携带cdc2-siRNA重组腺相关病毒对C型Niemann-Pick病小鼠的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分利用Helper Free系统构建携带cdc2-siRNA重组腺相关病毒及功能鉴定
     目的
     周期素依赖性蛋白激酶(cyclin dependent kinases, cdks)在多种神经变性疾病的发病中扮演着重要的角色。实验目的是为了探讨与cdks相关的基因治疗C型尼曼-皮克病的可能性,我们包装携带cdc2-siRNA的重组腺相关病毒(recombinant adeno-associated virus, rAAV)。
     方法
     应用分子生物学技术构建生成pAAV-EGFP-U6-cdc2-siRNA表达质粒。用磷酸钙将该质粒和p-RC、p-Helper质粒共转染于AAV-293细胞中,包装生成携带cdc2-siRNA的rAAV (rAAV-EGFP-U6-cdc2-siRNA)。行Western Blot检测cdc2-siRNA对AAV-293细胞cdc2基因的沉默效果。
     结果
     DNA测序证明U6-cdc2-siRNA已成功构建到质粒pAAV-MCS-EGFP中。经72小时的包装,AAV-293细胞中可见EGFP的表达。rAAV-EGFP-U6-cdc2-siRNA感染AAV-293细胞后,经Western Blot检测显示AAV-293细胞中cdc2基因表达显著下调,这证明该重组腺相关病毒具有令人满意的基因沉默作用。
     结论
     这些结果表明该携带cdc2-siRNA重组腺相关病毒的包装获得成功。它具有有效沉默cdc2基因的作用,这将可能为C型尼曼-皮克病提供一种新的治疗手段。
     第二部分携带cdc2-siRNA重组腺相关病毒对C型尼曼-皮克病小鼠行为学的影响
     目的
     观察小脑注射携带cdc2-小干扰RNA(cdc2-siRNA)重组腺相关病毒(rAAV)对C型尼曼-皮克病(NPC)小鼠行为学的影响。
     方法
     2周龄npc-/-小鼠经小脑注射携带cdc2-siRNA的rAAV,动态测量小鼠体重,并进行衣架悬挂试验及足印试验评估小鼠4到8周的运动能力。
     结果
     ①cdc2-siRNA组小鼠体重减轻明显延缓。
     ②衣架悬挂试验显示cdc2-siRNA组小鼠运动缺陷明显改善。
     ③足印试验显示cdc2-siRNA组相对步距(75.1%±8.6%)与对照病毒组及非手术组相比明显增加。
     结论
     小脑注射携带cdc2-siRNA的rAAV改善了npc-/-小鼠的行为学,有可能为NPC的治疗提供新的有效途径。
     第三部分携带cdc2-siRNA重组腺相关病毒对C型尼曼-皮克病小鼠神经病理的影响
     目的
     评估小脑注射携带cdc2-siRNA的重组腺相关病毒(rAAV)对C型尼曼-皮克病(NPC)小鼠神经病理的影响。
     方法
     ①经小脑途径给2周龄npc-/-小鼠注射携带cdc2-siRNA的rAAV。
     ②通过免疫组织化学、HE染色及免疫印迹方法评估注射携带cdc2-siRNA rAAV npc-/-小鼠的病理改变。
     结果
     ①携带cdc2-siRNA的rAAV在npc-/-小鼠脑中广泛表达。
     ②携带cdc2-siRNA的rAAV明显减少npc-/-小鼠轴突球状体的数量、延缓浦肯野细胞的脱失。
     ③携带cdc2-siRNA的rAAV能有效抑制cdc2、磷酸化的神经丝(由SMI31识别)、磷酸化的有丝分裂相关蛋白(由TG-3和MPM-2识别)及磷酸化的Tau蛋白(由PHF-1识别)的表达。
     结论
     小脑注射携带cdc2-siRNA的rAAV对npc-/-小鼠神经元细胞骨架病理具有保护作用,cdc2有可能成为NPC治疗的新靶点。
Part One Packaging and functional identification of recombinant adeno-associated virus encoding cdc2-siRNA by Helper Free system
     Objective
     Cyclin dependent kinases(cdks) play an important role in the pathogenesis of multiple neurodegenerative diseases. As the first step toward exploring the possibility of cdks related gene therapy for Niemann-pick disease type C, we packed recombinant adeno- associated virus (rAAV) encoding cdc2-siRNA.
     Methods
     The expressing plasmid pAAV-EGFP-U6-cdc2-siRNA was constructed by molecular biological techniques. The rAAV encoding cdc2-siRNA (rAAV-EGFP-U6-cdc2-siRNA) was packed by calcium phosphate mediated cotransfection of pAAV-EGFP-U6-cdc2- siRNA, p-RC and p-Helper into AAV-293 cells.
     Results
     DNA sequencing proved the successful construction of U6-cdc2-siRNA in pAAV- MCS-EGFP. After 72 hours’packaging, the expression of EGFP could be detected in AAV-293 cells. Cdc2 gene expression in AAV-293 cells assessed by Western Blot was down-regulated markedly after infection of rAAV-EGFP-U6-cdc2-siRNA, which evidenced the satisfactory silencing effect of this virus. Conclusion
    
     Our data indicate that the packaging of rAAV encoding cdc2-siRNA is successful. It can silence cdc2 gene effectively, which might offer a novel means for treating Niemann- Pick disease type C.
     Part Two Effect of recombinant adeno-associated virus encoding cdc2-siRNA on the behavior of Niemann-Pick disease type C mice
     Objective
     To observe the effect of cerebellar injection of recombinant adeno-associated virus (rAAV) encoding cdc2-siRNA on the behavior of Niemann-Pick disease type C (NPC) mice.
     Methods
     The rAAV encoding cdc2-siRNA was injected into the cerebellum of 2 weeks old npc-/- mice. The mice were weighed dynamically and coat hanger test and footprint test were performed to assess their motor ability from 4 to 8 weeks age.
     Results
     ①Weight loss was significantly delayed in cdc2-siRNA group.
     ②Coat hanger test showed that the motor defect was remarkably ameliorated in cdc2-siRNA group.
     ③Footprint test showed that the relative stride in cdc2-siRNA group (75.1%±8.6%) was markedly longer than that in the controlled viral group and the non-surgical group.
     Conclusion
     The cerebellar injection of rAAV encoding cdc2-siRNA improves the behavior of npc-/- mice, which may offer a novel means for treating NPC.
     Part Three Effect of recombinant adeno-associated virus encoding cdc2-siRNA on the neuropathology of Niemann-Pick disease type C mice
     Objective
     To assess the effect of cerebellar injection of recombinant adeno-associated virus (rAAV) encoding cdc2-siRNA on the neuropathology of Niemann-Pick disease type C (NPC) mice.
     Methods
     RAAV encoding cdc2-siRNA was injected into the cerebellum of 2 weeks old npc-/- mice. The neuropathology in the treated mice was evaluated by immunohistology, HE staining and immunoblotting technology.
     Results
     ①rAAV encoding cdc2-siRNA was widely expressed in npc-/- mice brain.
     ②rAAV encoding cdc2-siRNA remarkably reduced the number of axonal spheroids, and ameliorated the deletion of purkinje cells in npc-/- mice.
     ③rAAV encoding cdc2-siRNA markedly inhibited the expressions of cdc2, phospho- neurofilament (recognized by SMI31), phospho-mitotic associated proteins (recognized by TG-3 and MPM-2), and phospho-Tau (recognized by PHF-1).
     Conclusion
     The rAAV encoding cdc2-siRNA injected into the cerebellum of npc-/- mice can protect the neuronal cytoskeletal pathology, which implys that cdc2 might be a novel therapeutic target in NPC.
引文
1 Patterson MC, Vanier MT, Suzuki K, et al. Niemann-Pick disease type C: A lipid trafficking disorder. New York: McGraw Hill, 2001, 36110-33633.
    2 Vincent I, Bu B, Erickson RP. Understanding Niemann-Pick type C disease: a fat problem. Curr Opin Neurol, 2003, 16(2):155-161.
    3 German DC, Quintero EM, Liang CL, et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol, 2001, 433:415-25.
    4 Anzil AP, Blinzinger K, Mehraein P, et al. Niemann-Pick disease type C: Case report with ultrastructural findings. Neuropadiatrie, 1973, 4: 207-225.
    5 Harzer K, Schlote W, Peiffer J, et al. Neurovisceral lipidosis compatible with Niemann-Pick disease type C: Morphological and biochemical studies of a late infantile case and enzyme and lipid assays in a prenatal case of the same family. Acta Neuropathol, 1978, 43: 97-104.
    6 Patterson MC. A riddle wrapped in a mystery: Understanding Niemann-Pick disease, type C. Neurologist, 2003, 9: 301-310.
    7 Nakamura S.Cyclin-dependent kinase 5 in Lewy body-like inclusions in anterior horn cells of a patient with sporadic amyotrophic lateral sclerosis. Neurology, 1997, 48:267-270.
    8 Ohgami N, Ko DC, Thomas M, et al. Binding between the Niemann-Pick C1 protein and photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA, 2004, 101:12473-2478.
    9 Davies JP, Chen FW, Ioannou YA. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science, 2000, 290: 2295-2298.
    10 Loftus SK.Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene.Science, 1997, 277:232-235.
    11 Tseng HC, Zhou Y, Shen Y, et al.A survey of cdk5 activator p35 and p25 levels in Alzheimer’s disease brains.FEBS Lett, 2002, 523:58-62.
    12 German, D C.Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease.J Comp Neurol, 2001, 433:415-425.
    13 Zhang M, Li J, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol, 2004, 165(3):843-853.
    14 Bu B, Li J, Davies P, Vincent I. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine modrl.J Neurosci, 2002, 22:6515-6525.
    15 Hidetoshi I, Tanemichi C.Cyclin- dependent kinase 4 and Cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo.J Neurosci, 2001, 21: 6086-6094.
    16 Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251.
    17 Tuschl T. RNA interferences and small interfering RNAs. Chembiochem, 2001, 2(4): 239-45.
    18 Fire A, Xu S, Montgomey MK, et al. Potent and specific genetic interfetence by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669):806-11.
    19 Flotte TR. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther, 2004, 11(10):805-810.
    20 McCarty DM, Young SM, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet, 2004, 38:819-845.
    21 Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. Journal of Virology, 2005, 79(1):193-201.
    22 Smith-Arica JR, Bartlett JS. Gene therapy: recombinant adeno-associated virus vectors. Curr Cardiol Rep, 2001, 3(1):43-49.
    23 Machida Y, Okada T, Kurosawa M, et al. RAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun,2006, 343(1):190-197.
    24 Higashi Y, Murayama S, Pentchev PG, et al. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol, 1993, 85: 175-184.
    25 Tanaka J, Nakamura H, Miyawaki S. Cerebellar involvement in murine sphingomyelinosis: A new model of Niemann-Pick disease. J Neuropathol Exp Neurol, 1988, 47: 291-300.
    1 Vincent I, Jicha G, Rosado M, et al. Aberrant expression of mitotic cdc2/cyclinB1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci, 1997, 17(10):3588-3598.
    2 McShea A, Lee HG, Petersen RB, et al. Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim Biophys Acta, 2007, 1772(4):467-472.
    3 Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251.
    4 Tuschl T. RNA interferences and small interfering RNAs. Chembiochem, 2001, 2(4): 239-45.
    5 Debelak D,Fisher I,Iuliano S, et al . Cation-exchange high performance liquid chromatography of recombinant adeno-associated virus type 2. J Chromatogr Biomed Sci, 2002, 740(2):195-202.
    6 Minh DN, Mathieu B, Jasna K, et al. Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci, 2003, 23(6): 2131-2140.
    7 Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov, 2004, 3 (4): 3182-3291.
    8 Siddhesh D, David G, Dlane J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. The AAPS J, 2005, 7(1): 612-771.
    9 Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21t to 23 nucleotide intervals. Cell, 2000, 101 (1):25.
    10 Fire A, Xu S, Montgomey MK, et al. Potent and specific genetic interfetence by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391(6669):806-11.
    11 Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Curr Opin Genetics & Development, 2002, 12:225-232.
    12 Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev Gen, 2001, 2:110-119.
    13 Sharp PA.RNA interference. Genes Dev, 2001, 107:309-321.
    14 Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107: 309-321.
    15 Irie N, Sakai N, Ueyama T, et al. Subtype and specific knock down of PKC using short interferenceing RNA. Bio-chemical and Biophysical Research Communications, 2002, 298 (5):738.
    16 Sui G, Soohoo C, Affar B, et al. A DNA vector based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002, 99 (8):5515.
    17 Holen T, Amarzguioui M, Wiiger MT, et al. Positional effect s of short interfering RNAs targeting t he human coagulation t rigger tissue factor. Nucleic Acids Res, 2002, 30 (8):1757.
    18 Kumiko UT, Yuki N, Fumitaka T, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Research, 2004, 32 (3):936-948.
    19 Yang D, Buchholz F, Huang Z, et al. Short RNA duplexes Produced by hydrolysis with Escherichia coli RNaseⅢmediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(15):9942-9947.
    20 Sui G, Soohoo C, Affar E B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(8):5515-5520.
    21 Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA, 2002, 99(9):6047-6052.
    22 Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR Products. RNA, 8(11):1454-1460.
    23 Davidson BL, Stein CS, Heth JA, et al. Recombinant adeno-associated virus type 2, 4,and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA, 2000, 97: 3428-3432.
    24 Kaspar BK, Vissel B, Bengoechea T, et al. Adenoassociated virus effectively mediates conditional gene modification in the brain. Proc Natl Acad Sci USA, 2002, 99: 2320-2325.
    25 Vincent KA, Piraino S T, Wadsworth SC. J Virol, 1997, 71(3):1897-905.
    26 Wang X S, Khuntirat B, et al. Characterization of wild-type adeno-associated virus like particles generated during recombinant viral vector production and strategies for their elim ination. J Virol, 1998, 72:5472.
    27 Russell DW, Alexander IE, Miller AD. Proc Natl Acad Sci USA, 1995, 92(12):5719-23.
    28 Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol, 1977, 36(1):59-74.
    29 NG P, Parks RJ, Cummings DT, et al. A high-efficiency Cre/loxP-based system for construction of adenoviral vector. Hum Gene Ther, 1999, 10(16):2667-2672.
    1 Vincent I, Bu B, Erickson RP. Understanding Niemann-Pick type C disease: a fat problem. Curr Opin Neurol, 2003, 16(2):155-161.
    2 Zhang M, Li J, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol, 2004, 165(3):843-853.
    3 Smith PD, O'Hare MJ, Park DS. Emerging pathogenic role for cyclin dependent kinases in neurodegeneration. Cell Cycle, 2004, 3(3):289-291.
    4 Loftus SK, Morris JA, Carstea ED, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science, 1997, 277(5323): 232-235.
    5 Hallows JL, Iosif RE, Biasell RD, et al. p35/p25 is not essential for tau and cytoskeletal pathology or neuronal loss in Niemann-Pick type C disease. J Neurosci, 2006, 26(10):2738-2744.
    6 Patterson MC, Vanier MT, Suzuki K, et al. Niemann-Pick disease type C: A lipid trafficking disorder. New York,McGraw Hill. 2001, 36110-33633.
    7 Davies JP, Chen FW,Ioannou Y A. Transmembrane molecular pump activity of Niemann–Pick C1 protein. Science, 2000, 290: 2295-2298.
    8 Neufeld EB, Wastney M, Patel S, et al. The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem, 1999, 274:9627-35.
    9 Higgins ME, Davies JP, Chen FW, et al. Niemann-Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-golgi network. Mol Gen Metab, 1999, 68:1-13.
    10 Carstea ED, Morris JA, Coleman KG., et al. Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science, 1997, 277: 228-231.
    11 Carstea ED, Morris JA, Coleman KG, et al. Niemann-Pick C1 disease gene: homologyto mediators of cholesterol homeostasis. Science, 1997, 277:228-31.
    12 Ohgami N, Ko DC, Thomas M, et al. Binding between the Niemann-Pick C1 protein and photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA, 2004, 101:12473-2478.
    13 Davies JP, Chen FW, Ioannou YA. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science, 2000, 290: 2295-2298.
    14 Friedland N, Liou HL, Lobel P, et al. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci USA, 2003, 100: 2512-7.
    15 Ko DC, Binkley J, Sidow A, et al. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci USA, 2003, 100:2518-25.
    16 Chikh K, Vey S, Simonot C, et al. Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol Genet Metab, 2004, 83:220-30.
    17 Okamura N, Kiuchi S, Tamba M, et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta, 1999, 1438:377-87.
    18 Terrisse L, Poirier J, Bertrand P, et al. Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer’s patients. J Neurochem, 1998, 71:1643-50.
    19 Okamura N, Kiuchi S, Tamba M, et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta, 1999, 1438: 377-387.
    20 Friedland N, Liou HL, Lobel P, et al. Structure of a cholesterolbinding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci USA, 2003, 100: 2512-2517.
    21 Ko DC, Binkley J, Sidow A, et al. The integrity of a cholesterolbinding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci USA, 2003, 100: 2518-2525.
    22 Dennis CK, Ljiljana M, Steven M, et al. Cell-Autonomous Death of Cerebellar Purkinje Neurons with Autophagy in Niemann-Pick Type C Disease. PLoS Genet, 2005, 1 (1): 81-95.
    23 Jean EV, Hideki H, Barbara K. Cholesterol homeostasis in neurons and glial cells. Seminars in Cell & Developmental Biology, 2005, 16: 193-212.
    24 Neufeld EB, Wastney M, Patel S, et al. The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem, 1999, 274: 9627-9635.
    25 Higgins ME, Davies JP, Chen FW et al. Niemann–Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol Genet Metab, 1999, 68: 1-13.
    26 Garver WS, Heidenreich RA, Erickson RP, et al. Localization of the murine Niemann–Pick C1 protein to two distinct intracellular compartments. J Lipid Res, 2000, 41: 673-687.
    27 Pentchev PG, Vanier MT, Suzuki K, et al. Patterson, in the Metabolic and Molecular Basis of Inherited Diseases. McGraw-Hill, Philadelphia, PA, 1995, 2625-2639.
    28 Neufeld EB, Blanchette-Mackie EJ, et al. Biol Chem. Proc Natl Acad Sci USA, 1988, 85: 8022.
    29 Pentchev PG, Comly ME, Kruth HS, et al. A primary genetic lesion closely linked to defective esterification ofexogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem, 1986, 261:2772–2777.
    30 Shamburek RD, Pentchev PG, Zech LA, et al. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-Cmutation. J Lipid Res, 1997, 38:2422-2435.
    31 Blanchette-Mackie EJ, Dwyer NK, Amende LM, et al. Type-C Niemann-Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes. Proc Natl Acad Sci USA, 1988, 85:8022-6.
    32 Sokol J, Blanchette-Mackie J, Kruth HS, et al. Type C Niemann-Pick disease: Lysosomal accumulation and defective intracellular mobilization of low density lipoprotein cholesterol. J Biol Chem, 1988, 263:3411-7.
    33 Lusa S, Blom TS, Eskelinen EL, et al. Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane. J Cell Sci, 2001, 114:1893-900.
    34 Pentchev PG, Vanier MT, Suzuki K, et al. Niemann-Pick disease type C: a cellular cholesterol lipidosis. New-York, McGraw-Hill, 1995:2625-39.
    35 Puri V, Watanabe R, Dominguez M, et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol, 1999, 1:386-8.
    36 Zhang M, Dwyer NK, Neufeld EB, et al. Sterol-modulated glycolipid sorting occurs in niemann-pick c1 late endosomes. J Biol Chem, 2001, 276:3417-25.
    37 Zervas M, Somers KL, Thrall MA, et al. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol, 2001,11:1283-7.
    38 Suzuki K, Parker CC, Pentchev PG, et al. Neurofibrillary tangles in Niemann-Pick disease type C. Acta Neuropathol, 1995, 89:227-38.
    39 March PA, Thrall MA, Brown DE,et al. GABAergic neuroaxonal dystrophy and other cytopathological alterations in feline Niemann-Pick disease type C. Acta Neuropathol,1997,94:164-72.
    40 Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta, 2004, 1685:48-62.
    41 Higashi Y, Murayama S, Pentchev PG, et al. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol, 1993, 85:175-84.
    42 Elleder M, Jirasek A, Smid F, et al. Niemann-Pick disease type C: Study on the nature of the cerebral storage process. Acta Neuropathol, 1985, 66:325-36.
    43 Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res, 2004, 45:1375-97.
    44 Turley SD, Burns DK, Rosenfeld CR, et al. Brain does not utilize low density lipoprotein-cholesterol during fetal and neonatal development in the sheep. J Lipid Res, 1996, 37:1953-61.
    45 Vanier MT. Lipid changes in Niemann-Pick disease type C brain: personal experience and review of the literature. Neurochem Res, 1999, 24:481-9.
    46 Gondre-Lewis MC, McGlynn R, Walkley SU. Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr Biol, 2003, 13:1324-9.
    47 Liu Y, Wu YP, Wada R, et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet 2000, 9:1087-92.
    48 Higashi Y, Pentchev PG, Murayama S, et al. Neurology in Brain Research. F. Ikuta, Ed, 1991, 85-102.
    49 Voikar V, Rauvala H, Ikonen E. Cognitive deficit and development of motor impairment in a mouse model of Niemann–Pick type C disease. Behav Brain Res, 2002, 132(1):1-10.
    50 Veyron P, Mutin M, Touraine JL. Transplantation of fetal liver cells corrects accumulation of lipids in tissues and prevents fatal neuropathy in cholesterol-storage disease BALB/c mice. Transplantation, 1996, 62:1039-45.
    51 Stephen L S, Marc C P, William B, et al. The pathophysiology and mechanisms of NP-C disease. Biochimica et Biophysica Acta, 2004, 1685: 83-87.
    52 RP Erickson, WS Garver, F Camargo, et al. Inherit. Metab Dis, 2000, 23: 54–62.
    53 M Zervas, KL Somers, MA Thrall, et al. Curr Biol, 2001, 11: 1283-1287.
    54 Iram A, Silvia LP, Xiaoning B, et al. Allopregnanolone Treatment, Both as a Single Injection or Repetitively, Delays Demyelination and Enhances Survival of Niemann-Pick C Mice. Journal of Neuroscience Research, 2005, 82:811-821.
    55 Bu B, Li J, Davies P, et al. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine modrl. J Neurosci, 2002, 22:6515-6525.
    56 Cruz JC, Tsai LH A. Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol, 2004, 14:390-394.
    57 Bu B, Klunemann H, Suzuki K, et al. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis, 2002, 11(2):285-297.
    58 Morris MD, Bhuvaneswaran C, Shio H, et al. Lysosome lipid storage disorder in NCTR-BALB/c mice. Am J Pathol, 1982, 108:140-9.
    59 Loftus SK, Erickson RP, Walkley SU, et al. Rescue of neurodegeneration in Niemann–Pick C mice by a prion-promoter-driven NPC1 cDNA transgene. Human Molecular Genetics, 2002, 11(24):3107-3114.
    60 German DC, Quintero EM, Liang CL, et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol, 2001, 433:415-25.
    61 Anzil AP, Blinzinger K, Mehraein P, et al. Niemann-Pick disease type C: Case report with ultrastructural findings. Neuropadiatrie, 1973, 4: 207-225.
    62 Harzer K, Schlote W, Peiffer J, et al. Neurovisceral lipidosis compatible with Niemann-Pick disease type C: Morphological and biochemical studies of a late infantile case and enzyme and lipid assays in a prenatal case of the same family. Acta Neuropathol, 1978, 43: 97-104.
    63 Patterson MC. A riddle wrapped in a mystery: Understanding Niemann-Pick disease, type C. Neurologist, 2003, 9: 301-310.
    64 Higashi Y, Murayama S, Pentchev PG, et al. Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol, 1993, 85: 175-184.
    65 Tanaka J, Nakamura H, Miyawaki S. Cerebellar involvement in murine sphingomyelinosis: A new model of Niemann-Pick disease. J Neuropathol Exp Neurol, 1988, 47: 291-300.
    66 Prasad A, Fischer WA, Maue RA, et al. Regional and developmental expression of the Npc1 mRNA in the mouse brain. J Neurochem, 2000, 75:1250-7.
    67 Liu Y, Wu YP, Wada R, et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet, 2000, 9:1087-92.
    68 Sokol J, Blanchette-Mackie J, Kruth HS, et al. Type C Niemann-Pick disease: Lysosomal accumulation and defective intracellular mobilization of low density lipoprotein cholesterol. J Biol Chem, 1988, 263:3411-7.
    69 Tanaka J, Nakamura H, Miyawaki S. Cerebellar involvement in murine sphingomyelinosis: a new model of Niemann-Pick disease. J Neuropathol Exp Neurol, 1988, 47:291-300.
    70 Justyna R S, Matt L, Hassan M. Patterned Purkinje Cell Degeneration in Mouse Models of Niemann-Pick Type C Disease. Journal of comparative neurology, 2003, 456:279-291.
    71 Hannon GJ. RNA interference. Nature, 2002, 418(6894): 244-251.
    72 Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. Journal of Virology, 2005, 79(1):193-201.
    73 Smith-Arica JR, Bartlett JS. Gene therapy: recombinant adeno-associated virus vectors. Curr Cardiol Rep, 2001, 3(1):43-49.
    74 German DC, Liang CL, Song T, et al. Neurodegeneration in the Niemann-Pick Cmouse: glial involvement. Neuroscience, 2002, 109:437-50.
    75 Baudry M, Yao Y, Simmons D, et al. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol, 2003, 184:887-903.
    76 Linda J, Van Eldik, Mark S, et al. The janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restorative Neurology and Neuroscience, 2003, 21:97-108.
    77 Vootele V, Heikki R, Elina I. Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behavioural Brain Research, 2002, 132: 1-10.
    78 Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci, 1998, 2:348-54.
    79 Balogh SA, McDowell CS, Stavnezer AJ, et al. A behavioral and neuroanatomical assessment of an inbred substrain of 129 mice with behavioral comparisons to C57BL/6J mice. Brain Res, 1999, 836:38-48.
    80 Minichiello L, Korte M, Wolfer D,et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 1999, 24:401-14.
    1 Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tau pathies. Annu Rev Neurosci, 2001, 24:1121-1159.
    2 Delisle MB, Carpenter S. Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci, 1984, 63:241-250.
    3 Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta, 2004, 1685:48-62.
    4 German DC, Quintero EM, Liang CL, et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol, 2001, 433:415-425.
    5 Bu B, Li J, Davies P, et al. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci, 2002, 22:6515-6525.
    6 Bu B, Klunemann H, Suzuki K, et al. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis, 2002, 11:285-297.
    7 Loftus SK, Morris JA, Carstea ED, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science, 1997, 277(5323):232-235.
    8 Yaffe MB, Schutkowski M, Shen M, et al. Sequence-specific and phosphorylation- dependent praline isomerization: a potential mitotic regulatory mechanism. Science, 1997, 278:1957-1960.
    9 Stukenberg PT, Lustig KD, McGarry TJ, et al. Systematic identification of mitotic phosphoproteins. Curr Biol, 1997, 7:338-348.
    10 Dranovsky A, Vincent I, Gregori L, et al. Cdc2 phosphorylation of nucleolin demarcates mitotic stages and Alzheimer′s disease pathology. Neurobiol Aging, 2001, 22:517-528.
    11 Liu DX, Greene LA. Regulation of neuronal survival and death by E2F2 dependent gene repression and derepression. Neuron, 2001, 32: 425-438.
    12 Love S. Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett, 2003, 353: 29-32.
    13 Zhang M, Li J, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol, 2004, 165(3):843-853.
    14 Bu B, Li J, Davies P, et al. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine modrl. J Neurosci, 2002, 22:6515-6525.
    15 Sawamura N, Gong JS, Garver WS, et al. Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J Biol Chem, 2001, 276:10314-10319.
    16 Ding XL, Husseman J, Tomashevski A, et al. The cell cycle cdc25A tyrosine phosphatase is activated in degenerating postmitotic neurons in Alzheimer’s disease. Am I Pathol, 2000, 157:193-90.
    17 Vincent I, Bu B, Hudson K, et al. Constitutive cdc25B tyrosine posphataseactivity in adult brain neurons with M phase type alterations in Alzheimer’s disease. Neuroscience, 2001, 105:639-50.
    18 Husseman JW, Nochlin D, Vincent I, et al. Mitotic activation: a convergent mechanism for a cohort of neurodegenerative disease. Neurobiol Aging, 2000, 21: 815-28.
    19 Rosenfeld MR, Bergman I, Schramm L, et al. Adeno-associated viral vector gene transfers into leptomeningeal xenografts. J Neurooncol, 1997, 34:13921.
    20 Lo WD, Qu G, Sferra TJ, et al. Adeno-associated virus mediated gene transfer to the brain: duration and modulation of expression. Hum Gene Thet, 1999, 10: 2012-13.
    21 Kesavapany S, Li BS, Pant HC. Cyclin-dependent kinase 5 in neurofilament functionand regulation. Neurosignals, 2003, 12(4): 252-64.
    22 Perrone CC, Pernas-Alonso R, Di PU. Neurofilament homeostasis and motoneuron degeneration. Bioessays, 2001, 23(1): 24-33.
    23 Hamdane M, Delobel P, Sambo AV, et al. Neurofibrillary degeneration of the Alzheimer type: an alternate pathway to neuronal apoptosis? Biochem Pharmacol, 2003, 66(8): 1619-25.
    24 Nixon RA. Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. Bioessays, 1998, 20:798-807.
    25 Schliwa M, Woehlke G. Molecular motors. Nature, 2003, 422:759-765.
    26 Gunawardena S, Goldstein LS. Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J Neurobiol, 2004, 58: 258-271.
    27 Buee L, Bussiere T, Buee-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res, 2000, 33:95-130.
    28 Vincent I, Jicha G, Rosado M, et al. Aberrant expression of mitotic cdc2/cyclinB1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci, 1997, 17(10):3588-3598.
    29 West MJ, Coleman PD, Flood DG, et al. Differences in the paffem of hippocampal neuronal loss in normal ageing and Alzheimer′s disease. Lancet, 1994, 344:769-772.
    30 Karsenti E, Bravo R, Kirschner M. Phosphorylation changes associated with the early cell cycle in Xenopus eggs. Dev Biol, 1987, 119: 442-453.
    31 Nigg E A. The substrates of the cdc2 kinase. Semin Cell Biol, 1991, 2: 261-270.
    32 Vandre DD, Davis FM, Rao PN, et al. Phosphoproteins are components of mitotic microtubule organizing centers. Proc Natl Acad Sci USA, 1984, 81: 4439-4443.
    33 Davis FM, Tsao TY, Fowler SK, et al. Monoclonal antibodies to mitotic cells. Proc Natl Acad Sci USA, 1983, 80:2926-2930.
    34 Vincent I, Rosado M, Davies P. Mitotic mechanisms in Alzheimer’s disease? J CellBiol, 1996, 132: 413-425.
    35 Vincent I, Zheng JH, Dickson DW, et al. Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging, 1998, 19: 287-296.
    1 Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol, 2000, 21(1):1-56.
    2 Baulieu EE, Robel P, Schumacher M, et al. Neurosteroids: A New Regulatory Function in the Nervous System. Human Press Inc. Totowa, NJ, 1999, 317-335.
    3 Mellon S, Gong W, Griffin LD. Niemann pick type C disease as a model for defects in neurosteroidogenesis. Endocr Res, 2004, 30(4):727-35.
    4 Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab, 2002, 13(1):35-43.
    5 Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci, 2003, 1007:64-78.
    6 Vincent I, Bu B, Erickson RP. Understanding Niemann-Pick type C disease: a fat problem.Curr Opin Neurol. 2003, 16 (2):155-61.
    7 Griffin LD, Gong W, Verot L, et al. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med, 2004, 10(7):704-11.
    8 Ahmad I, Lope-Piedrafita S, Bi X, et al. Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann-Pick C mice. J Neurosci Res, 2005, 82(6):811-21.
    9 Langmade SJ, Gale SE, Frolov A, et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc Natl Acad Sci U S A, 2006, 103(37):13807-12.
    10 Kliewer SA, Goodwin B, Willson TM. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev, 2002, 23(5):687-702.
    11 Lamba V, Yasuda K, Lamba JK, et al. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol Appl Pharmacol, 2004, 199(3):251-65.
    12 Moore LB, Parks DJ, Jones SA, et al. Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem, 2000, 275(20):15122-7.
    13 Weill-Engerer S, David JP, Sazdovitch V, et al. Neurosteroid quantification in human brain regions: comparison between Alzheimer's and nondemented patients. J Clin Endocrinol Metab, 2002, 87(11):5138-43.
    14 Smith CD, Wekstein DR, Markesbery WR, et al. 3alpha,5alpha-THP: a potential plasma neurosteroid biomarker in Alzheimer's disease and perhaps non-Alzheimer's dementia. Psychopharmacology (Berl), 2006, 186(3):481-5.
    15 Marx CE, Trost WT, Shampine LJ, et al. The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer's disease. Biol Psychiatry, 2006, 60 (12):1287-94.
    16 Schaeffer V, Patte-Mensah C, Eckert A, et al. Modulation of neurosteroid production in human neuroblastoma cells by Alzheimer's disease key proteins. J Neurobiol, 2006, 66(8):868-81.
    17 Dudas B, Hanin I, Rose M, et al. Protection against inflammatory neurodegeneration and glial cell death by 7 beta-hydroxy epiandrosterone, a novel neurosteroid. Neurobiol Dis, 2004, 15(2):262-8.
    18 Mayo W, Dellu F, Robel P, et al.Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res, 1993, 607 (1-2): 324 -8.
    19 Vallée M, Mayo W, Darnaudéry M, et al. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA, 1997, 94(26):14865-70.
    20 Mayo W, Le Moal M, Abrous DN. Pregnenolone sulfate and aging of cognitivefunctions: behavioral, neurochemical, and morphological investigations. Horm Behav, 2001, 40(2):215-7.
    21 Brinton RD, Wang JM. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer's disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res, 2006, 3(3):185-90.
    22 Wang JM, Johnston PB, Ball BG, et al. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci, 2005, 25(19):4706-18.
    23 Owens DF, Kriegstein AR. Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J Neurosci, 1998, 18(14):5374-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700