电视制导中图像处理算法和信息安全问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电视制导系统中,导引头采集的战场上的实时图像,经上行信道传送给控制中心,由操控人员根据获得的图像决定攻击目标,并由下行信道发送指令信息控制导弹的飞行方向,直至击中目标。由于无线信道带宽受限,图像信息的数据量巨大,在高的压缩比下图像的失真变得严重,影响制导操作人员对疑似目标的判断;同时由于系统应用在军事对抗领域,所以如何快速清晰的显示疑似目标以及如何保证信息传输过程中的安全是值得关注的问题。
     在此要求下,本文以基于小波变换的JPEG2000图像压缩标准为基础,根据电视制导系统的自身特点,结合JPEG2000标准中的感兴趣区域(ROI)编码技术、容错机制和码流结构,对快速定位攻击目标、提高图像显示实时性和信息保密通信三个方面内容进行了研究,解决了系统应用中的技术难题。
     首先,通过分析电视制导图像的特点,提出了一种改进的基于率失真优化的感兴趣区域编码算法。在JPEG2000压缩码流中,包括了来自每个子带的每个编码块的嵌入码流的贡献,当确定感兴趣区域后,在有些编码块中可能只包含很小的ROI区域,其他大部分都是背景区域,但是整个块内的系数都被赋予了和ROI区域一样高的优先级,对于无线信道带宽严重受限的可视制导系统来说,会明显降低ROI图像的质量。通过判读是否属于ROI掩模把ROI编码块中的背景区域和ROI分离开,采用一个系数调整两者的优先级,同时根据实际操作需要,对此系数的调整进行分级操作,新算法在基本不增加算法复杂度的情况下降低ROI编码块中背景区域的系数优先级,有好的重建ROI图像质量,达到在低信道速率下对疑似目标进行高质量显示的目的。
     其次,针对配备红外导引头导弹,提出了一种简单实用的基于灰度的提取感兴趣区域算法。因为目标区域的灰度总是高于背景的灰度,并且目标周围的背景往往具有比较均匀的分布。根据以上特点,把图像在空域分割成块,计算各图像块的灰度均值,通过排序找到最大值所在块,以最大值块作为中心扩展确定感兴趣区域,实现了对感兴趣区域的快速自动定位。此种算法产生的ROI掩模为矩形,不需要传输所有掩模信息,只要传输左上和右下两点值就可在收端得到ROI掩模信息。
     然后,基于JPEG2000的容错机制,结合信道采用的LDPC纠错码,在电视制导系统中采用了一种信源信道联合解码算法。信道解码采用对数和积迭代译码,每次迭代的结果送给JPEG2000解码器,解码器通过错误恢复机制发现每个编码块中的第一个错误比特,把每个码块在此比特前的信息反馈回信道解码,对每次迭代的信道码字的先验概率进行选择性修正更新,并提出了一种能实时应用的反馈因子确定方法。仿真结果表明,和分立解码方法相比,信源信道联合解码算法可以提高解码效率和接收信噪比。
     最后,对信息传输安全问题进行了研究。基于椭圆曲线公钥加密算法,提出了对电视制导指令和图像信息进行保护的方案。目前系统安全主要还是靠扩频通信系统来保障,单纯依靠扩频技术进行保密通信已经不再绝对安全,为此把椭圆曲线公钥加密算法引入电视制导系统。指令信息采用导弹的公钥进行全程加密,在导弹接收到信息后用导弹的私钥解密,保证了指令信息的安全;图像信息根据JPEG2000码流特点部分加密,从图像中提取部分信息和重要参数信息一起加密传输,加解密方式是指令加解密的逆过程。此种方案可以对信息发送的主体进行确认,防止了信息被截获和伪造。
Video-guided missile is a kind of precision-guided weapons. It is a bomb with a video camera in the nose that can get the real-time target image, then transmit the image to control center through wireless up channel. Then the manipulators can select the target in which they interest in the image and send the commands to guide the bomb to attack it. For the limited wireless bandwidth, image which contains much data has to be compressed by high compression ratio; therefore, it is difficult for manipulators to confirm attacking targets. Because this system was applied in the military confrontation,the problem should deserve attention and consideration in video-guided missile system that how to display suspected target quickly and keep the communication security.
     In order to solve this problem, in this paper some method are proposed based on the region of interest coding, the error-resilience modes and the structure of code-stream in JPEG2000 standard after analyzing the characteristics of video-guided missile system.
     Firstly, an EBCOT-based ROI coding algorism was presented. The unit of EBCOT coding in JPEG2000 standard is block, some blocks only overlap with ROI mask in a small part, but all the coefficients in this block were assigned the same high priority. That will lead to the image of ROI decreasing sharply which is transmitted in limited wireless channel of video-guided missile system. The coefficients of background and ROI were distinguished in one block with ROI mask, and then adjusted their priority with a factor based on EBCOT. The adjustment was graded for practical applications. Manipulator can adjust the weight factor to improve the compression efficiency by yielding a good ROI and degrading the priority of background coefficient in the ROI code block. The proposed method show higher compression efficiency, lower complexity and good reconstructed ROI image quality in lower channel capacity.
     Secondly, aiming at infrared imaging guidance missile system, an automatic ROI extraction algorithm was proposed based on image gray. In the infrared image the gray value of object regions is always higher and the background which has uniform distribution. According to this feature IR image were segmented to many blocks in spatial information, calculated the mean of gray value to each block, find the block in which the maximal gray value is by sorting and then got the ROI through extending the block with maximal gray value. In this algorithm a rectangle ROI mask is got which only two points, the top left point and the bottom right point, can express, so just only the two points is transmitted. Therefore the proposed approach can fix on ROI rapidly and achieve good target searching performance.
     Thirdly, a joint source-channel decoding (JSCD) method was designed in video-guided missile system. JPEG2000 is used to perform source decoding with certain error-resilience modes; and a regular low-density parity-check (LDPC) code is selected as the channel error correcting code. For Sum-Product iterative channel decoder, each iterative results are send to source decoder; JPEG2000 decoder with error-resilience modes detects the first error bit in each block and feedbacks the information to channel decoder which update the log-likelihood ratio(LLR) of partial codeword bits. A novel feedback coefficient is applied in this system. Simulation results show that the JSCD scheme can accelerate the iterative procedure, and improve the channel SNR of communication.
     Finally, a novel scheme was proposed to protect the communication data from interception and falsification, the scheme was based on the Elliptic Curve Cryptosystem (ECC). Now the security of military radio communication were depends mainly on spread spectrum technology; but with the development of electronic product and computing capacity, it’s difficult to ensure the safety of information very well. In order to solve this problem, Elliptic Curve Public Cryptosystem is introduced into video-guided system. The system send the command data to the missile which is encrypted with the public key of missile and then the missile receives decrypts this command data with the private key of missile. For image information, combining with the structure of JPEG2000 code-stream, only some important parameters and partial extraction data were protected, the process of encrypting and decrypting were inverse to command data processing. The proposed method not only enhances the communication security but also confirm the identity information.
引文
1孙江,李刚,樊浩.精确制导技术发展现状与趋势.飞航导弹. 2007, (7): 34~39
    2姚秀娟,彭晓乐等.几种精确制导技术简述.激光与红外. 2006, 36(5): 338~340
    3杨树谦.精确制导技术发展现状与展望.航天控制. 2004, 22(4): 17~20
    4胡德风.导弹与运载火箭制导系统回顾与发展方向设想.导弹与航天运载技术. 2002, (5): 44~48
    5杨万清等.飞航导弹电视导引头.宇航出版社. 1994, 8: 3~4
    6郭修煌.精确制导技术.国防工业出版社. 1999, 8: 1~12
    7李尊民.电视图像自动跟踪的基本原理.国防工业出版社. 1998, 9: 2~3
    8徐洪奎,王东进电视制导系统的设计与实现.微计算机信息2001, 17(10): 5~6
    9 I.R. Manchester, A.V. Savkin. Circular Navigation Guidance Law for Precision Missile Target Engagements. In Proceedings of 41st IEEE Conference on Decision and Control. Las Vegas. 2002, (10): 1287~1292
    10夏思宇.精确制导技术及其现状与发展.航空科学技术. 2003, (1): 1~2
    11 Http://www.af.mil/factsheets/factsheet.asp?id=105. GBU-15
    12 Http://www.designation-systems.net/dusrm/m-62.html. Martin Marietta AGM-62 Walleye.
    13李文.国外精确制导技术的现状及发展.红外技术. 1999, (21): 10~12
    14张中南,王富宾,李晓.发展中的红外成像制导技术.飞航导弹. 2006, (1): 40~42
    15袁洪,马润赓.从幼畜空地导弹看红外成像制导技术发展.飞航导弹. 2007, (3): 6~8
    16王明昌,陈宝国,吕雷.红外焦平面探测器应用系统的设计与实现. 2008, 38(3): 242~244
    17潘火荣,任风云.美国空军精确制导武器技术发展计划简述.航空兵器, 2004, (4): 1~2
    18汤锦亚,仇力.红外焦平面探测器在导弹导引头上的应用.红外技术. 2002, 24(2): 14~17
    19何力,胡晓宁,丁瑞军.第三代红外焦平面基础技术的研究进展. 2007, 36(5):696~701
    20 S. Bezik, I. Rusnak, WS Gray. Guidance of a Homing Missile via Nonlinear Geometric Control Methods. Journal of Guidance, Control and Dynamics. 1995, 18(3): 441–448
    21 I.R. Manchester, A.V. Savkin. Circular Navigation Missile Guidance with Incomplete Information and Uncertain Autopilot Model. Proceeding of AIAA Guidance, Navigation, and Control Conference and Exhibit. 2006, 42: 763~769
    22 E. Iain, G. Richardson. Video Codec Design: Developing Image and Video Compression Systems. John Wiley&Sons, LTD. 2002, 1~2; 163~193
    23 R.M. Gray. Source Coding Theory. Kluwer Academic Publishers, Boston.1990
    24 B. Oliver, J. Pierce, C. Shannon. The Philosophy of PCM. Proc. of IRE, 1948, 36(11): 1324~1331
    25 G. Lakhani. Optimal Huffman Coding of DCT Blocks. IEEE Transactions on Circuits and Systems for Video Technology. 2004, 14(4): 522~527
    26 C.J. Tu, J. Liang, T.D. Tran. Adaptive Runlength Coding. IEEE Signal Processing Letters. 2003, 10(3): 61~64
    27 G. Feygin, P.G. Gulak, P. Chow. Architectural Advances in the VLSI Implementation of Arithmetic Coding for Binary Image Compression. IEEE Data Compression Conference, 1994. DCC '94. 1994: 254 ~263
    28 T.A. Welsh. A Technique for High-Performance Data Compression. Computer. 1984, 17(6): 8~19
    29 A.R. Reibman, U. Bottou, A. Basso. DCT-based Scalable Video Coding with Drift. 2001 International Conference on Image Processing, Proceedings. Greece. 2001, 2(10): 989~992
    30 Z. Pan, K. Kotani, T. Ohmi. Fast Search Method for Image Vector Quantization Based on Equal-Average Equal-Variance and Partial Sum Concept. IEEE International Conference on Multimedia and Expo, ICME 2005. 2005, (6): 1440~1443
    31 J. A. Fessler, D. C. Noll. Model-Based MR Imgae Reconstruction with Compensation for Through-plane Field Inhomogeneity. 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2007. 2007, (4): 920~923
    32 T. Tan, H. Yan. Object Recognition Based on Fractal Neighbor Distance. SignalProcessing. 2001, 81: 2105~2129
    33 H. Veisi, M. Jamzad. Image Compression with Neural Networks Using Complexity Level of Images. 5th International Symposium on Image and Signal Processing and Analysis, ISPA 2007. Istanbul. 2007, (9): 282~287
    34 Khashman, K. Dimililer. Neural Networks Arbitration for Optimum DCT Image Compression. EUROCON, 2007. The International Conference on Computer as a Tool. Warsaw. 2007, (9): 151~156
    35 Khotanzad, J.H. Lu, M.D. Srinath. Target Detection Using a Neural Network Based Passive Sonar System. International Joint Conference on Neural Networks, 1989. IJCNN. Washington, DC, USA. 1989, 1: 335~340
    36 G. Taubin, J. Rossignac. Geometric Compression through Topological Surgery[J]. ACM Transactions on Graphics. 1998, 17(2): 84~115
    37 S.A. Mallat. Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Patt. Anal. Machine Intell, 1989, 11(7): 674~693 
    38 Daubechies. The Wavelet Transform, Time-frequency Localization and Signal analysis. IEEE Trans IT. 1990, 36(5): 961~1006
    39 S.D. Sergio. Image Coding Based on a Morphological Representation of Wavelet Data. IEEE Trans on Image Processing.1999, 8(9): 1161~1174
    40 Video Codec for Audiovisual Services at p*64Kbit/s Version 1. ITU-T, ITU-T Recommendation H.261. 1990
    41 Video Coding for Low Bitrate Communication Version 1. ITU-T, ITU-T Recommendation H.263. 1995
    42 G. Cote, B. Erol, M. Gallant, et al. H.263+ Video Coding at Low Bit Rates. IEEE Trans. Circuits Syst. Video Technol. 1998, 8: 849~866
    43 ITU-T Rec. H.263++, Video Coding for Low Bitrate Communication. Aug, 1999
    44 ITU-T Rec. H.264(ISO/IEC 14496-10 AVC). Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification. March, 2003
    45 ISO/IEC JTC1. Coding of Moving Pictures and Associated Audio for Digital Storage Media at upto About 1.5Mbit/s-Part2: Video. ISO/IEC 11172-2(MPEG-1), 1993
    46 Generic Coding of Moving Pictures and Associated Audio Information- Part2: Video. ITU-T and ISO/IEC JTC1, ITU-T Recommendation H.262-ISO/IEC 13818-2 (MPEG-2), 1994
    47 Moving Pictures Expert Group. MPEG-2 Test Mode15, April, 1994
    48 ISO/IEC JTCI. Coding of Audio-Visual Objects-Part2: Visual. ISO/IEC 14496-2(MPEG-4 visual version 1), 1999
    49 ISO/IEC JTCI/SC29/WG11. MPEG-4 Video Verification Model Version 10.0. MPEG98/N1992, San Jose. Feb, 1998
    50 ISO/IEC. ISO/IEC 14492-1: Lossy/lossless coding of bi-level images. 2000
    51 ITU-T T.88. Information Technology-lossy/lossless Coding of Bi-level Images. Encoder. 2004
    52 G.K. Wallace. The JPEG Still Picture Compression Standard[J]. IEEE Transactions on Consumer Electronics. 1992, 38(1): 18~34
    53 ISO/IEC FCD15444-1.(ITU-T SG8). JPEG2000 Part I: Final Committee Draft Version 1.0[S]. Mar, 2000
    54 ISO/IEC 15444-2, Information technology - JPEG2000 extensions, 2000
    55 ITU-T news. ITU-T and ISO/IEC to Produce Next Generation Video Coding Standard. Geneva. 2002
    56 ISO/IEC 15444-3. Motion JPEG2000 Final Committee Draft 1.0. March, 2001
    57 K.S. Marvin, O.K. Jim, S.A. Robert, et al. Spread Spectrum Communications Handbook. McGraw-Hill, Inc. 2002: 41~58
    58 H. Urkowitz. Energy Detection of Unknown Deterministic Signal.IEEE Proc. 1967, (55): 523~531
    59 J.F. Kuehls, G. Evaggelos. Presence Detection of Binary-Phase-Shift- Keyed and Direct-Sequence Spread-Spectrum Signals Using a Prefilter-Delay-and-Multiply Device. IEEE Journal on SAIC. 1990, 8(5): 915~933
    60 C.M. Spooner, W.A. Gardner. Exploitation of Higher-Order Cyclostationarity for Weak-Signal Detection and Time-Delay Estimation. IEEE 6th SP Workshop on Statistical Signal and Array Processing. 1992, (10): 197~201
    61 M. Gouda, E.R. Adams, P.C.J. Hill. Detection&discrimination of covert DS/SS signals using triple correlation.Radio Science Conference, NRSC'98. Proceedings of the Fifteenth National. 1998: C35/1~C35/6
    62 Richard, Martin. Joint Blind Adaptive Carrier Frequency Offset Estimation and Channel Shortening. IEEE Trans. Signal Processing. 2006, 11(54): 4194~4203
    63 R.K. Martin, K. Vanbleu, M. Ding, et al. Unification and Evaluation of Equalization Structures and Design Algorithms for Discrete MultitoneModulation Systems. IEEE Trans. Signal Processing. 2005, 53(10): 3880–3894
    64 E. Serpedin, A. Chevreuil, G.B. Giannakis, et al. Blind Channel and Carrier Frequency Offset Estimation Using Periodic Modulation Precoders. IEEE Trans. Signal Processing. 2000, 48(8): 2389–2405
    65 M. Rabbani, R. Joshi. An Overview of the JPEG2000 Still Image Compression Standard. Signal Processing: Image Communication. 2002, 17: 3~48
    66 [美]Ingrid Daubechies著,李建平,杨万年译.小波十讲(第一版).北京:国防工业出版社. 2004
    67 W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal of Mathematical Analysis. 1998, 29(2): 511~546
    68 Cohen, I. Daubechies, J.C. Feauveau. Biorthogonal Bases Compactly Supported Wavelets[J]. Comm. On Pure and Applied Math. 1992, 45: 485~560
    69 D.L. Gall, A. Tabatabai. Sub-band Coding of Digital Images Using Symmetric Short Kernel Filters and Arithmetic Coding Techniques. In Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP). 1988, (4): 761~764
    70 D. Taubman, M. Marcellin. JPEG2000 Image Compression Fundamentals, Standards and Practice. Holland: Kluwer Academic Publisher, 2001
    71 D. Taubman. High performance scalable image compression with EBCOT. IEEE Trans. Image Processing. 2000, 9(7): 1158~1170
    72 Ueno, F. Ono, T. Yanagiya, et al. Report on Core Experiment CodEff03: Aritghmetic Coding Experiment. Technical Report N1199R. March, 1999
    73 W. Pennebaker, J. Mitchell. An Overview of the Basic Principles of the Q-coder Adaptive Binary Arithmetic Coder. In IBM J. Res. Develop. 1988, 32(6): 717~726
    74 ISO/IEC 1.29.15444(ITU-T SG8). JPEG2000 Part II Final Committee Draft[S]. Dec, 2000
    75 S. Fukuma, S. Ikuta, M. Ito, et al. An ROI Image Coding Based on Switching Wavelet Transform, Proceedings-IEEE International Symposium on Circuits and Systems, 2003, (2): II420~II423
    76 T. Sinan, C. Aysegul. ROI Coding with Integer Wavelet Transforms and Unbalnaced Spatial Orientation Trees. IEEE Transactions on Circuits and Systems for Video Technology. 2003, (1): 841~844
    77 G. Dillen, B. Georis, J.D. Legat, et al. Combined Line-based Architecture for the5-3 and 9-7 Wavelet Transform of JPEG2000. IEEE Transactions on Circuits and Systems for Video Technology. 2003, 13(9): 944~950
    78 T.W. Ryan, L.D. Sanders, H.D. Fisher. Wavelet-domain Texture Modeling for Image Compression. IEEE proc. ICIP’94. 1994, 2: 380~384
    79 P.Y. cheng, C.J. Kuo. Feature-preserving Wavelet Scheme for Low Bit-rate Coding. SPIE Proc. Digital Video Compression: Algorithms and Technologies. 1995, 2419: 385~396
    80 J.M. Shapiro. Smart Compression Using the Embedded Zerotree Wavelet(EZW) Algorithm. Proceedings of the 27th Annual Asilomar Conference on Signals in Systems and Computers. 1993: 486~490
    81 S. Tasdoken, A.Cuhadar. ROI Coding with Integer Wavelet Transforms and Unbalanced Spatial Orientation Trees. 2003
    82 Strom, P.C. Cosman. Medical Image Compression with Lossless Regions of Interest. Signal Processing. 1997, (59): 155~177
    83 Aysegul, T. Sinan. Multiple, Arbitrary Shape ROI Coding with Zerotree based wavelet coders. Proceedings of IEEE International Conference on Acoustics. Speech and Signal. 2003, (3): 257~260
    84 C.C. Chen, H.H. Wu. Region of Interest Determined by Picture Contents in JPEG2000. Proceedings of the 2003 International Symposium on Circuits and Systems. 2003, (2): 868~871
    85 Z. Wang, A.C. Bovik. Bitplane-by-bitplane Shift(BbBShift)-A Suggestion for JPEG2000 Region of Interest Image Coding. IEEE Signal Processing Letter. 2002, 9(5): 160~162
    86 Z. Wang, S. Banerjee, L.Brian et al. Generalized Bitplane-by-Bitplane Shift Method for JPEG2000 ROI Coding. In: Proc. IEEE Int. Conf. Image Processing. 2002, 3: III81~III84
    87 L.J. Liu, G.L. Fan. A New JPEG2000 Region-of-Interest Image Coding Method: Partial Significant Bitplanes Shift. IEEE Signal Processing Letter. 2003, 10(2): 35~38
    88 S.P. Li, W.P. Li. Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Transactions on Circuits and Systems for Video Technology. 2000, 10(5): 725~743
    89陈军,吴成柯,李云松.基于零数结构的感兴趣区域图像内嵌编码算法.西安电子科技大学学报. 2002, 29(3): 343~346
    90 J. Xiao, C.K. Wu. J.X. Deng. A Method for ROI Coding in Multispectral Remote Sensing Image Coding System. Journal of Astronautics. 2004, 25(1): 13~18
    91 Christopoulos, J. Askelof, M. Larsson. Efficient region of interest coding techniques in the upcoming JPEG2000 still image coding standard. IEEE International Conference on Image Processing. 2000, 2: 41~44
    92 Y. Liang, W.Y. L. A New JPEG2000 Region-of-Interest Coding Method: Generalized Partial Bitplanes Shift. Proceedings of SPIE. Electronic Imaging and Multimedia Technology VI, SPIE, Nov. Beijing. 2004, 5637: 365~371
    93 Taubman. High Performance Scalable Image Compression with EBCOT, IEEE Trans. Image Processing. 2000, 9(7): 1158~1170
    94 Taubman, M. Marcellin, JPEG2000 Image Compression Fundamentals, Standards and Practice, Kluwer Academic Publishers, Norwell, MA, 2002
    95 Alim, N. Hamdy, W.G. El-Din. Determination of the Region of Interest in the Compression of Biomedical Images. Radio Science Conference, 2007. NRSC 2007. National. 2007, (3): 1~6
    96 I.K. Valavanis, S.G. Mougiakakou, A. Nikita, et al. Evaluation of Texture Features in Hepatic Tissue Characterization From Non-enhanced CT Images. Conf Proc IEEE Eng Med Biol Soc. 2007, (1): 3741~3744
    97 Negi, B. Panigrahi, M. Prasad, et al. A Palmprint Classification Scheme Using Heart Line Feature Extraction. Information Technology, 2006. ICIT apos. 2006, (12): 180~181
    98 J.b. Lu, G. Lafruit, F. Catthoor. Fast Reliable Multi-Scale Motion Region Detection in Video Processing. Acoustics, Speech and Signal Processing, ICASSP 2007. HI. 2007, 1(4): 689~692
    99 Ke, D. Yang, X. Wang. An Improved Target Extraction Algorithm Based on Region Growing for Lung CT Image. Complex Medical Engineering. CME 2007. BeiJing. 2007, (3): 595~599
    100 M.C. Chi, C.H. Yeh, M.J. Chen, et al. Robust Region-of-Interest Determination Based on User Attention Model Through Visual Rhythm Analysis. Computer Communications and Networks, ICCCN 2007. Honolulu, HI. 2007, (8): 1143~1148
    101 R. Nishide, M. Ohnishi, S. Tsuboi, et al. P2P-based Geometric ComputationMethod for Extracting ROI from Ubiquitous Video Cameras. 13th International Conference on Parallel and Distributed Systems (ICPADS'07). 2007, 2: 1~8
    102 Vincent. Morphological Area Openings and Closings for Gray-Scale Images[J]. Proc NATO Shape in Picture Workshop. 1992, 9: 197~208
    103 Younesi, N. Alam, R.A. Zoroofi, et al. Computer-aided Mass Detection on Digitized Mammograms Using Adaptive Thresholding and Fuzzy Entropy. Conf Proc IEEE Eng Med Biol Soc. 2007. 2007: 5638~5641
    104 Barry, E. Granger. Face Recognition in Video Using a What-and-Where Fusion Neural Network. International Joint Conference on Neural Networks, 2007. IJCNN 2007. Orlando, FL. 2007, (8): 2256~2261
    105 K. Takei, N. Homma, T. Ishibashi, et al. Computer Aided Diagnosis for Pulmonary Nodules by Shape Feature Extraction. Annual Conference SICE, 2007. Takamatsu. 2007, (9): 1967~1971
    106 Tan, J. Chen. Vehicular Traffic Density Estimation via Statistical Methods with Automated State Learning. IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007. London. 2007, (9): 164~169
    107 B.V. Kumar, D.R.S. Sharan. Proceedings of the International Conference on Computational Intelligence and Multimedia Applications, ICCIMA. 2007. 2007, 2: 517~521
    108 J.Y. Zhang, C.W. Ha, S. Wun. ROI Based Natural Image Retrieval Using Color and Texture Feature. Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007. Haikou, China. 2007, 4(8): 740~744
    109 Z.Y. Wu, A. Bilgin, M.W. Marcellin. Joint source/channel Coding for Image Transmission with JPEG2000 over Memoryless Channels. IEEE Trans. Image Processing. 2005, 14(8), 1020~1032
    110 H.H. Wang, S.A. Tsaftaris, A.K. Katsaggelos. Joint Source-channel Coding for Wireless Object-based Video Communications Utilizing Data Hiding. IEEE Trans. Image Processing. 2006, 15(8):2158~2169
    111 X. Pan, A. Cuhadar, A.H. Banihashemi. Combined Source and Channel Coding with JPEG2000 and Rate-compatible Low-density Parity-check Codes. IEEE Trans. Signal Processing. 2006, 54(3): 1160~1164
    112 R.G. Gallager. Low density parity check codes. IRE Trans. Info. Theory, 1962, 8: 21~28
    113 Elias. Coding for Noisy Channels. IRE Convention Record. 1955, 3: 37~46
    114 G.D. Forney. Concatenated Codes. MIT Press, Combridge,1966
    115 D.J.C. Mackay, R.M. Neal. Near Shannon Limit Performance of Low-density Parity-check Codes. IEEE. Lett. 1996, l32(18): 1645~1646
    116 C. Berrou, A. Glavieux, P. Thitimajshima. Near Shannon limit Error- correcting Coding and Decoding. Proc. ICC’93, Geneva, Switherland, 1993, (5): 1064~1070
    117 R.M. Tanner. A Recursive Approach to Low Complexity Codes[J]. IEEE Transactions on Information Theory, 1981, 27: 533~547
    118 N. Wiberg, H.A. Loeliger, R. Kotter. Codes and Iterative Decoding on General Graphs[J]. European Transactions on Telecomm. 1995, 6: 513~525
    119 D.J.C. MacKay. Good Error Correcting Codes Based on Very Sparse Matrices. IEEE Transactions on Information Theory. 1999, 45(2): 399~431
    120 Y. Kou, S. Lin, M.P. C. Fossorier. Low-density Parity-check Codes Based on Finite Geometries: A Rediscovery and New Result. IEEE Transactions on Information Theory. 2001, 47(7): 2711~2736
    121 X.Y. Hu, E. Eleftheriou, D.M. Arnold. Progressive edge-growth Tanner Graphs. GLOBECOM’01. 2001, 2: 995~1001
    122 B. Ammar, B. Honary, Y. Kou, et al. Construction of Low-density Parity-check Codes Based on Balanced Incomplete Block Designs. IEEE Trans Info Theory. 2004, 50(6): 1257~1269
    123 T. Richardson, R. Urbanke. Efficient Encoding of Low-density Parity-check Codes. IEEE Trans Info Theory. 2001, 47(2): 638~656
    124 R.J. McEliece, D.J.C. MacKay, J.F. Cheng. Turbo decoding as an instance of Pearl’s belief propagation’algorithm[J]. IEEE Journal on Selected Areas in Communication, 1998, 16(2): 140~152
    125 D.J.C. MacKay. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399~431
    126 Kakadu software. [Online]. Available: http://www.kakadusoftware.com
    127 M. Toyran. Quantum Cryptography. Signal Processing and Communications Applications. 2007,(6):1~4
    128 Rajni, G. Moses, G. Anteneh. Research Directions in Quantum Cryptography Fourth International Conference on Information Technology (ITNG '07), LasVegas. 2007, (4): 779~784
    129 Kerckhoffs. La cryptographie militaire. J. Sciences Mili-taires. 1883, 9(1): 5~38
    130 Di Natale, M. Doulcier, M.L. Flottes, B. Rouzeyre. A Reliable Architecture for the Advanced Encryption Standard. 2008 13th European Test. 2008, (3): 13~18
    131 W. Diffie, M.E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory. 1976, 22: 644~654
    132 Rivest, R. L., Shamir, A., and Adleman, L., A Method for Obtaining Digital Signatures and Public Key Cryptosystems, Communications of ACM, 1978, 21(2): 120~126
    133 T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Transactions on Information Theory. 1985, 31(4): 469~ 472
    134 D. Atkins, M. Graff, A. Lenstra, et al. The Magic Words Are Squeamish Ossifrage, Advances in Cryptology. ASIACRYPT’94, Lecture Notes in Computer Science 917, New York: Spring-Verlag, 1995. 263~277
    135 W. Trappe, L.C. Washington, Introduction to Cryptography with Coding Theory, 2nd Ed., New Jersey: Prentice Hall. 2005
    136 V.S Miller. Use of Elliptic Curve in Cryptography. Lecture Notes in Computer Science. 1985, 218: 417~426
    137 N. Koblitz,. Elliptic Curve Cryptosystems, Mathematics of Computation/American Mathematical Society. 1987, 48: 203~209
    138胡向东,魏琴芳.应用密码学教程.北京:电子工业出版社, 2005, 39~65
    139 J.H.Silverman. The Arithmetic of Elliptic Curves: V.106. Springer-verlag, 1986
    140 R.A. Haraty, H. Otrok, A. Nasser Kassar. Attacking EIGamal Based Cryptographic Algorithms Using Pollard’s rho Algorithm. The 3rd ACS/IEEE international Conference on Computer Systems and Applications. 2005, 91~95
    141 M. Wiener, R. Zuccherato. Faster Attacks on Elliptic Curve Cryptosystems. Entrust Technologies. Lecture Notes in Computer Science. 1999, 1556: 1611~3349
    142 Jurisic, A. Menezes. Elliptic Curves and Cryptography. Dr. Dobb’s Journal. April, 1997, 128~152
    143 W. Stallings. Cryptography and Network Security: Principles and Practices. Publishing House of Electronics Industry. 2004, 216~226
    144 Http://www.aone.cn/chanpin.asp?id=3. ECC密码算法芯片及IP核
    145杨栋毅.公钥密码算法的高速SOC实现技术探讨(培训资料).北京天一集成科技有限公司. 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700