友珍.我国灌区地下水调控研究现状及其发展态势[J].地下水,2008,30(4):21-23.
    [136]Tedeschi A, Beltran A, Aragues R. Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain) [J]. Agricultural Water Management,2001,49(1):31-50.
    [137]魏晓妹.灌区地下水位动态调控模型及其应用[J].灌溉排水,1998,(4):1-5.
    [138]汪林,于福亮.银川平原浅层地下水资源和水盐调控研究[J].资源科学,2001,23(3):82-87.
    [139]王明慈,沈恒范.概率论与数理统计[M].北京:高等教育出版社,2007,95-109.
    [140]方汝林.中国北方灌区水盐调控[M].北京:北京出版社,1992,146-152.
    [141]樊自立,陈亚宁,李和平,等.中国西北干旱区生态地下水埋深适宜深度的确定[J].干旱区资源与环境,2008,22(2):1-5.
    [142]王秀红,胡双熙.柴达木盆地农田土壤盐渍化特征及其防治对策研究[J].干旱区资源与环境,1998,12(4):74-84.
    [143]Vedula S, Mujumdar P P, Chandra S G. Conjunctive use modeling for multicrop irrigation [J]. Agricultural Water Management,2005,73:193-221.
    [144]Reichard E G. Groundwater-surface water management with stochastic surface water supplies:a simulation optimization approach [J]. Water Resources Research,1995,31(11):2845-2865.
    [145]Knapp K C, Olson L J. The economics of conjunctive groundwater management with stochastic surface supplies [J]. Journal of Environmental Economics and Management,1995,28:340-356.
    [146]Emch P G, Yeh W G. Management model for conjunctive use of coastal surface water and groundwater [J]. Journal of Water Resources Planning and Management,1998,124(3):129-138.
    [147]Azaiez M N, Hariga M. A single-period model for conjunctive use of ground and surface water under severe overdrafts and water deficit [J]. European Journal of Operational Research,2001,133(3): 653-666.
    [148]杭军.灌区井渠结合技术探讨[J].中国农村水利水电,2001,9:53-54.
    [149]邵景力.包头市地下水、地表水联合调度多目标管理模型[J].资源科学,2003,25(4):49-55.
    [150]彭世彰.防治土壤盐碱化最优灌排模型[J].水科学进展,1995,6(3):183-188.
    [151]王浩,陈敏建,唐克旺.水生态环境价值[M].北京:清华大学出版社.
    [152]张建国,徐新文,雷加强,等.沙漠地区咸水滴灌林地盐结皮层化学特征[J].干旱区地理,2009,26(2):255-260.
    [153]于秋春,林庆元,崔桂生.地表水与地下水联合运用方案的建立与运用[J].地下水,1997,19(3):101-103.
    [154]米日古丽·买买提.伊犁河谷地下水动态模拟[D].硕士论文,新疆大学,2010:25-39.
    [155]陈小兵,杨劲松,张奋东,等.基于水盐生产函数的绿洲灌区水盐调控研究[J].灌溉排水学报,2007,26(4):75-78.
    [156]梁籍,李颖,张学红,等.阿克苏地区地下水资源与水盐调控分析[J].吉林大学学报(地球科学版),2003,33(2):192-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700