硫胺素缺乏对β-淀粉样多肽前体蛋白加工和Aβ生成的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer disease,AD)是老年痴呆的最常见类型,其神经病理学特征主要表现为沉积在细胞外的老年斑(Senile plaques,SPs)和细胞内聚集的神经纤维缠结(Neurofibrillary tangles,NFTs)以及区域性的神经元丧失。目前,对于AD的发病原因及其病理机制了解甚少,尚没有有效的治疗方法。β-淀粉样多肽(β-Amyloid peptide,Aβ)是SPs的主要成分,来源于β-淀粉样多肽前体蛋白(Amyloid precursor protein,APP)的蛋白剪切。大量研究表明Aβ的代谢异常可能是AD起始性的病理环节。研究Aβ的代谢对于探讨AD的发病机理较为重要。
     硫胺素(Thiamine)即维生素B_1,是人体必需的营养成分。硫胺素在体内主要以焦磷酸硫胺素(Thiamine pyrophosphate,TPP)的形式存在,TPP是糖代谢途径中的丙酮酸脱氢酶复合体,α-酮戊二酸脱氢酶复合体以及磷酸戊糖途径中的转酮醇的辅酶因子。硫胺素在维持脑内氧化代谢平衡方面也发挥了重要作用。硫胺素缺乏(Thiamine deficiency,TD)会导致以上三种酶类的活性下降、三羧酸循环发生障碍、三磷酸腺苷(adenosine-triphosphate,ATP)产生受阻。此外,硫胺素缺乏过程中产生了大量的活性氧(reactive oxygen species,ROS),导致了氧化应激的发生。主要依靠糖代谢提供能量的神经组织对硫胺素缺乏高度敏感,硫胺素缺乏的中枢神经表现称为脑型维生素B_1缺乏症,也称韦尼克—科尔萨科夫综合症(Wernicke-Korsakoff's syndrome,WKS),病人除了有明显的认知丧失、记忆力减退外,晚期WKS病人出现脑室扩大,神经元死亡。其脑内的KGDHC活性也明显降低。在硫胺素缺乏动物模型上,硫胺素缺乏处理的小鼠脑内出现了神经元死亡,小胶质细胞、星型胶质细胞肥大、增生等神经退行性疾病的共同病理表现。此外,研究显示,在AD病人中,TPP含量和TPP依赖型的酶类的活性都有明显的下降,表明硫胺素缺乏可能在AD病理中起了一定的作用。但硫胺素缺乏在AD中的具体作用尚未得到系统的研究。
     我们在体外培养的稳定转染了瑞典型突变APP基因(APPsw)的人源神经母细胞瘤细胞株(SH-SY5Y)上和C57BL/6J小鼠上成功诱导了TD模型,并通过酶连免疫吸附实验、免疫印迹实验、免疫组织化学等技术手段系统地研究了TD对APP加工(APP processing)的影响以及其可能的机制。
     首先,在APPsw SH-SY5Y细胞上,TD处理5天导致了大约13.5%的细胞死亡,发生凋亡的细胞增加了2倍。MTT法检测表明TD处理5天导致细胞活力下降了大约50%。第二,酶连免疫吸附实验测定Aβ的结果显示:TD处理显著增加细胞外和细胞内的Aβ的含量。与对照组(胞外的Aβ_(40)和Aβ_(42)分别是5.52±0.12和0.66±0.23 pg/ml·mg)相比,TD5天组胞外的Aβ_(40)和Aβ_(42)分别上升到18.57±2.31和3.85±0.52pg/ml·mg;细胞内的Aβ_(40)和Aβ_(42)分别从对照组的23.4±5.1 7和7.06±1.03 pg/mg分别上升到86.03±8.19和23.52±1.02 pg/mg。第三,免疫印迹实验显示在TD过程中,细胞中成熟形式的APP蛋白水平降低,不成熟形式的APP蛋白水平没有明显变化。说明在TD过程中APP的表达水平没有增加,应该不是导致Aβ积累的原因。第四,酶活力测定的结果表明负责APP加工的β-分泌酶的活性在TD过程中明显增高,而γ-分泌酶的活性在这一过程中没有显著性变化。前人研究结果证实β-site APP cleaving enzyme 1(BACEl)具有β-分泌酶的活性,我们分别从转录以及翻译水平研究了BACE1基因的表达情况,发现在TD处理过程中,BACE1基因的mRNA水平没有明显变化,BACE1的蛋白总量也没有明显改变。然而,与对照组相比,BACE1蛋白的成熟形式增加了大约2倍,而不成熟形式的BACE1降低了大约50%。表明β-分泌酶的活性调节不是通过增加BACE1基因的转录水平或翻译水平,而是通过促进BACE1蛋白的翻译后修饰(BACE1蛋白的成熟过程)来实现的。为了进一步确定β-分泌酶的活性在TD过程中明显增高,我们检测了TD过程中β-分泌酶产物:β-C terminalfragment(β-CTF)的变化,免疫印迹结果显示β-CTF含量在TD过程中明显增高。第五,TD处理5天后,补充硫胺素24小时明显地减弱了BACE1蛋白的成熟过程,下调β-分泌酶的活性,降低了Aβ的积累。表明补充硫胺素对TD引起的Aβ的积累具有一定的补救作用。第六,在TD处理5天时,向培养液中添加β-分泌酶抑制剂24小时可以抑制Aβ和β-CTF的积累。第七,TD增加了细胞内活性氧的积累,抗氧化剂Trolox不仅可以降低TD导致的细胞内活性氧的积累,也抑制了BACE1蛋白的成熟过程和Aβ的积累。表明氧化应激可能是TD引起Aβ积累的内在机制。最后,在TD处理过程中,添加低浓度(250pmol/L)的化学合成的Aβ到培养液里明显加剧了TD导致的氧化应激。表明Aβ的积累增强了TD引发的氧化应激。
     以上的离体实验结果在TD小鼠模型上得到了验证:(1)TD处理9天或更长时间会导致丘脑区域的丘脑中线旁丘脑核(Submedial thalamic nucleus,SmTN)出现明显的神经元死亡;(2)在TD小鼠丘脑区域,Aβ_(40)和Aβ_(42)含量显著增加:对照组和TD10天组的Aβ_(40)分别是0.97±0.15和3.34±0.33 pmol/g;Aβ_(42)分别是0.16±0.01和0.49±0.02 pmol/g;(3)TD处理8天后补充硫胺素可以减少丘脑区域Aβ_(42)的积累。
     综上,我们的实验结果表明:(1)由TD引起的氧化应激导致了APP蛋白加工过程中产生了更多的Aβ;(2)氧化应激的作用靶点是BACE1蛋白。进一步,TD对β-分泌酶的活性调节是通过促进BACE1蛋白的翻译后修饰(BACE1蛋白的成熟过程)来实现的;(3)Aβ的积累也加剧了TD导致的氧化应激。提示氧化应激和Aβ的积累之间存在着正反馈的效应。
     本工作发现硫胺素缺乏引起的氧化应激促进了APP加工中产生更多的Aβ,Aβ的积累反过来加剧了硫胺素缺乏导致的氧化应激。氧化应激和Aβ的积累之间存在着正反馈的效应。这一效应很可能参与了AD的发生、发展。最后,体外、体内补充硫胺素实验都表明及时补充硫胺素可以缓解硫胺素缺乏对APP加工的影响,表明对于出现硫胺素缺乏相关症状的AD病人,考虑及时补充硫胺素是有益的。
Alzheimer's disease(AD)is the most common cause of dementia in the elderly worldwide.Neuropathological hallmarks of AD are extracellular senile plaques(SPs), intracellular neurofibrillary tangles(NFTs)and massive neuronal loss in vulnerable brain regions.The pathogenesis of AD is still poorly understood and current available treatments for AD are unsatisfactory.β-amyloid peptide(Aβ)is the major component of SPs,which is derived from proteolytic processing ofβ-amyloid precursor protein (APP).Mounting evidence suggests that Aβplays an initial role in AD pathogenesis, Therefore,unraveling the molecular mechanism of Aβmetabolism is important to AD pathogenesis research.
     Thiamine(Vitamin B_1)is an essential nutrition factor for human beings.The active form of thiamine in vivo is thiamine pyrophosphate(TPP).TPP acts as a co-enzyme of thiamine-dependent enzymes,which include the pyruvate dehydrogenase complex(PDHC),α-ketoglutarate dehydrogenase complex(KGDHC) and transketolase(TK).Thiamine is also essential to keep the cellular redox state and glutathione reductase activity.Thiamine deficiency(TD)impairs the activities of thiamine-dependent enzymes which result in dysfunction of tricarboxylic acid cycle and shortage of adenosine-triphosphate(ATP).Simultaneously,the accumulation of reactive oxygen species(ROS)leads to severe oxidative impairment during TD process.The nervous system is highly sensitive to TD,which may cause a serious neurological disorder called Wernicke-Korsakoff's syndrome(WKS).The clinical features of WKS include confusion,cognitive deficits,memory loss,and,at late stage of WKS,enlarged ventricle and neuronal loss are also found.The activity of KGDHC decreases in WKS patient brain.In brains of TD animal models,common features of neurodegenerative diseases can be found,such as selective neuronal loss,activation and proliferation of microglia and astrocytes cells.Furthermore,it is reported that TPP and the activities of thiamine-dependent enzymes both decline in AD patients, which suggests that TD may contribute to the AD pathology.However,the exact effect(s)of TD in AD pathogenesis is still unclear.
     In present work,we investigated the effect(s)of TD on APP processing using cultured Swedish mutant APP(APPsw)transfected SH-SY5Y cells and C57BL/6J mouse with a series of biochemical and morphological techniques.
     Firstly,in APPsw stably transfected SH-SY5Y cells,TD caused moderate cell death(about 20%)after 5-days treatment,while the numbers of apoptotic cells elevated by 2-fold and the cell viability decreased by 50%.Secondly,the amounts of Aβ,both secreted and intracellular forms were elevated during TD:After 5 days TD treatment,the basic secreted(5.52±0.12 pg/mg)and intracellular(23.4±5.17 pg/mg) Aβ_(40)were elevated to 18.57±2.31 pg/mg and 86.03±8.19 pg/mg,respectively.The basic secreted(0.66±0.23 pg/mg)and intracellular(7.06±1.03 pg/mg)Aβ_(42)were elevated to 3.85±0.52 pg/mg and 23.52±1.02 pg/mg,respectively.Thirdly,during the TD process,the mature from of APP is decreased and the immature from is unchanged.Therefore,Aβaccumulation should not be derived from increased expression of its precursor protein.Fourthly,the activity ofβ-secretase was up regulated and the activity ofγ-secretase is unchanged during TD.Real-time polymerase chain reaction(Real time-PCR)and immunoblotting assay showed that the expression ofβ-site APP cleaving enzyme 1(BACE1)gene is unaltered,and, however,the maturation of BACE1 increased,the mature BACE1 increased by about 2-fold,and immature BACE1 decreased by about 50%.This change may result in an elevatedβ-secretase activity.To further confirm the changes ofβ-secretase activity, we examined the level ofβ-C terminal fragment(β-CTF)of APP,the product ofβ-secretase cleavage.The level ofβ-CTF was elevated during TD.Fifthly,the above abnormal alteration induced by TD can be restored with thiamine re-supplement for 24 hours after 5 days TD treatment,implying that the effectiveness of thiamine re-supplement after TD.Sixthly,addingβ-secretase inhibitor to the 5-day TD treated culture medium could efficiently inhibit the accumulation of Aβandβ-CTF. Seventhly,5-day TD treatment increased ROS by nearly 3-fold compared with the control groups,which can be significantly attenuated by antioxidant Troiox.Trolox also can inhibit the TD induced Aβaccumulation and maturation of BACE1.Finally, synthetic Aβ_(1-40)exposure(250pmol/L)during TD treatment can elevate the ROS level significantly compared with TD treatment only,indicating that Aβaccumulation enhanced the oxidative stress caused by TD.
     These findings on TD cell model were also confirmed in vivo in TD mouse model: (1)neuronal loss was found in submedial thamalic nucleus(SmTN)after 9-days TD treatment;(2)dramatic Aβaccumulation was detected in thalamus region:the Aβ_(40) level of control group and TD 10-days group is 0.97±0.15 and 3.34±0.33 pmol/g, respectively,and the Aβ_(42)level of control group and TD 10-days group is 0.16±0.01 and 0.49±0.02 pmol/g;(3)restoration with thiamine after 8-days TD treatment can reduce the Aβ_(42)accumulation caused by TD.
     Taken together,our results imply that:(1)the oxidative stress caused by TD promotes the amyloidogenic APP processing and resulting in Aβaccumulation;(2) the oxidative stress up-regulates theβ-secretase activity though enhancing the BACE1 maturation;(3)conversely,Aβaccumulation exacerbates the oxidative stress during TD treatment,suggesting that there may be a positive feedback cycle between Aβaccumulation and oxidative stress.
     We have found that TD can cause oxidative stress and promote the amyloidogenic APP processing,and resulting in Aβaccumulation.Furthermore,a positive feedback cycle exists between Aβaccumulation and oxidative stress.These effects may play important roles in AD pathogenesis and/or progression.Finally,our thiamine re-supplement experiment results showed that it may be effective and important to supply thiamine for treatment of the AD patients who were proved to be TD.
引文
1. D. M. Holtzman. Alzheimer's disease: Moving towards a vaccine [J] Nature, 2008, 454, (7203): 418-420
    2. D. J. Selkoe. The molecular pathology of Alzheimer's disease [J] Neuron, 1991, 6, (4): 487-498
    3. G. G. Glenner and C. W. Wong. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein [J] Biochem Biophys Res Commun, 1984, 120, (3): 885-890
    4. N. Nukina and Y. Ihara. One of the antigenic determinants of paired helical filaments is related to tau protein [J] J Biochem, 1986, 99, (5): 1541-1544
    5. D. Goldgaber, M. I. Lerman, O. W. McBride, U. Saffiotti and D. C. Gajdusek. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease [J] Science, 1987, 235, (4791): 877-880
    6. N. K. Robakis, N. Ramakrishna, G. Wolfe and H. M. Wisniewski. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides [J] Proc Natl Acad Sci U S A, 1987, 84, (12): 4190-4194
    7. N. K. Robakis, H. M. Wisniewski, E. C. Jenkins, E. A. Devine-Gage, G. E. Houck, X. L. Yao, N. Ramakrishna, G. Wolfe, W. P. Silverman and W. T. Brown. Chromosome 21q21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down syndrome [J] Lancet, 1987, 1, (8529): 384-385
    8. P. H. St George-Hyslop, R. E. Tanzi, R. J. Polinsky, J. L. Haines, L. Nee, P. C. Watkins, R. H. Myers, R. G. Feldman, D. Pollen, D. Drachman et. al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21 [J] Science, 1987, 235, (4791): 885-890
    9. R. E. Tanzi, J. F. Gusella, P. C. Watkins, G. A. Bruns, P. St George-Hyslop, M. L. Van Keuren, D. Patterson, S. Pagan, D. M. Kurnit and R. L. Neve. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus [J] Science, 1987, 235, (4791): 880-884
    10. D. J. Selkoe, M. B. Podlisny, C. L. Joachim, E. A. Vickers, G. Lee, L. C. Fritz and T. Oltersdorf. Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues [J] Proc Natl Acad Sci U S A, 1988, 85, (19): 7341-7345
    11. C. Haass, M. G. Schlossmacher, A. Y. Hung, C. Vigo-Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Teplow et.al. Amyloid beta-peptide is produced by cultured cells during normal metabolism [J] Nature, 1992, 359, (6393): 322-325
    12. P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, C. Swindlehurst et.al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids [J] Nature, 1992, 359, (6393): 325-327
    13. M. Shoji, T. E. Golde, J. Ghiso, T. T. Cheung, S. Estus, L. M. Shaffer, X. D. Cai, D. M. McKay, R. Tintner, B. Frangione et.al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing [J] Science, 1992, 258, (5079): 126-129
    14. P. L. McGeer, T. Kawamata, D. G. Walker, H. Akiyama, I. Tooyama and E. G. McGeer. Microglia in degenerative neurological disease [J] Glia, 1993, 7, (1): 84-92
    15. E. G. McGeer and P. L. McGeer. The importance of inflammatory mechanisms in Alzheimer disease [J] ExpGerontol, 1998, 33, (5): 371-378
    16. D. J. Selkoe. Alzheimer's disease: genes, proteins, and therapy [J] Physiol Rev, 2001, 81,(2): 741-766
    17. M. Citron, T. Oltersdorf, C. Haass, L. McConlogue, A. Y. Hung, P. Seubert, C. Vigo-Pelfrey, I. Lieberburg and D. J. Selkoe. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production [J] Nature, 1992, 360, (6405): 672-674
    18. G. D. Schellenberg, T. D. Bird, E. M. Wijsman, H. T. Orr, L. Anderson, E. Nemens, J. A. White, L. Bonnycastle, J. L. Weber, M. E. Alonso et.al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14 [J] Science, 1992, 258, (5082): 668-671
    19. R. Sherrington, E. I. Rogaev, Y. Liang, E. A. Rogaeva, G. Levesque, M. Ikeda, H. Chi, C. Lin, G. Li, K. Holman et.al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease [J] Nature, 1995, 375,(6534): 754-760
    20. E. Levy-Lahad, W. Wasco, P. Poorkaj, D. M. Romano, J. Oshima, W. H. Pettingell, C. E. Yu, P. D. Jondro, S. D. Schmidt, K. Wang et.al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus [J] Science, 1995, 269, (5226): 973-977
    21. J. Hardy and D. J. Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics [J] Science, 2002, 297, (5580): 353-356
    22. S. Varadarajan, S. Yatin, M. Aksenova and D. A. Butterfield. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity [J] J Struct Biol, 2000, 130, (2-3): 184-208
    23. G. E. Gibson and J. P. Blass. Thiamine-dependent processes and treatment strategies in neurodegeneration [J] Antioxid Redox Signal, 2007, 9, (10): 1605-1619
    24. P. I. Lukienko, N. G. Mel'nichenko, I. V. ZverinskiiS. V. Zabrodskaya. Antioxidant properties of thiamine [J] Bull Exp Biol Med, 2000, 130,(9): 874-876
    25. C. K. Singleton and P. R. Martin. Molecular mechanisms of thiamine utilization [J] Curr Mol Med, 2001, 1, (2): 197-207
    26. R. F. Butterworth, J. J. Kril and C. G. Harper. Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome [J] Alcohol Clin Exp Res, 1993, 17, (5): 1084-1088
    27. K. Todd and R. F. Butterworth. Mechanisms of selective neuronal cell death due to thiamine deficiency [J] Ann N Y Acad Sci, 1999, 893:404-411
    28. Z. J. Ke and G. E. Gibson. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism [J] Neurochem Int, 2004, 45, (2-3): 361-369
    29. S. T. O'Keeffe. Thiamine deficiency in elderly people [J] Age Ageing, 2000, 29, (2): 99-101
    30. S. A. Hanninen, P. B. Darling, M. J. Sole, A. Barr and M. E. Keith. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure [J] J Am Coll Cardiol, 2006, 47, (2): 354-361
    31. P. J. Thornalley, R. Babaei-Jadidi, H. Al Ali, N. Rabbani, A. Antonysunil, J. Larkin, A. Ahmed, G. Rayman and C. W. Bodmer. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease [J] Diabetologia, 2007, 50, (10): 2164-2170
    32. H. P. Hammes, X. Du, D. Edelstein, T. Taguchi, T. Matsumura, Q. Ju, J. Lin, A. Bierhaus, P. Nawroth, D. Hannak, M. Neumaier, R. Bergfeld, I. Giardino and M. Brownlee. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy [J] Nat Med, 2003, 9, (3): 294-299
    33. S. I. Rapoport. Positron emission tomography in normal aging and Alzheimer's disease [J] Gerontology, 1986, 32 Suppl 1:6-13
    34. L. Mosconi. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD [J] Eur J Nucl Med Mol Imaging, 2005, 32, (4): 486-510
    35. F. Mastrogiacoma, L. Bettendorff, T. Grisar and S. J. Kish. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease [J] Ann Neurol, 1996, 39, (5): 585-591
    36. F. Mastrogiacoma, J. G. Lindsay, L. Bettendorff, J. Rice and S. J. Kish. Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer's disease [J] Ann Neurol, 1996, 39, (5): 592-598
    37. Z. J. Ke, L. A. DeGiorgio, B. T. Volpe and G. E. Gibson. Reversal of thiamine deficiency-induced neurodegeneration [J] J Neuropathol Exp Neurol, 2003, 62,(2): 195-207
    38. Z. J. Ke, N. Y. Calingasan, S. S. Karuppagounder, L. A. DeGiorgio, B. T. Volpe and G. E. Gibson. CD40L deletion delays neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism [J] J Neuroimmunol, 2005, 164, (1-2): 85-92
    39. A. A. Starkov, G. Fiskum, C. Chinopoulos, B. J. Lorenzo, S. E. Browne, M. S. Patel and M. F. Beal. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species [J] J Neurosci, 2004, 24, (36): 7779-7788
    40. N. Y. Calingasan, W. J. Chun, L. C. Park, K. Uchida and G. E. Gibson. Oxidative stress is associated with region-specific neuronal death during thiamine deficiency [J] J Neuropathol Exp Neurol, 1999, 58, (9): 946-958
    41. X. Sun, G. He, H. Qing, W. Zhou, F. Dobie, F. Cai, M. Staufenbiel, L. E. Huang and W. Song. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression [J] Proc Natl Acad Sci U S A, 2006, 103, (49): 18727-18732
    42. J. J. Wang, Z. Hua, H. M. Fentress and C. K. Singleton. JNK1 is inactivated during thiamine deficiency-induced apoptosis in human neuroblastoma cells [J] J NutrBiochem, 2000, 11, (4): 208-215
    43. O. Nakagawasai. Behavioral and neurochemical alterations following thiamine deficiency in rodents: relationship to functions of cholinergic neurons [J] Yakugaku Zasshi, 2005, 125, (7): 549-554
    44. I. Hussain, D. Powell, D. R. Howlett, D. G. Tew, T. D. Meek, C. Chapman, I. S. Gloger, K. E. Murphy, C. D. Southan, D. M. Ryan, T. S. Smith, D. L. Simmons, F. S. Walsh, C. Dingwall and G. Christie. Identification of a novel aspartic protease (Asp 2) as beta-secretase [J] Mol Cell Neurosci, 1999, 14, (6): 419-427
    45. R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J. C. Louis, F. Collins, J. Treanor, G. Rogers and M. Citron. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE [J] Science, 1999, 286, (5440): 735-741
    46. R. Yan, M. J. Bienkowski, M. E. Shuck, H. Miao, M. C. Tory, A. M. Pauley, J. R. Brashier, N. C. Stratman, W. R. Mathews, A. E. Buhl, D. B. Carter, A. G. Tomasselli, L. A. Parodi, R. L. Heinrikson and M. E. Gurney. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity [J] Nature, 1999, 402, (6761): 533-537
    47. X. Lin, G. Koelsch, S. Wu, D. Downs, A. Dashti and J. Tang. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein [J] Proc Natl Acad Sci U S A, 2000, 97, (4): 1456-1460
    48. R. B. Parsons and B. M. Austen. Protein-protein interactions in the assembly and subcellular trafficking of the BACE (beta-site amyloid precursor protein-cleaving enzyme) complex of Alzheimer's disease [J] Biochem Soc Trans, 2007, 35, (Pt 5): 974-979
    49. A. Capell, H. Steiner, M. Willem, H. Kaiser, C. Meyer, J. Walter, S. Lammich, G. Multhaup and C. Haass. Maturation and pro-peptide cleavage of beta-secretase [J] J Biol Chem, 2000, 275, (40): 30849-30854
    50. P. J. Langlais, G. Anderson, S. X. Guo and S. C. Bondy. Increased cerebral free radical production during thiamine deficiency [J] Metab Brain Dis, 1997, 12,(2): 137-143
    51. S. S. Karuppagounder, H. Xu, Q. Shi, L. H. Chen, S. Pedrini, D. Pechman, H. Baker, M. F. Beal, S. E. Gandy and G. E. Gibson. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model [J] Neurobiol Aging, 2008:
    52. C. Haass, E. H. Koo, A. Mellon, A. Y. Hung and D. J. Selkoe. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments [J] Nature, 1992, 357, (6378): 500-503
    53. A. M. Cataldo, J. L. Barnett, C. Pieroni and R. A. Nixon. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis [J] J Neurosci, 1997, 17, (16): 6142-6151
    54. S. D. Yan, S. F. Yan, X. Chen, J. Fu, M. Chen, P. Kuppusamy, M. A. Smith, G. Perry, G. C. Godman, P. Nawroth et.al. Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide [J] Nat Med, 1995, 1,(7): 693-699
    55. H. Misonou, M. Morishima-Kawashima and Y. Ihara. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells [J] Biochemistry, 2000, 39, (23): 6951-6959
    56. F. Li, N. Y. Calingasan, F. Yu, W. M. Mauck, M. Toidze, C. G. Almeida, R. H. Takahashi, G. A. Carlson, M. Flint Beal, M. T. Lin and G. K. Gouras. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice [J] JNeurochem, 2004, 89, (5): 1308-1312
    57. M. A. Christensen, W. Zhou, H. Qing, A. Lehman, S. Philipsen and W. Song. Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase,by Spl [J] Mol Cell Biol, 2004, 24, (2): 865-874
    58. Y. W. Ge, B. Maloney, K. Sambamurti and D. K. Lahiri. Functional characterization of the 5' flanking region of the BACE gene: identification of a 91 bp fragment involved in basal level of BACE promoter expression [J] FASEBJ, 2004, 18, (9): 1037-1039
    59. X. Sun, Y. Wang, H. Qing, M. A. Christensen, Y. Liu, W. Zhou, Y. Tong, C. Xiao, Y. Huang, S. Zhang, X. Liu and W. Song. Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes [J] FASEB J, 2005, 19,(7): 739-749
    60. S. Rossner, M. Sastre, K. Bourne and S. F. Lichtenthaler. Transcriptional and translational regulation of BACE1 expression-implications for Alzheimer's disease [J] Prog Neurobiol, 2006, 79, (2): 95-111
    61. R. Li, K. Lindholm, L. B. Yang, X. Yue, M. Citron, R. Yan, T. Beach, L. Sue, M. Sabbagh, H. Cai, P. Wong, D. Price and Y. Shen. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients [J] Proc Natl Acad Sci U S A, 2004, 101, (10): 3632-3637
    62. R. A. Velliquette, T. O'Connor and R. Vassar. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis [J] JNeurosci, 2005, 25, (47): 10874-10883
    63. E. Tamagno, P. Bardini, A. Obbili, A. Vitali, R. Borghi, D. Zaccheo, M. A. Pronzato, O. Danni, M. A. Smith, G. Perry and M. Tabaton. Oxidative stress increases expression and activity of BACE in NT2 neurons [J] Neurobiol Dis, 2002, 10, (3): 279-288
    64. M. E. Harris, K. Hensley, D. A. Butterfield, R. A. Leedle and J. M. Carney. Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons [J] Exp Neurol, 1995, 131, (2): 193-202
    65. B. J. Tabner, O. M. El-Agnaf, S. Turnbull, M. J. German, K. E. Paleologou, Y. Hayashi, L. J. Cooper, N. J. Fullwood and D. Allsop. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia [J] J Biol Chem, 2005, 280, (43): 35789-35792
    66. C. S. Casley, L. Canevari, J. M. Land, J. B. Clark and M. A. Sharpe. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities [J] J Neurochem, 2002, 80, (1): 91-100
    67. J. W. Lustbader, M. Cirilli, C. Lin, H. W. Xu, K. Takuma, N. Wang, C. Caspersen, X. Chen, S. Pollak, M. Chaney, F. Trinchese, S. Liu, F. Gunn-Moore, L. F. Lue, D. G. Walker, P. Kuppusamy, Z. L. Zewier, O. Arancio, D. Stem, S. S. Yan and H. Wu. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease [J] Science, 2004, 304, (5669): 448-452
    68. V. Conte, K. Uryu, S. Fujimoto, Y. Yao, J. Rokach, L. Longhi, J. Q. Trojanowski, V. M. Lee, T. K. Mclntosh and D. Pratico. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury [J] J Neurochem, 2004, 90, (3): 758-764
    69. S. Sung, Y. Yao, K. Uryu, H. Yang, V. M. Lee, J. Q. Trojanowski and D. Pratico. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease [J] FASEBJ, 2004, 18, (2): 323-325
    70. Y. Nishida, T. Yokota, T. Takahashi, T. Uchihara, K. Jishage and H. Mizusawa. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse [J] Biochem Biophys Res Commun, 2006, 350, (3): 530-536
    71. J. P. Blass, P. Gleason, D. Brush, P. DiPonte and H. Thaler. Thiamine and Alzheimer's disease. A pilot study [J] Arch Neurol, 1988, 45, (8): 833-835
    72. K. A. Nolan, R. S. Black, K. F. Sheu, J. Langberg and J. P. Blass. A trial of thiamine in Alzheimer's disease [J] Arch Neurol, 1991, 48, (1):81-83
    73. Y. Mimori, H. Katsuoka and S. Nakamura. Thiamine therapy in Alzheimer's disease [J] Metab Brain Dis, 1996, 11,(1): 89-94
    74. P. P. Zandi, J. C. Anthony, A. S. Khachaturian, S. V. Stone, D. Gustafson, J. T. Tschanz, M. C. Norton, K. A. Welsh-Bohmer and J. C. Breitner. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study [J] Arch Neurol, 2004, 61,(1): 82-88
    75. M. C. Morris, D. A. Evans, C. C. Tangney, J. L. Bienias, R. S. Wilson, N. T. Aggarwal and P. A. Scherr. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change [J] Am J Clin Nutr, 2005, 81, (2): 508-514
    1. A. Delacourte and A. Defossez. Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments [J] J Neurol Sci, 1986, 76,(2-3): 173-186
    2. I. Grundke-Iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi and H. M. Wisniewski. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments [J] J Biol Chem, 1986, 261, (13): 6084-6089
    3. K. S. Kosik, C. L. Joachim and D. J. Selkoe. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease [J] Proc Natl Acad Sci U S A, 1986, 83,(11): 4044-4048
    4. N. Nukina and Y. Ihara. One of the antigenic determinants of paired helical filaments is related to tau protein [J] J Biochem, 1986, 99,(5): 1541-1544
    5. J. G. Wood, S. S. Mirra, N. J. Pollock and L. I. Binder. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau) [J] Proc Natl Acad Sci U S A, 1986, 83, (11): 4040-4043
    6. I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski and L. I. Binder. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology [J] Proc Natl Acad Sci U S A, 1986, 83, (13): 4913-4917
    7. E. S. Matsuo, R. W. Shin, M. L. Billingsley, A. Van deVoorde, M. O'Connor, J. Q. Trojanowski and V. M. Lee. Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau [J] Neuron, 1994, 13, (4): 989-1002
    8. M. Morishima-Kawashima, M. Hasegawa, K. Takio, M. Suzuki, H. Yoshida, A. Watanabe, K. Titani and Y. Ihara. Hyperphosphorylation of tau in PHF [J] Neurobiol Aging, 1995, 16, (3): 365-371; discussion 371-380
    9. A. C. Alonso, I. Grundke-Iqbal and K. Iqbal. Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules [J] Nat Med, 1996, 2, (7): 783-787
    10. A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal and K. Iqbal. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments [J] Proc Natl Acad Sci U S A, 2001, 98, (12): 6923-6928
    11. M. Novak, J. Kabat and C. M. Wischik. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament [J] Embo J, 1993, 12, (1): 365-370
    12. N. Canu, L. Dus, C. Barbato, M. T. Ciotti, C. Brancolini, A. M. Rinaldi, M. Novak, A. Cattaneo, A. Bradbury and P. Calissano. Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis [J] J Neurosci, 1998, 18, (18): 7061-7074
    13. L. Fasulo, G. Ugolini, M. Visintin, A. Bradbury, C. Brancolini, V. Verzillo, M. Novak and A. Cattaneo. The neuronal microtubule-associated protein tau is a substrate for caspase-3 and an effector of apoptosis [J] J Neurochem, 2000, 75, (2): 624-633
    14. C. W. Chung, Y. H. Song, I. K. Kim, W. J. Yoon, B. R. Ryu, D. G. Jo, H. N. Woo, Y. K. Kwon, H. H. Kim, B. J. Gwag, I. H. Mook-Jung and Y. K. Jung. Proapoptotic effects of tau cleavage product generated by caspase-3 [J] Neurobiol Dis, 2001, 8, (1): 162-172
    15. T. C. Gamblin, F. Chen, A. Zambrano, A. Abraha, S. Lagalwar, A. L. Guillozet, M. Lu, Y. Fu, F. Garcia-Sierra, N. LaPointe, R. Miller, R. W. Berry, L. I. Binder and V. L. Cryns. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease [J] Proc Natl Acad Sci U S A, 2003, 100, (17): 10032-10037
    1 N. Y. Calingasan, W. J. Chun, L. C. Park, K. Uchida and G. E. Gibson Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. [J] J Neuropathol Exp Neurol 1999 58 (9):946-958
    2 N. Y. Calingasan, P. L. Huang, H. S. Chun, A. Fabian and G. E. Gibson Vascular factors are critical in selective neuronal loss in an animal model of impaired oxidative metabolism. [J] J Neuropathol Exp Neurol 2000 59 (3):207-217
    3 K. Todd and R. F. Butterworth Mechanisms of selective neuronal cell death due to thiamine deficiency. [J] Ann N Y Acad Sci 1999 893:404-411
    4 G. E. Gibson and J. P. Blass Thiamine-dependent processes and treatment strategies in neurodegeneration. [J] Antioxid Redox Signal 2007 9 (10):1605-1619
    5 S. S. Karuppagounder, H. Xu, Q. Shi, L. H. Chen, S. Pedrini, D. Pechman, H. Baker, M. F. Beal, S. E. Gandy and G. E. Gibson Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. [J] Neurobiol Aging 2008
    6 Q. Shi and G. E. Gibson Oxidative stress and transcriptional regulation in Alzheimer disease. [J] Alzheimer Dis Assoc Disord 2007 21 (4):276-291
    7 E. Trushina and C. T. McMurray Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. [J] Neuroscience 2007 145 (4): 1233-1248
    8 N. Y. Calingasan, S. E. Gandy, H. Baker, K. F. Sheu, J. D. Smith, B. T. Lamb, J. D. Gearhart, J. D. Buxbaum, C. Harper, D. J. Selkoe et al. Novel neuritic clusters with accumulations of amyloid precursor protein and amyloid precursor-like protein 2 immunoreactivity in brain regions damaged by thiamine deficiency. [J] Am J Pathol 1996 149 (3): 1063-1071
    9 G. E. Gibson and H. Zhang Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. [J] Neurochem Int 2002 40 (6):493-504
    10 S. S. Karuppagounder, H. Xu, D. Pechman, L. H. Chen, L. A. DeGiorgio and G. E. Gibson Translocation of amyloid precursor protein C-terminal fragment(s) to the nucleus precedes neuronal death due to thiamine deficiency-induced mild impairment of oxidative metabolism. [J] Neurochem Res 2008 33 (7): 1365-1372
    11 Z. J. Ke, W. M. Bowen and G. E. Gibson Peripheral inflammatory mechanisms modulate microglial activation in response to mild impairment of oxidative metabolism. [J] Neurochem Int 2006 49 (5):548-556
    12 Z. J. Ke, N. Y. Calingasan, L. A. DeGiorgio, B. T. Volpe and G. E. Gibson CD40-CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. [J] Neurochem Int 2005 47 (3):204-215
    13 Z. J. Ke, L. A. DeGiorgio, B. T. Volpe and G. E. Gibson Reversal of thiamine deficiency-induced neurodegeneration. [J] J Neuropathol Exp Neurol 2003 62 (2): 195-207
    14 D. J. Selkoe Alzheimer's disease: genes, proteins, and therapy. [J] Physiol Rev 2001 81(2):741-766
    15 T. Takeda, M. Hosokawa, S. Takeshita, M. Irino, K. Higuchi, T. Matsushita, Y. Tomita, K. Yasuhira, H. Hamamoto, K. Shimizu et al. A new murine model of accelerated senescence. [J] Mech Ageing Dev 1981 17 (2):183-194
    16 D. A. Butterfield and H. F. Poon The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. [J] Exp Gerontol 2005 40(10):774-783
    1 M. Goedert and M. G. Spillantini. A century of Alzheimer's disease [J] Science, 2006, 314, (5800):777-781
    2 R. N. Kalaria, G. E. Maestre, R. Arizaga, R. P. Friedland, D. Galasko, K. Hall, J. A. Luchsinger, A. Ogunniyi, E. K. Perry, F. Potocnik, M. Prince, R. Stewart, A. Wimo, Z. X. Zhang and P. Antuono. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors [J] Lancet Neurol, 2008, 7, (9):812-826
    3 E. D. Roberson and L. Mucke. 100 years and counting: prospects for defeating Alzheimer's disease [J] Science, 2006, 314, (5800):781-784
    4 K. Blennow, M. J. de Leon and H. Zetterberg. Alzheimer's disease [J] Lancet, 2006, 368, (9533):387-403
    5 D. J. Selkoe. Alzheimer's disease: genes, proteins, and therapy [J] Physiol Rev, 2001, 81,(2):741-766
    6 R. Mayeux. Epidemiology of neurodegeneration [J] Annu Rev Neurosci, 2003,26:81-104
    7 J. A. Mortimer, D. A. Snowdon and W. R. Markesbery. Head circumference, education and risk of dementia: findings from the Nun Study [J] J Clin Exp Neuropsychol, 2003,25, (5):671-679
    8 K. A. Jellinger. Head injury and dementia [J] Curr Opin Neurol, 2004,17, (6):719-723
    9 A. Karp, I. Kareholt, C. Qiu, T. Bellander, B. Winblad and L. Fratiglioni. Relation of education and occupation-based socioeconomic status to incident Alzheimer's disease [J] Am J Epidemiol, 2004,159, (2):175-183
    10 J. Verghese, R. B. Lipton, M. J. Katz, C. B. Hall, C. A. Derby, G. Kuslansky, A. F. Ambrose, M. Sliwinski and H. Buschke. Leisure activities and the risk of dementia in the elderly [J] N Engl J Med, 2003, 348, (25):2508-2516
    11 M. Kivipelto, E. L. Helkala, M. P. Laakso, T. Hanninen, M. Hallikainen, K. Alhainen, S. Iivonen, A. Mannermaa, J. Tuomilehto, A. Nissinen and H. Soininen. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease [J] Ann Intern Med, 2002, 137, (3):149-155
    12 S. A. Shumaker, C. Legault, S. R. Rapp, L. Thai, R. B. Wallace, J. K. Ockene, S. L. Hendrix, B. N. Jones, 3rd, A. R. Assaf, R. D. Jackson, J. M. Kotchen, S. Wassertheil-Smoller and J. Wactawski-Wende. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial [J] JAMA, 2003, 289, (20):2651 -2662
    13 B. L. Plassman, R. J. Havlik, D. C. Steffens, M. J. Helms, T. N. Newman, D. Drosdick, C. Phillips, B. A. Gau, K. A. Welsh-Bohmer, J. R. Burke, J. M. Guralnik and J. C. Breitner. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias [J] Neurology, 2000, 55, (8):1158-1166
    14 R. A. Whitmer, S. Sidney, J. Selby, S. C. Johnston and K. Yaffe. Midlife cardiovascular risk factors and risk of dementia in late life [J] Neurology, 2005, 64, (2):277-281
    15 D. A. Drachman. Aging of the brain, entropy, and Alzheimer disease [J] Neurology, 2006, 67, (8):1340-1352
    16 R. Sherrington, E. I. Rogaev, Y. Liang, E. A. Rogaeva, G. Levesque, M. Ikeda, H. Chi, C. Lin, G. Li, K. Holman et.al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease [J] Nature, 1995, 375, (6534):754-760
    17 E. Levy-Lahad, W. Wasco, P. Poorkaj, D. M. Romano, J. Oshima, W. H. Pettingell, C. E. Yu, P. D. Jondro, S. D. Schmidt, K. Wang et.al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus [J] Science, 1995,269,(5226):973-977
    18 A. Goate, M. C. Chartier-Harlin, M. Mullan, J. Brown, F. Crawford, L. Fidani, L. Giuffra, A. Haynes, N. Irving, L. James et.al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease [J] Nature, 1991, 349, (6311):704-706
    19 J. Murrell, M. Farlow, B. Ghetti and M. D. Benson. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease [J] Science, 1991, 254, (5028):97-99
    20 M. Mullan, F. Crawford, K. Axelman, H. Houlden, L. Lilius, B. Winblad and L. Lannfelt. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid [J] Nat Genet, 1992,1, (5):345-347
    21 M. Citron, T. Oltersdorf, C. Haass, L. McConlogue, A. Y. Hung, P. Seubert, C. Vigo-Pelfrey, I. Lieberburg and D. J. Selkoe. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production [J] Nature, 1992, 360, (6405):672-674
    22 C. A. Lemere, F. Lopera, K. S. Kosik, C. L. Lendon, J. Ossa, T. C. Saido, H. Yamaguchi, A. Ruiz, A. Martinez, L. Madrigal, L. Hincapie, J. C. Arango, D. C. Anthony, E. H. Koo, A. M. Goate and D. J. Selkoe. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology [J] Nat Med, 1996, 2, (10):l 146-1150
    23 M. Citron, D. Westaway, W. Xia, G. Carlson, T. Diehl, G. Levesque, K. Johnson-Wood, M. Lee, P. Seubert, A. Davis, D. Kholodenko, R. Motter, R. Sherrington, B. Perry, H. Yao, R. Strome, I. Lieberburg, J. Rommens, S. Kim, D. Schenk, P. Fraser, P. St George Hyslop and D. J. Selkoe. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice [J] Nat Med, 1997, 3, (1):67-72
    24 C. Nilsberth, A. Westlind-Danielsson, C. B. Eckman, M. M. Condron, K. Axelman, C. Forsell, C. Stenh, J. Luthman, D. B. Teplow, S. G. Younkin, J. Naslund and L. Lannfelt. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation [J] Nat Neurosci, 2001,4, (9):887-893
    25 E. H. Corder, A. M. Saunders, W. J. Strittmatter, D. E. Schmechel, P. C. Gaskell, G. W. Small, A. D. Roses, J. L. Haines and M. A. Pericak-Vance. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families [J] Science, 1993, 261, (5123):921-923
    26 J. Poirier, J. Davignon, D. Bouthillier, S. Kogan, P. Bertrand and S. Gauthier. Apolipoprotein E polymorphism and Alzheimer's disease [J] Lancet, 1993, 342, (8873):697-699
    27 L. A. Farrer, L. A. Cupples, J. L. Haines, B. Hyman, W. A. Kukull, R. Mayeux, R. H. Myers, M. A. Pericak-Vance, N. Risch and C. M. van Duijn. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium [J] JAMA, 1997,278, (16):1349-1356
    28 M. R. Meyer, J. T. Tschanz, M. C. Norton, K. A. Welsh-Bohmer, D. C. Steffens, B. W. Wyse and J. C. Breitner. APOE genotype predicts when-not whether~one is predisposed to develop Alzheimer disease [J] Nat Genet, 1998,19,(4):321-322
    29 J. Hardy and D. J. Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics [J] Science, 2002,297, (5580):353-356
    30 M. Kidd. Paired helical filaments in electron microscopy of Alzheimer's disease [J] Nature, 1963,197:192-193
    31 R. D. Terry, N. K. Gonatas and M. Weiss. Ultrastructural Studies in Alzheimer's Presenile Dementia [J] Am J Pathol, 1964,44:269-297
    32 G. G. Glenner and C. W. Wong. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein [J] Biochem Biophys Res Commun, 1984,120, (3):885-890
    33 C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther. Amyloid plaque core protein in Alzheimer disease and Down syndrome [J] Proc Natl Acad Sci U S A, 1985, 82, (12):4245-4249
    34 P. D. Gorevic, F. Goni, B. Pons-Estel, F. Alvarez, N. S. Peress and B. Frangione. Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer's disease: immunohistological studies [J] J Neuropathol Exp Neurol, 1986, 45, (6):647-664
    35 D. J. Selkoe, C. R. Abraham, M. B. Podlisny and L. K. Duffy. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease [J] J Neurochem, 1986, 46, (6):1820-1834
    36 D. Goldgaber, M. I. Lerman, O. W. McBride, U. Saffiotti and D. C. Gajdusek. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease [J] Science, 1987, 235, (4791):877-880
    37 N. K. Robakis, N. Ramakrishna, G. Wolfe and H. M. Wisniewski. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides [J] Proc Natl Acad Sci U S A, 1987, 84, (12):4190-4194
    38 N. K. Robakis, H. M. Wisniewski, E. C. Jenkins, E. A. Devine-Gage, G. E. Houck, X. L. Yao, N. Ramakrishna, G. Wolfe, W. P. Silverman and W. T. Brown. Chromosome 21q21 sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down syndrome [J] Lancet, 1987,1, (8529):384-385
    39 P. H. St George-Hyslop, R. E. Tanzi, R. J. Polinsky, J. L. Haines, L. Nee, P. C. Watkins, R. H. Myers, R. G. Feldman, D. Pollen, D. Drachman et.al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21 [J] Science, 1987, 235, (4791):885-890
    40 R. E. Tanzi, J. F. Gusella, P. C. Watkins, G. A. Bruns, P. St George-Hyslop, M. L. Van Keuren, D. Patterson, S. Pagan, D. M. Kurnit and R. L. Neve. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus [J] Science, 1987, 235, (4791):880-884
    41 F. S. Esch, P. S. Keim, E. C. Beattie, R. W. Blacher, A. R. Culwell, T. Oltersdorf, D. McClure and P. J. Ward. Cleavage of amyloid beta peptide during constitutive processing of its precursor [J] Science, 1990, 248, (4959): 1122-1124
    42 S. S. Sisodia, E. H. Koo, K. Beyreuther, A. Unterbeck and D. L. Price. Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing [J] Science, 1990, 248, (4954):492-495
    43 C. Haass, M. G. Schlossmacher, A. Y. Hung, C. Vigo-Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Teplow et.al. Amyloid beta-peptide is produced by cultured cells during normal metabolism [J] Nature, 1992, 359, (6393):322-325
    44 P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, C. Swindlehurst et.al. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids [J] Nature, 1992, 359, (6393):325-327
    45 M. Shoji, T. E. Golde, J. Ghiso, T. T. Cheung, S. Estus, L. M. Shaffer, X. D. Cai, D. M. McKay, R. Tintner, B. Frangione et.al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing [J] Science, 1992, 258, (5079): 126-129
    46 J. T. Jarrett, E. P. Berger and P. T. Lansbury, Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease [J] Biochemistry, 1993,32, (18):4693-4697
    47 T. Luhrs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Dobeli, D. Schubert and R. Riek. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils [J] Proc Natl Acad Sci U S A, 2005,102, (48):17342-17347
    48 H. Jang, J. Zheng, R. Lal and R. Nussinov. New structures help the modeling of toxic amyloidbeta ion channels [J] Trends Biochem Sci, 2008, 33, (2):91-100
    49 W. Wasco, K. Bupp, M. Magendantz, J. F. Gusella, R. E. Tanzi and F. Solomon. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor [J] Proc Natl Acad Sci U S A, 1992, 89, (22):10758-10762
    50 H. H. Slunt, G. Thinakaran, C. Von Koch, A. C. Lo, R. E. Tanzi and S. S. Sisodia. Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP) [J] J Biol Chem, 1994, 269, (4):2637-2644
    51 I. Daigle and C. Li. apl-1, a Caenorhabditis elegans gene encoding a protein related to the human beta-amyloid protein precursor [J] Proc Natl Acad Sci U S A, 1993, 90, (24):12045-12049
    52 L. E. Martin-Morris and K. White. The Drosophila transcript encoded by the beta-amyloid protein precursor-like gene is restricted to the nervous system [J] Development, 1990, 110, (1):185-195
    53 H. Zheng, M. Jiang, M. E. Trumbauer, D. J. Sirinathsinghji, R. Hopkins, D. W. Smith, R. P. Heavens, G. R. Dawson, S. Boyce, M. W. Conner, K. A. Stevens, H. H. Slunt, S. S. Sisoda, H. Y. Chen and L. H. Van der Ploeg. beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity [J] Cell, 1995, 81, (4):525-531
    54 H. Zheng, M. Jiang, M. E. Trumbauer, R. Hopkins, D. J. Sirinathsinghji, K. A. Stevens, M. W. Conner, H. H. Slunt, S. S. Sisodia, H. Y. Chen and L. H. Van der Ploeg. Mice deficient for the amyloid precursor protein gene [J] Ann N Y Acad Sci, 1996, 777:421-426
    55 S. Heber, J. Herms, V. Gajic, J. Hainfellner, A. Aguzzi, T. Rulicke, H. von Kretzschmar, C. von Koch, S. Sisodia, P. Tremml, H. P. Lipp, D. P. Wolfer and U. Muller. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members [J] J Neurosci, 2000,20, (21):7951-7963
    56 C. Reinhard, S. S. Hebert and B. De Strooper. The amyloid-beta precursor protein: integrating structure with biological function [J] Embo J, 2005, 24, (23):3996-4006
    57 S. Tanaka, S. Nakamura, K. Ueda, M. Kameyama, S. Shiojiri, Y. Takahashi, N. Kitaguchi and H. Ito. Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease [J] Biochem Biophys Res Commun, 1988,157, (2):472-479
    58 J. S. Jacobsen, H. A. Muenkel, A. J. Blume and M. P. Vitek. A novel species-specific RNA related to alternatively spliced amyloid precursor protein mRNAs [J] Neurobiol Aging, 1991,12, (5):575-583
    59 C. A. Sherman and G. A. Higgins. Regulated splicing of the amyloid precursor protein gene during postnatal development of the rat basal forebrain [J] Brain Res Dev Brain Res, 1992, 66, (1):63-69
    60 J. Kang and B. Muller-Hill. Differential splicing of Alzheimer's disease amyloid A4 precursor RNA in rat tissues: PreA4(695) mRNA is predominantly produced in rat and human brain [J] Biochem Biophys Res Commun, 1990,166, (3):1192-1200
    61 D. J. Selkoe. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease [J] Trends Cell Biol, 1998, 8, (11):447-453
    62 I. McFarlane, N. Georgopoulou, C. M. Coughlan, A. M. Gillian and K. C. Breen. The role of the protein glycosylation state in the control of cellular transport of the amyloid beta precursor protein [J] Neuroscience, 1999, 90, (1):15-25
    63 E. F. da Cruz e Silva and O. A. da Cruz e Silva. Protein phosphorylation and APP metabolism [J] Neurochem Res, 2003, 28, (10): 1553-1561
    64 F. M. LaFerla and S. Oddo. Alzheimer's disease: Abeta, tau and synaptic dysfunction [J] Trends Mol Med, 2005, 11, (4): 170-176
    65 H. Xu, D. Sweeney, R. Wang, G. Thinakaran, A. C. Lo, S. S. Sisodia, P. Greengard and S. Gandy. Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation [J] Proc Natl Acad Sci U S A, 1997, 94, (8):3748-3752
    66 J. P. Greenfield, J. Tsai, G. K. Gouras, B. Hai, G. Thinakaran, F. Checler, S. S. Sisodia, P. Greengard and H. Xu. Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides [J] Proc Natl Acad Sci U S A, 1999, 96, (2):742-747
    67 C. Haass, E. H. Koo, D. B. Teplow and D. J. Selkoe. Polarized secretion of beta-amyloid precursor protein and amyloid beta-peptide in MDCK cells [J] Proc Natl Acad Sci U S A, 1994, 91, (4): 1564-1568
    68 C. Haass, E. H. Koo, A. Capell, D. B. Teplow and D. J. Selkoe. Polarized sorting of beta-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals [J] J Cell Biol, 1995, 128, (4):537-547
    69 S. Lammich, E. Kojro, R. Postina, S. Gilbert, R. Pfeiffer, M. Jasionowski, C. Haass and F. Fahrenholz. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease [J] Proc Natl Acad Sci U S A, 1999, 96, (7):3922-3927
    70 D. M. Skovronsky, D. B. Moore, M. E. Milla, R. W. Doms and V. M. Lee. Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network [J] J Biol Chem, 2000,275, (4):2568-2575
    71 R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J. C. Louis, F. Collins, J. Treanor, G. Rogers and M. Citron. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE [J] Science, 1999,286, (5440):735-741
    72 J. T. Huse, D. S. Pijak, G. J. Leslie, V. M. Lee and R. W. Doms. Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta-secretase [J] J Biol Chem, 2000, 275, (43):33729-33737
    73 D. G. Cook, M. S. Forman, J. C. Sung, S. Leight, D. L. Kolson, T. Iwatsubo, V. M. Lee and R. W. Doms. Alzheimer's A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells [J] Nat Med, 1997, 3,(9):1021-1023
    74 W. Schubert, R. Prior, A. Weidemann, H. Dircksen, G. Multhaup, C. L. Masters and K. Beyreuther. Localization of Alzheimer beta A4 amyloid precursor protein at central and peripheral synaptic sites [J] Brain Res, 1991, 563, (1-2):184-194
    75 G. L. Caporaso, K. Takei, S. E. Gandy, M. Matteoli, O. Mundigl, P. Greengard and P. De Camilli. Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer beta/A4 amyloid precursor protein [J] J Neurosci, 1994,14, (5 Pt2):3122-3138
    76 M. Simons, E. Ikonen, P. J. Tienari, A. Cid-Arregui, U. Monning, K. Beyreuther and C. G. Dotti. Intracellular routing of human amyloid protein precursor: axonal delivery followed by transport to the dendrites [J] J Neurosci Res, 1995,41, (1): 121-128
    77 E. H. Koo, S. S. Sisodia, D. R. Archer, L. J. Martin, A. Weidemann, K. Beyreuther, P. Fischer, C. L. Masters and D. L. Price. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport [J] Proc Natl Acad Sci U S A, 1990, 87, (4): 1561-1565
    78 O. Lazarov, M. Lee, D. A. Peterson and S. S. Sisodia. Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice [J] J Neurosci, 2002, 22, (22):9785-9793
    79 S. J. Tyler, D. Dawbarn, G. K. Wilcock and S. J. Allen. alpha- and beta-secretase: profound changes in Alzheimer's disease [J] Biochem Biophys Res Commun, 2002, 299, (3):373-376
    80 R. Li, K. Lindholm, L. B. Yang, X. Yue, M. Citron, R. Yan, T. Beach, L. Sue, M. Sabbagh, H. Cai, P. Wong, D. Price and Y. Shen. Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer's disease patients [J] Proc Natl Acad Sci U S A, 2004, 101, (10):3632-3637
    81 J. D. Buxbaum, K. N. Liu, Y. Luo, J. L. Slack, K. L. Stocking, J. J. Peschon, R. S. Johnson, B. J. Castner, D. P. Cerretti and R. A. Black. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor [J] J Biol Chem, 1998, 273, (43):27765-27767
    82 E. Lopez-Perez, Y. Zhang, S. J. Frank, J. Creemers, N. Seidah and F. Checler. Constitutive alpha-secretase cleavage of the beta-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the pro-hormone convertase 7 and the disintegrin metalloprotease ADAM10 [J] J Neurochem, 2001, 76, (5):1532-1539
    83 H. Koike, S. Tomioka, H. Sorimachi, T. C. Saido, K. Maruyama, A. Okuyama, A. Fujisawa-Sehara, S. Ohno, K. Suzuki and S. Ishiura. Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein [J] Biochem J, 1999, 343 Pt 2:371-375
    84 I. Hussain, D. Powell, D. R. Howlett, D. G. Tew, T. D. Meek, C. Chapman, I. S. Gloger, K. E. Murphy, C. D. Southan, D. M. Ryan, T. S. Smith, D. L. Simmons, F. S. Walsh, C. Dingwall and G. Christie. Identification of a novel aspartic protease (Asp 2) as beta-secretase [J] Mol Cell Neurosci, 1999, 14, (6):419-427
    85 R. Yan, M. J. Bienkowski, M. E. Shuck, H. Miao, M. C. Tory, A. M. Pauley, J. R. Brashier, N. C. Stratman, W. R. Mathews, A. E. Buhl, D. B. Carter, A. G. Tomasselli, L. A. Parodi, R. L. Heinrikson and M. E. Gurney. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity [J] Nature, 1999,402, (6761):533-537
    86 X. Lin, G. Koelsch, S. Wu, D. Downs, A. Dashti and J. Tang. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein [J] Proc Natl Acad Sci U S A, 2000, 97, (4): 1456-1460
    87 A. Capell, H. Steiner, M. Willem, H. Kaiser, C. Meyer, J. Walter, S. Lammich, G. Multhaup and C. Haass. Maturation and pro-peptide cleavage of beta-secretase [J] J Biol Chem, 2000, 275, (40):30849-30854
    88 J. Walter, R. Fluhrer, B. Hartung, M. Willem, C. Kaether, A. Capell, S. Lammich, G. Multhaup and C. Haass. Phosphorylation regulates intracellular trafficking of beta-secretase [J] J Biol Chem, 2001, 276, (18): 14634-14641
    89 M. Ohno, E. A. Sametsky, L. H. Younkin, H. Oakley, S. G. Younkin, M. Citron, R. Vassar and J. F. Disterhoft. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer's disease [J] Neuron, 2004, 41, (1):27-33
    90 M. Ohno, S. L. Cole, M. Yasvoina, J. Zhao, M. Citron, R. Berry, J. F. Disterhoft and R. Vassar. BACEl gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice [J] Neurobiol Dis, 2007,26,(1):134-145
    91 L. B. Yang, K. Lindholm, R. Yan, M. Citron, W. Xia, X. L. Yang, T. Beach, L. Sue, P. Wong, D. Price, R. Li and Y. Shen. Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease [J] Nat Med, 2003, 9, (1):3-4
    92 J. A. Johnston, W. W. Liu, S. A. Todd, D. T. Coulson, S. Murphy, G. B. Irvine and A. P. Passmore. Expression and activity of beta-site amyloid precursor protein cleaving enzyme in Alzheimer's disease [J] Biochem Soc Trans, 2005, 33, (Pt 5): 1096-1100
    93 X. Hu, C. W. Hicks, W. He, P. Wong, W. B. Macklin, B. D. Trapp and R. Yan. Bacel modulates myelination in the central and peripheral nervous system [J] Nat Neurosci, 2006, 9, (12):1520-1525
    94 M. Willem, A. N. Garratt, B. Novak, M. Citron, S. Kaufmann, A. Rittger, B. DeStrooper, P. Saftig, C. Birchmeier and C. Haass. Control of peripheral nerve myelination by the beta-secretase BACE1 [J] Science, 2006, 314, (5799):664-666
    95 T. Iwatsubo, A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina and Y. Ihara. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43) [J] Neuron, 1994, 13, (1):45-53
    96 D. R. Borchelt, G. Thinakaran, C. B. Eckman, M. K. Lee, F. Davenport, T. Ratovitsky, C. M. Prada, G. Kim, S. Seekins, D. Yager, H. H. Slunt, R. Wang, M. Seeger, A. I. Levey, S. E. Gandy, N. G. Copeland, N. A. Jenkins, D. L. Price, S. G. Younkin and S. S. Sisodia. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abetal-42/1-40 ratio in vitro and in vivo [J] Neuron, 1996, 17, (5):1005-1013
    97 M. A. Findeis. The role of amyloid beta peptide 42 in Alzheimer's disease [J] Pharmacol Ther, 2007, 116, (2):266-286
    98 S. Artavanis-Tsakonas, K. Matsuno and M. E. Fortini. Notch signaling [J] Science, 1995, 268, (5208):225-232
    99 J. Lewis. Neurogenic genes and vertebrate neurogenesis [J] Curr Opin Neurobiol, 1996, 6, (1):3-10
    100 J. Shen, R. T. Bronson, D. F. Chen, W. Xia, D. J. Selkoe and S. Tonegawa. Skeletal and CNS defects in Presenilin-1 -deficient mice [J] Cell, 1997, 89, (4):629-639
    101 V. Beglopoulos, X. Sun, C. A. Saura, C. A. Lemere, R. D. Kim and J. Shen. Reduced beta-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice [J] J Biol Chem, 2004,279, (45):46907-46914
    102 D. Edbauer, E. Winkler, J. T. Regula, B. Pesold, H. Steiner and C. Haass. Reconstitution of gamma-secretase activity [J] Nat Cell Biol, 2003, 5, (5):486-488
    103 P. C. Fraering, W. Ye, J. M. Strub, G. Dolios, M. J. LaVoie, B. L. Ostaszewski, A. van Dorsselaer, R. Wang, D. J. Selkoe and M. S. Wolfe. Purification and characterization of the human gamma-secretase complex [J] Biochemistry, 2004,43, (30):9774-9789
    104 I. Hayashi, Y. Urano, R. Fukuda, N. Isoo, T. Kodama, T. Hamakubo, T. Tomita and T. Iwatsubo. Selective reconstitution and recovery of functional gamma-secretase complex on budded baculovirus particles [J] J Biol Chem, 2004,279, (36):38040-38046
    105 W. T. Kimberly, M. J. LaVoie, B. L. Ostaszewski, W. Ye, M. S. Wolfe and D. J. Selkoe. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 [J] Proc Natl Acad Sci U S A, 2003, 100, (11):6382-6387
    106 L. Zhang, J. Lee, L. Song, X. Sun, J. Shen, G. Terracina and E. M. Parker. Characterization of the reconstituted gamma-secretase complex from Sf9 cells co-expressing presenilin 1, nicastrin [correction of nacastrin], aph-1 a, and pen-2 [J] Biochemistry, 2005,44, (11):4450-4457
    107 D. Levitan, J. Lee, L. Song, R. Manning, G. Wong, E. Parker and L. Zhang. PS 1 N- and C-terminal fragments form a complex that functions in APP processing and Notch signaling [J] Proc Natl Acad Sci U S A, 2001, 98, (21):12186-12190
    108 A. L. Brunkan and A. M. Goate. Presenilin function and gamma-secretase activity [J] J Neurochem, 2005, 93, (4):769-792
    109 B. Martoglio and T. E. Golde. Intramembrane-cleaving aspartic proteases and disease: presenilins, signal peptide peptidase and their homologs [J] Hum Mol Genet, 2003,12 Spec No 2:R201-206
    110 M. S. Wolfe. When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease [J] EMBO Rep, 2007, 8, (2): 136-140
    111 T. Ratovitski, H. H. Slunt, G. Thinakaran, D. L. Price, S. S. Sisodia and D. R. Borchelt. Endoproteolytic processing and stabilization of wild-type and mutant presenilin [J] J Biol Chem, 1997, 272, (39):24536-24541
    112 H. Steiner, A. Capell, B. Pesold, M. Citron, P. M. Kloetzel, D. J. Selkoe, H. Romig, K. Mendla and C. Haass. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation [J] J Biol Chem, 1998,273, (48):32322-32331
    113 G. Thinakaran, D. R. Borchelt, M. K. Lee, H. H. Slunt, L. Spitzer, G. Kim, T. Ratovitsky, F. Davenport, C. Nordstedt, M. Seeger, J. Hardy, A. I. Levey, S. E. Gandy, N. A. Jenkins, N. G. Copeland, D. L. Price and S. S. Sisodia. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo [J] Neuron, 1996, 17, (1):181-190
    114 G. Thinakaran, C. L. Harris, T. Ratovitski, F. Davenport, H. H. Slunt, D. L. Price, D. R. Borchelt and S. S. Sisodia. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors [J] J Biol Chem, 1997,272, (45):28415-28422
    115 D. Edbauer, E. Winkler, C. Haass and H. Steiner. Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation [J] Proc Natl Acad Sci U S A, 2002, 99, (13):8666-8671
    116 W. T. Kimberly, M. J. LaVoie, B. L. Ostaszewski, W. Ye, M. S. Wolfe and D. J. Selkoe. Complex N-linked glycosylated nicastrin associates with active gamma-secretase and undergoes tight cellular regulation [J] J Biol Chem, 2002,277, (38):35113-35117
    117 D. S. Yang, A. Tandon, F. Chen, G. Yu, H. Yu, S. Arawaka, H. Hasegawa, M. Duthie, S. D. Schmidt, T. V. Ramabhadran, R. A. Nixon, P. M Mathews, S. E. Gandy, H. T. Mount, P. St George-Hyslop and P. E. Fraser. Mature glycosylation and trafficking of nicastrin modulate its binding to presenilins [J] J Biol Chem, 2002,277, (31):28135-28142
    118 O. Berezovska, P. Ramdya, J. Skoch, M. S. Wolfe, B. J. Bacskai and B. T. Hyman. Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1-gamma-secretase complex in cells demonstrated by fluorescence lifetime imaging [J] J Neurosci, 2003,23, (11):4560-4566
    119 P. C. Fraering, M. J. LaVoie, W. Ye, B. L. Ostaszewski, W. T. Kimberly, D. J. Selkoe and M. S. Wolfe. Detergent-dependent dissociation of active gamma-secretase reveals an interaction between Pen-2 and PS1-NTF and offers a model for subunit organization within the complex [J] Biochemistry, 2004,43, (2):323-333
    120 Y. Gu, F. Chen, N. Sanjo, T. Kawarai, H. Hasegawa, M. Duthie, W. Li, X. Ruan, A. Luthra, H. T. Mount, A. Tandon, P. E. Fraser and P. St George-Hyslop. APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin.nicastrin complexes [J] J Biol Chem, 2003, 278, (9):7374-7380
    121 S. H. Kim, Y. I. Yin, Y. M. Li and S. S. Sisodia. Evidence that assembly of an active gamma-secretase complex occurs in the early compartments of the secretory pathway [J] J Biol Chem, 2004, 279, (47):48615-48619
    122 S. F. Lee, S. Shah, H. Li, C. Yu, W. Han and G. Yu. Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-beta precursor protein and Notch [J] J Biol Chem, 2002, 277, (47):45013-45019
    123 S. F. Lee, S. Shah, C. Yu, W. C. Wigley, H. Li, M. Lim, K. Pedersen, W. Han, P. Thomas, J. Lundkvist, Y. H. Hao and G. Yu. A conserved GXXXG motif in APH-1 is critical for assembly and activity of the gamma-secretase complex [J] J Biol Chem, 2004, 279, (6):4144-4152
    124 W. J. Luo, H. Wang, H. Li, B. S. Kim, S. Shah, H. J. Lee, G. Thinakaran, T. W. Kim, G. Yu and H. Xu. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1 [J] J Biol Chem, 2003, 278, (10):7850-7854
    125 S. Prokop, K. Shirotani, D. Edbauer, C. Haass and H. Steiner. Requirement of PEN-2 for stabilization of the presenilin N-/C-terminal fragment heterodimer within the gamma-secretase complex [J] J Biol Chem, 2004, 279, (22):23255-23261
    126 N. Takasugi, T. Tomita, I. Hayashi, M. Tsuruoka, M. Niimura, Y. Takahashi, G. Thinakaran and T. Iwatsubo. The role of presenilin cofactors in the gamma-secretase complex [J] Nature, 2003,422, (6930):438-441
    127 T. Hartmann, S. C. Bieger, B. Bruhl, P. J. Tienari, N. Ida, D. Allsop, G. W. Roberts, C. L. Masters, C. G. Dotti, K. Unsicker and K. Beyreuther. Distinct sites of intracellular production for Alzheimer's disease A beta40/42 amyloid peptides [J] Nat Med, 1997, 3, (9):1016-1020
    128 S. S. Sisodia. Beta-amyloid precursor protein cleavage by a membrane-bound protease [J] Proc Natl Acad Sci U S A, 1992, 89, (13):6075-6079
    129 L. Pastorino, A. Sun, P. J. Lu, X. Z. Zhou, M. Balastik, G. Finn, G. Wulf, J. Lim, S. H. Li, X. Li, W. Xia, L. K. Nicholson and K. P. Lu. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production [J] Nature, 2006, 440, (7083):528-534
    130 B. D. Bennett, P. Denis, M. Haniu, D. B. Teplow, S. Kahn, J. C. Louis, M. Citron and R. Vassar. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer's beta -secretase [J] J Biol Chem, 2000, 275, (48):37712-37717
    131 S. S. Karuppagounder, H. Xu, Q. Shi, L. H. Chen, S. Pedrini, D. Pechman, H. Baker, M. F. Beal, S. E. Gandy and G. E. Gibson. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model [J] Neurobiol Aging, 2008,
    132 A. Chan and T. B. Shea. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine [J] J Neurochem, 2007, 102, (3):753-760
    133 J. A. Schneider, R. S. Wilson, E. J. Cochran, J. L. Bienias, S. E. Arnold, D. A. Evans and D. A. Bennett. Relation of cerebral infarctions to dementia and cognitive function in older persons [J] Neurology, 2003, 60, (7): 1082-1088
    134 X. Sun, G. He, H. Qing, W. Zhou, F. Dobie, F. Cai, M. Staufenbiel, L. E. Huang and W. Song. Hypoxia facilitates Alzheimer's disease pathogenesis by up-regulating BACE1 gene expression [J] Proc Natl Acad Sci U S A, 2006, 103, (49): 18727-18732
    135 D. Gabuzda, J. Busciglio, L. B. Chen, P. Matsudaira and B. A. Yankner. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative [J] J Biol Chem, 1994,269, (18):13623-13628
    136 H. Misonou, M. Morishima-Kawashima and Y. Ihara. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells [J] Biochemistry, 2000, 39, (23):6951 -6959
    137 R. A. Velliquette, T. O'Connor and R. Vassar. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis [J] J Neurosci, 2005,25, (47):10874-10883
    138 P. A. Adlard, V. M. Perreau, V. Pop and C. W. Cotman. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease [J] J Neurosci, 2005,25, (17):4217-4221
    139 J. R. Cirrito, K. A. Yamada, M. B. Finn, R. S. Sloviter, K. R. Bales, P. C. May, D. D. Schoepp, S. M. Paul, S. Mennerick and D. M. Holtzman. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo [J] Neuron, 2005,48, (6):913-922
    140 E. Siemers, M. Skinner, R. A. Dean, C. Gonzales, J. Satterwhite, M. Farlow, D. Ness and P. C. May. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers [J] Clin Neuropharmacol, 2005, 28, (3):126-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700