季氮阳离子与二苯并-24-冠-8构筑的超分子准轮烷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于冠醚特别是二苯并-24-冠-8的分子识别和自组装研究仍是当今超分子化学领域的重要主题之一。为了进一步理解现有识别模式,并更好地应用于构筑超分子建筑,本论文设计合成了一系列季氮阳离子客体化合物,考察了它们与二苯并-24-冠-8(DB24C8)的键合能力,并利用X-单晶衍射研究了它们与DB24C8形成的超分子配合物的晶体结构和固态组装行为。
     1.合成了单(双)质子化的4,4′-联吡啶盐,并利用UV-vis、ESI-MS和1H NMR等手段研究了它们与DB24C8的键合行为,测定了主-客体缔合常数。同时,通过X-单晶衍射研究了单质子化4,4′-联吡啶盐与DB24C8形成的配合物的晶体结构和组装行为。
     2.合成了五个新的1,2-二(N-酰基氨基吡啶)乙烷衍生物,利用1H NMR和X-单晶衍射等手段研究了端位氨基酰基化对键合DB24C8能力的影响,并采用单点法测定了部分客体与主体的缔合常数。发现端位氨基的酰基化提高了主-客体键合能力以及影响着形成的[2]准轮烷的晶体结构和组装行为。
     3.合成了四个新的含酰胺或酰肼基团的1,2-二(吡啶)乙烷衍生物,利用1H NMR和X-单晶衍射等手段研究了这些取代基的引入所产生的影响,发现这些同时具有氢键给体和受体性质的基团显著影响着形成的[2]准轮烷的组装行为。
     4.合成了1,2-二(异喹啉)乙烷客体,利用1H NMR和X-单晶衍射等手段研究了稠杂环的引入对键合能力的影响,结果表明与吡啶相连的苯环以并环或取代基的形式存在对键合能力的改变不大。同时,还发现了芳基氧比烷基氧显示出更短的H…O距离这一反常现象。
     5.合成了四个端位带吡啶环的二级烷基铵离子客体,利用1H NMR和X-单晶衍射等手段研究了这些客体与DB24C8的键合情况。研究发现吡啶环的引入能够提高二烷基铵离子对DB24C8的键合能力,同时,吡啶环的质子化对形成的准轮烷的晶体结构和组装行为有着非常重要的影响。
Molecular recognition and self-assembly of crwon ether, especially dibenzo-24-crown-8 (DB24C8) has been one of current important topics in supramolecular chemistry. To further deepen understanding of available recognition motifs and to make the best of kown recognition motifs for supramolecular architectures, a series of guests containing positively charged nitrogen center(s) were synthesized and their binding abilities to DB24C8 were investigated. Also, the crystal structures of some complexes with DB24C8 and their self-assemblies in the solid state were explored in detail by X-ray single crystal diffraction.
     1. Mono- and diprotonated 4,4′-bipyridine were prepared. And their binding behaviors with DB24C8 were examined by UV-vis absorption spectra, ESI-mass spectra and 1H NMR spectra. Association constants between these two guests and DB24C8 were determined respectively. Furthermore, the complex of monoprotonated 4,4′-bipyridine with DB24C8 was characterized by X-ray diffraction, and its self-assembly in the solid state was investigated.
     2. Five novel 1,2-bis(N-acylaminopyridinium)ethane derivatives were prepared. Effects of acylation of the terminal amino groups on the association abilities with DB24C8 were investigated using 1H NMR spectra and X-ray diffraction, and the association constants of some complexes were determined by the single spot method. The results indicated that acylation can enhance their binding abilities and also affects their crystal structures and self-assemblies.
     3. Four novel 1,2-bis(pyridinium)ethane derivatives containing acylamide or acylhydrazine groups were synthesized. Effects of the introduction of these groups were explored by means of 1H NMR spectra and X-ray diffraction. The findings showed these groups, which can act as both of hydrogen-bonding donors and receptors, dramatically affected the self-assemblies of [2]pseudorotaxanes between these derivatives and DB24C8.
     4. The dication 1,2-bis(isoquinolinium)ethane was prepared. Effect of the incorporation of fused heterocycle on the binding ability was investigated by virtue of 1H NMR spectra and X-ray diffraction. The study suggested that the resulting guests have a similar capability to interact with DB24C8 whether the phenyl group is fused or directly attached as a substituent at the pyridinium ring. Furthermore, an unusual phenomenon that the aryl oxygen atoms exhibit shorter H…O distances than their alkyl counterparts was observed.
     5. Four secondary dialkylammonium with a pyridine ring as terminal groups were synthesized. The binding behaviors of these guests to DB24C8 were analyzed based on the 1H NMR spectra and X-ray diffraction. The results revealed that the interaction between the secondary ammonium and DB24C8 was augmented by replacement of phenyl groups with pyridinyl rings and that protonation of terminal pyridine groups essentially affected the crystal structures and completely changed the self-assembly in the solid state.
引文
[1] Lehn J. M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1988, 27(1): 89~112
    [2] Cram D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1988, 27(8): 1009~1020
    [3] Pedersen C. J. The discovery of crown ethers (Novel Lecture). Angew. Chem. Int. Ed. Engl., 1988, 27(8): 1021~1027
    [4] Robert F. How far can we push chemical self-assembly. The 95th of 125 questions in special section: What don’t we know. Science, 2005, 309: 95
    [5] Lehn J. M. Supramolecular Chemistry—Concept and Perspectives, Germany: VCH, 1995, 1~9
    [6] 刘育,尤长城,张衡益,超分子化学――合成受体的分子识别与组装,天津:南开大学出版社,2001:2,38
    [7] 沈家骢,孙俊奇,超分子科学研究进展,中国科学院院刊,2004,19(6):420~424
    [8] 刘育,尤长城,张衡益,超分子化学――合成受体的分子识别与组装,天津:南开大学出版社,2001:39
    [9] 吴成泰,冠醚化学,北京:科学出版社,1992:114
    [10] Steed J. W., Atwood J. L., Suramolecular Chemistry (赵耀硼,孙震),北京:化学工业出版社,2006:15~22
    [11] 陈小明,蔡继文,单晶结构分析――原理与实践,北京:科学出版社,2003:117~118
    [12] Steed J. W., Atwood J. L., Suramolecular Chemistry (赵耀硼,孙震),北京:化学工业出版社,2006:273~306
    [13] Leigh D. A., Murphy A., Smart J. P., et al. Glycylglycine rotaxanes-The hydrogen bond directed assembly of synthetic peptide rotaxanes. Angew. Chem. Int. Ed. Engl., 1997, 36(7): 728~732
    [14] Ashton P. R., Ballardini R., Balzani V., et al. Acid-base controllable molecular shuttles. J. Am. Chem. Soc., 1998, 120: 11932~11942
    [15] Ma J. C. and Dougherty D. A. The cation-π interaction. Chem. Rev., 1997, 97: 1303~1324
    [16] 陈小明,蔡继文,单晶结构分析――原理与实践,北京:科学出版社, 2003:118
    [17] Steed J. W., Atwood J. L. Suramolecular Chemistry (赵耀硼,孙震),北京:化学工业出版社,2006:307~308
    [18] Claessens C. G., Stoddart J. F. π-π Interactions in self-assembly. J. Phys. Org. Chem., 1997, 10: 254~272
    [19] Philp D., Stoddart J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl., 1996, 35: 1154~1196
    [20] Allwood B. L., Spencer N., Shahriari-Zavareh H., et al. Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative. J. Chem. Soc., Chem. Commun., 1987: 1064~1066
    [21] Ashton P. R., Slawin A. M. Z., Spencer N., et al. Complex formation between bisparaphenylene-(3n+4)-crown-n ethers and the paraquat and diquat dications. J. Chem. Soc., Chem. Commun., 1987: 1066~1069
    [22] Slawin A. M. Z., Spencer N., Stoddart J. F. et al. The dependence of the solid state structures of bisparaphenylene-(3n+4)-crown-n ethers upon macrocyclic ring size. J. Chem. Soc., Chem. Commun., 1987: 1070~1072
    [23] Ashton P. R., Odell B., Reddington M. V., et al. Isostructural alternately- charged receptor stacks. The inclusion complexes of hydroquinol and catechol dimethyl ethers with bisparaquat(1,4)cyclophane. Angew. Chem. Int. Ed. Engl., 1988, 27: 1550~1553
    [24] Liu Y., Zhao Y.-L., Zhang H.-Y., et al. Polymerir rotaxane constructed from the inclusion complex of b-cyclodextrin and 4,4'-dipyridine by coordination with Ni(II) ions. Angew. Chem. Int. Ed. Engl., 2003, 42(28): 3260~3263
    [25] 刘育,尤长城,张衡益,超分子化学――合成受体的分子识别与组装,天津:南开大学出版社,2001:334
    [26] Inoue Y., Liu Y., Tong L.-H., et al. Complexation thermodynamics of crown ethers. Part 3. 12-Crown-4 to 36-crown-12: from rigid to flexible ligand. J. Chem. Soc., Perkin Trans., II, 1993: 1947~1950
    [27] Liu Y., Han J.-R., Duan Z.-Y., et al. Synthesis of double-armed benzo- 15-crown-5 and their complexation thermodynamics with alkali cations. J. Incl. Phenom. & Mol. Recognit. Chem., 2005, 52: 229~235
    [28] Liu Y., Duan Z.-Y., Zhang H.-Y., et al. Selective binding and inverse fluores -cent behavior of magnesium ion by podand possessing plural imidazo[4,5-f] 1,10-phenanthroline groups and its ru(II) complex. J. Org. Chem., 2005, 70: 1450~1455
    [29] Choi J. K., Kim S. H., Yoon J., et al. A PCT-based, pyrene-armed calix[4] crown fluoroionophore. J. Org. Chem., 2006, 71: 8011~8015
    [30] Timko J. M., Moore S. S., Walba D. M., et al. Host-guest complexation. 2. Structural units that control association constants between polyethers and tert-butylammonium salts. J. Am. Chem. Soc., 1977, 99(13): 4207~4219
    [31] 刘育,尤长城,张衡益,超分子化学――合成受体的分子识别与组装,天津:南开大学出版社,2001:46
    [32] Dearden D. V., Dejsupa C., Liang Y., et al. Intrinsic contributions to chiral recognition: discrimination between enantiomeric amines by dimethyldiketopyridino-18-crown-6 in the gas phase. J. Am. Chem. Soc., 1997, 119(2): 353~359
    [33] Lovely A. E., Wenzel T. J. Chiral NMR discrimination of secondary amines using (18-crown-6)-2,3,11,12-tetracarboxylic Acid. Org. Lett., 2006, 8(13): 2823~2826
    [34] Bandy J. A., Truter M. R., V?gtle F. The structure of the 1,4,7,10,13,16- hexaoxacyclooctadecane (16-crown-6) bis(dimethyl sulphone) complex. Acta Cryst., 1981, B37(8):1568~1571
    [35] Elbasyouny A., Bruegge H. J., Von Deuten K.,et al. Host-guest complexes of 18-crown-6 with neutral molecules possessing the structure element XH2 (X = oxygen, nitrogen, or carbon). J. Am. Chem. Soc., 1983, 105(22): 6568~6577
    [36] Humphry-Baker R., Gr?tzel M., Tundo P., et al. Complexes of nitrogen- containing crown ether surfactants with stable silver stoms. Angew. Chem. Int. Ed. Engl., 1979, 18(8):630~631
    [37] Effing J., Jonas U., Jullien L., et al. C60 and C70 in a basket? - Investigations of mono- and multilayers from azacrown compounds and fullerenes. Angew. Chem. Int. Ed. Engl., 1992, 31(12): 1559~1602
    [38] Bhattacharya S., Sharma A., Nayak S. K., et al. NMR study of complexation of crown ethers with [60]- and [70]fullerenes. J. Phys. Chem. B., 2003, 107(18): 4213~4217
    [39] Saha A., Nayak S. K., Chottopadhyay S., et al. Spectrophotometric study of complexation of dicyclohexano-24-crown-8 with [60]- and [70]Fullerenes and other acceptors. J. Phys. Chem. B., 2003, 107(43): 11889~11892
    [40] Liu Y., Han J.-R., Zhao Y.-L., et al. Synthesis of some selenacrown ethers and the thermodynamic origin of their complexation with C60. J. Incl. Phenom. & Mol. Recognit. Chem., 2005, 51: 191~198
    [41] Park C. H., Simmons H. E. Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc., 1968, 90(9): 2431~2432
    [42] Lehn J. M., Pine S. H., Watanabe E., et al. Binuclear cryptates. Synthesis and binuclear cation inclusion complexes of bis-tren macrobicyclic ligands. J. Am. Chem. Soc., 1977, 99(20): 6766~6768
    [43] Mahoney J. M., Beatty A. M., Smith B. D. Selective recognition of an alkali halide contact ion-pair. J. Am. Chem. Soc., 2001, 123(24): 5847~5848
    [44] Mahoney J. M., Davis J. P., Beatty A. M., et al. Molecular recognition of alkylammonium contact ion-pairs using a ditopic receptor. J. Org. Chem., 2003, 68(25): 9819~9820
    [45] Mahoney J. M., Nawaratna G. U., Beatty A. M., et al. Transport of alkali halides through a liquid organic membrane containing a ditopic salt-binding receptor. Inorg. Chem., 2004, 43(19): 5902~5907
    [46] Mahoney J. M., Stucker K. A., Jiang H., et al. Molecular recognition of trigonal oxyanions using a ditopic salt receptor: evidence for anisotropic shielding surface around nitrate anion. J. Am. Chem. Soc., 2005, 127(9): 2922~2928
    [47] Dietrich B., Fyles T. M., Lehn J. M., et al. Anion receptor molecules. Synthesis and some anion binding properties of macrocyclic guanidinium salts. J. Chem. Soc., Chem. Commun., 1978: 934~936
    [48] Zhou L.-L., Sun H., Li H.-P., et al. A novel colorimetric and fluorescent anion chemosensor based on the flavone quasi-crown ether-metal complex. Org. Lett., 2004, 6(7): 1071~1074
    [49] Sambrook M. R., Beer P. D., Lankshear M. D., et al. Anion-templated assembly of [2]rotaxanes. Org. & Biomol. Chem., 2006, 4(8): 1529~1538
    [50] Sambrook M. R., Beer P. D., Wisner J. A., et al. Anion-templated assembly of pseudorotaxanes: importance of anion template, strength of ion-pair thread association, and macrocycle ring size. J. Am. Chem. Soc., 2005, 127(7): 2292~2302
    [51] Sambrook M. R., Beer P. D.,Wisner J. A., et al. Anion-templated assembly of a [2]catenane. J. Am. Chem. Soc., 2004, 126(47): 15364~15365
    [52] Wisner J. A., Beer P. D., Drew, M. G. B., et al. Anion templated rotaxane formation. J. Am. Chem. Soc., 2002, 124(42): 12469~12476
    [53] Wisner J. A., Beer P. D., Berry N. G., et al. Anion recognition as a method for templating pseudorotaxane formation. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 4983~4986
    [54] Wisner J. A., Beer P. D., Drew M. G. B. A demonstration of anion templation and selectivity in pseudorotaxane formation. Angew. Chem. Int. Ed. Engl., 2001, 40(19): 3606~3609
    [55] Alcalde E., Pérez-García L., Ramos S., et al. Nondegenerate π-donor/π- acceptor [2]catenanes containing proton-ionizable 1H-1,2,4-triazole subunits: synthesis and spontaneous resolution. Chem. Eur. J., 2007, 13: 3964~3979
    [56] Ikeda T., Saha S., Aprahamian I., et al. Toward electrochemically controllable tristable three-station [2]catenanes. Chem. Asian J., 2007, 2: 76~93
    [57] Miljanic O. S., Dichtel W. R., Mortezaei S., et al. Cyclobis(paraquat- p-phenylene)-based [2]catenanes prepared by kinetically controlled reactions involving alkynes. Org. Lett., 2006, 8: 4835~4838
    [58] Ikeda T., Aprahamian I., Stoddart J. F. Blue-colored donor-acceptor
    [2]rotaxane. Org. Lett., 2007, 9(8): 1481~1484
    [59] Dichtel W. R., Miljanic O. S., Spruell J. M., et al. Efficient templated synthesis of donor-acceptor rotaxanes using click chemistry. J. Am. Chem. Soc., 2006, 128: 10388~10390
    [60] Aprahamian I., Dichtel W. R., Ikeda T., et al. A clicked bistable [2]rotaxane. Org. Lett., 2007, 9(7): 1287~1290
    [61] Nygaard S., Leung K. C-F., Aprahamian I., et al. Functionally rigid bistable
    [2]rotaxane. J. Am. Chem. Soc., 2007, 129: 960~970
    [62] Ashton P. R., Langford S. J., Spencer N., et al. The self-assembly of a complex with a [3]pseudorotaxane superstructure. Chem. Commun., 1996: 1387~1388
    [63] Cheng P.-N., Lin C.-F., Liu Y.-H., et al. [3]Pseudorotaxane-like complexes formed between bipyridinium dications and bis-p-xylyl[26]crown-6. Org. Lett., 2006, 8(3): 435~438
    [64] Kolchinski A. G., Busch D. H., Alcock N. W. Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis. Chem. Soc., Chem. Commun., 1995: 1289~1291
    [65] Ashton P. R., Campbell P. J., Chrystal E. J. T., et al. Dialkylammonium ion /crown ether complexes: The forerunners of a new family of interlocked molecules. Angew. Chem. Int. Ed. Engl., 1995, 34: 1865~1869
    [66] Loeb S. J., Wisner J. A. A new motif for the self-assembly of [2]pseudo rotaxanes. 1,2-Bis(pyridinium)ethane 'axles' and 24-crown-8 ether 'wheels'. Angew. Chem. Int. Ed. Engl., 1998, 37: 2838~2840
    [67] Loeb S. J., Tiburcio J., Vella S. J. [2]Pseudorotaxane formation from N-benzylanilinium axles and 24-Crown-8 Ether Wheels. Org. Lett., 2005: 4923~4926
    [68] Li L., Clarkson G. J. New bis(benzimidazole) cations for threading through dibenzo-24-crown-8. Org. Lett., 2007, 9(3): 497~500
    [69] Huang F. H. Host-guest systems based on crown ether, cryptand, and pseudocryptand hosts with paraquat, diquat, secondary ammonium, and monopyridinium salt guests. Dissertation for Ph.D., Virginia State University, 2005.
    [70] Ashton P. R., Glink P. T., Stoddart J. F., et al. The solid state structures of a
    [3]rotaxane and its [3]pseudorotaxane precursor. Tetrahedron Lett., 1996, 37: 6217~6220
    [71] Cantrill S. J. Some adventures in secondary ammonium ion binding. Dissertation for Ph. D., University of California, 2001.
    [72] Cantrill S. J., Fulton D. A., Heiss A. M., et al. The influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes. Chem. Eur. J., 2000, 6: 2274~2287
    [73] Rowan S. J., Cantrill S. J., Stoddart J. F. Triphenylphosphonium-stoppered
    [2]rotaxanes. Org. Lett., 1999, 1: 129~132
    [74] Chang T., Heiss A. M., Cantrill S. J., et al. Ammonium ion binding with pyridine-containing crown ethers. Org. Lett., 2000, 2: 2947~2950
    [75] Chiu S. H., Liao K. S., Su J. K. Substituent effects in the binding of bis(4-fluorobenzyl)ammonium ions by dianilino[24]crown-8. Tetrahedron Lett., 2004, 45:213~216
    [76] Horie M., Suzaki Y., Osakada K. Formation of pseudorotaxane induced by electrochemical oxidation of ferrocene-containing axis molecule in the presence of crown ether. J. Am. Chem. Soc., 2004, 126(12): 3684~3685
    [77] Horie M., Suzaki Y., Osakada K. Chemical and electrochemical formation of pseudorotaxanes composed of alkyl(ferrocenylmethyl)ammmonium and dibenzo[24]crown-8. Inorg. Chem., 2005, 44(16): 5844~5853
    [78] Takata T., Kawasaki H., Kihara N., et al. Synthesis of side-chain polyrotaxane by radical polymerizations of pseudorotaxane monomers consisting of crown ether wheel and acrylate axle bearing bulky end-cap and ammonium group. Macromolecules, 2001, 34(16): 5449~5456
    [79] Kihara N., Nakakoji N., Takata T. Tributylphosphine-catalyzed acylation of alcohol by active ester directed toward effective end-capping of pseudorotaxane consisting of ammonium group and crown ether. Chem. Lett., 2002: 924~925
    [80] Kihara N., Shin J-II, Ohga Y., et al. Direct preparation of rotaxane from aminoalcohol: Seclective O-acylation of aminoalcohol in the presence of trifluoromethanesulfonic acid and crown ether. Chem. Lett., 2001: 592~593
    [81] Tokunaga Y., Kakuchi S., Akasaka K., et al. A high-yielding and convenient synthesis of rotaxane based on an ester forming capping methodology, Chem. Lett., 2002: 810~811
    [82] Kihara N., Tachibana Y., Kawasaki H., et al. Unusually lowered acidity of ammonium group surrounded by crown ether in a rotaxane system and its acylative neutralization. Chem. Lett., 2000: 506~507
    [83] Loeb S. J., Wisner J. A. 1,2-Bis(4,4’-dipyridinium)ethane. A versatile dication for the formation of [2]rotaxanes with dibenzo-24-crown ether. Chem. Commun., 1998: 2757~2758
    [84] Loeb S. J., Wisner J. A. [3]Rotaxanes employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown ethers. Chem. Commun., 2000: 845~846
    [85] Davidson G. J. E., Parekh N. A., Loeb S. J., et al. Zwitterionic [2]rotaxanes: anionic transition metal stoppers for a dicationic axle. Dalton. Trans., 2001: 3135~3136
    [86] Davidson G. J. E., Loeb S. J. Iron(II) complexes utilising terpyridine containing [2]rotaxanes as ligands. Dalton. Trans., 2003: 4319~4323
    [87] Georges N., Loeb S. J., Tiburcio J., et al. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-membered crown ethers. Org. Biomol. Chem., 2004, 2: 2751-2756
    [88] Loeb S. J., Tramontozzi D. A. Branched [n]rotaxanes (n = 2-4) from multiple dibenzo-24-crown-8 ether wheels and 1,2-bis(4,4’-dipyridinium)ethane axles. Org. Biomol. Chem., 2005, 3: 1393~1401
    [89] Davidson G. J. E., Loeb S. J., Passaniti P., et al. Wire-type ruthenium(II) complexes with terpyridine containing [2]rotaxanes as ligands. synthesis, characterization and photophysical properties. Chem. Eur. J., 2006, 12: 3233~3242
    [90] Asakawa M., Ashton P. R., Brown G. R., et al. Hydrogen-bonded pseudo rotaxanes. Adv. Mater., 1996, 8: 37~41
    [91] Ashton P. R., Fyfe M. C. T., Kichingbottom S. K., et al. Combining different hydrogen-bonding motifs to self-assemble interwoven superstructures. Chem. Eur. J., 1998, 4(4): 577~589
    [92] Davidson G. J. E., Loeb S. J., Tiburcio J. Pseudo-polyrotaxanes based on a protonated version of the 1,2-bis(4,4’-pyridinium)ethane/24-crown-8 ether motif. Chem. Commun., 2002: 1282~1283
    [93] Davidson G. J. E., Loeb S. J. Channels and cavities lined with interlocked components. Metal-based polyrotaxanes utilizing pyridinium axles and crown ether wheels as ligands. Angew. Chem. Int. Ed. Engl., 2003, 42: 74~77
    [94] Hoffart D. J., Loeb S. J. Metal organic rotaxane frameworks. Three dimensional polyrotaxanes form lanthanide ion nodes, pyridinium-N-oxide axles and crown ether wheels. Angew. Chem. Int. Ed. Engl., 2005, 44: 901~904
    [95] Loeb S. J. Metal Organic Rotaxane Frameworks. Chem. Commun., 2005: 1511~1518
    [96] Wasserman E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc., 1960, 82(16): 4433~4434
    [97] Amabilino D. B., Stoddart J. F. Interlocked and intertwined structures and superstructures. Chem. Rev., 1995, 95(8): 2725~2828
    [98] Hubbard A. L., Davidson G. J. E., Patel R. H., et al. Host-guest interactions template: the synthesis of a [3]catenane. Chem. Commun., 2004: 138~139
    [99] Wolf R., Asakawa M., Ashton P. R., et al. A molecular chameleon: chromophoric sensing by a self-complexing molecular assembly. Angew. Chem. Int. Ed. Engl., 1998, 37: 975~978
    [100] Ashton P. R., Brown C. L., Chrystal E. J. T., et al. Self-assembling
    [3]catenanes. Angew. Chem. Int. Ed. Engl., 1991, 30:1039~1042
    [101] Liu Y., Bonvallet P.A., Vignon S. A., et al. Donor-acceptor pretzelanes and a cyclic bis[2]catenane homologue. Angew. Chem. Int. Ed. Engl., 2005, 44: 3050~3055
    [102] Amabilino D. B., Ashton P. R., Reder A. S., et al. Olympiadane. Angew. Chem. Int. Ed. Engl., 1994, 33: 1286~1290
    [103] Amabilino D. B., Ashton P. R., Boyd S. E., et al. The five-stage self-assembly of a branched heptacatenane. Angew. Chem. Int. Ed. Engl., 1997, 36: 2070~2072
    [104] Williams A. R., Northrop B. H., Chang T., et al. Suitanes. Angew. Chem. Int. Ed. Engl., 2006, 40: 6665-6669
    [105] Loeb S. J., Wisner J. A. [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown ethers. Chem. Commun., 2000:1939~1940
    [106] Elizarov A. M., Chiu S.-H., Stoddart J. F. An acid-base switchable
    [2]rotaxane. J. Org. Chem., 2002, 67: 9175~9181
    [107] Loeb S. J., Tiburcio J., Vella S. J. A mechanical “flip switch”. Interconversion between co-conformations of a [2]rotaxane with a single recognition site. Chem. Commun., 2006: 1598~1600
    [108] Liu Y., Li C.-J., Zhang H.-Y., et al. A chromophoric switch based on pseudorotaxanes. J. Chem. Phys., 2007, 126: 064705-1~6
    [109] Kiviniemi S., Nissinen M., Kolli T., et al. Crown ether complexes of six-membered N-heteroaromatic cations. J. Incl. Phenom. Macro. Chem., 2001, 40: 153~159
    [110] Kiviniemi S., Nissinen M., Lamsa M. T., et al. Complexation of planar, organic, five-membered cations with crown ethers. New J. Chem., 2000, 24: 47~52
    [111] Kiviniemi S., Sillanpaa A., Nissinen M., et al. Polar crystals with one-dimensional arrays from achiral components: crystal structures of 2:2 complexes of dibenzo-18-crown-6-imidazolium and pyrazolium perchlorates. Chem. Commun., 1999: 897~898
    [112] Lamsa M., Huuskonen J., Rissanen K., et al. X-ray and NMR studies on host-guest inclusion complex formation between crown ethers and pyridinium compounds. Chem. Eur. J., 1998, 4(1): 84~92
    [113] Asakawa M., Ashton P. R., Brown C. L., et al. Molecular and supramolecular synthesis with dibenzofuran-containing systems. Chem. Eur. J., 1997, 3: 1136~1150
    [114] Balzani V., Ceron P., Credi A., et al. Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New J. Chem., 2001, 25: 25~31
    [115] 童林荟,申宝剑,超分子化学研究中的物理方法,北京:科学出版社,2001:15~21
    [116] Loeb S. J., Tiburcio J., Wisner J. A. A versatile template for the formation of
    [2]pseudorotaxanes. 1,2-bis(pyridinium)ethane axles and 24-crown-8 ether wheels. Org. Biomol. Chem., 2006, 4: 667~680
    [117] Hamana M., Funagoshi K. Tertiary amine oxides. I. Reduction of acyl adduct of aromatic N-oxides. Yakugaku Zasshi, 1960, 80:1027~1030
    [118] Kato T., Yamamoto Y., Takeda S. Ketene and its derivatives. LV. Reaction of primary amines with ketene acetals. Yakugaku Zasshi, 1973, 93: 1034~1042
    [119] Jó?wiak A., Brzeziński J. Z., P?otka M. W., et al. Behaviour of N-pyridylbenzamides versus benzanilides in the ortho-directed lithiation of masked aromatic carboxylic acids. Eur. J. Org. Chem., 2004, 15: 3254~3261
    [120] Wisner J. A. Interpenetrated and interlocked molecules via bis(pyridinium) ethanes. Dissertation for Ph.D., the University of Windsor, 1999.
    [121] 陈小明,蔡继文,单晶结构分析——原理与实践,北京:科学出版社,2003:114
    [122] Vella S. J., Tiburcio J., Gauld J. W., et al. Push-pull pseudorotaxanes. electronic control of pseudorotaxane formation by switching ON/OFF an intramolecular charge transfer. Org. Lett., 2006: 3421~3424
    [123] Meltzer R. I., Lewis A. D., King J. A. Antitubercular substances. IV. Thioamides. J. Am. Chem. Soc., 1955, 77(15): 4062~4064
    [124] Kushner S., Dalalian H., Cassell J. L. et al. Experimental chemotherapy of tuberculosis. I. Substituted nicotinamides. J. Org. Chem., 1948, 13(6): 834~836
    [125] Anderson A. G., Berkelhammer Jr. G. A Study of the Primry Acid Reaction on Model Compounds of Reduced Diphosphopyridine Nucleotide. J. Am. Chem. Soc., 1958, 80(4): 992~999
    [126] Ozawa H., Kiyomoto A., Urata Y. Isoniazid derivatives. IV. Separation of isomers of pyruvic acid isonicotinoylhydrazone by paper chromatography. Yakugaku Zasshi, 1960, 80:211~214
    [127] Fox H. H., Gibas J. T. Synthetic Tuberculostats. VIII. Acyl Derivatives of Isonicotinyl Hydrazine. J. Org. Chem., 1953, 18(10): 1375~1379
    [128] Ashton P. R., Fyfe M. C. T., Hickingbottom S. K., et al. Hammett correlations "beyond the molecule". J. Chem. Soc., Perkin Trans., II 1998, 2: 2117~2128
    [129] Clifford T., Abushamleh A., Busch D. H. Supramolecular Chemistry And Self-assembly Special Feature: Factors affecting the threading of axle molecules through macrocycles: Binding constants for semirotaxane formation. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 4830~4836
    [130] Fyfe M. C. T., Stoddart J. F., and Williams D. J. X-Ray crystallographic studies on the noncovalent synthesis of supermolecules. J. Struct. Chem., 1999, 10: 243~259
    [131] Williams A. R., Northrop B. H., Houk K. N., et al. The influence of constitutional isomerism and change on molecular recognition processes. Chem. Eur. J., 2004, 10: 5406~5421
    [132] Jones J. W., Gibson H. W. Ion pairing and host-guest complexation in low dielectric constant solvents. J. Am. Chem. Soc., 2003, 125: 7001~7004
    [133] Whang D., Jeon Y.-M., Heo J., et al. Self-Assembly of a Polyrotaxane Containing a Cyclic 'Bead' in Every Structural Unit: Cucurbituril Molecules Threaded on an 1D Coordination Polymer. J. Am. Chem. Soc., 1996, 118: 11333~11334
    [134] Whang D. and Kim K. Polycartenated 2D Polyrotaxane Net. J. Am. Chem. Soc., 1997, 119: 451-452
    [135] Lee E., Heo J. and Kim K. A Three-Dimensional Polyrotaxane Network. Angew. Chem. Int. Ed., 2000, 39: 2699~2701
    [136] Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev., 2002, 31: 96~107
    [139] Ikeda T., Asakawa M., Shimizu T. 1H NMR analysis of porphyrin-stoppered rotaxane: effect of the porphyrin substituents on the macrocycle. New J. Chem., 2004, 28:870~873
    [140] Ikeda T., Asakawa M., Goto M., et al. NMR and X-ray crystallographic analysis of thermodynamically stable tetraphenylporphyrin-stoppered rotaxanes. Eur. J. Org. Chem., 2003: 3744~3751
    [141] Asakawa M., Ikeda T., Yui N., et al. Preparation of porphyrin-stoppered rotaxane aiming at immobilization on substrate. Chem. Lett., 2002: 174~175
    [142] Bergeron R. J., Mcmanis J. S., Weimar W. R., et al. The Role of Charge in Polyamine Analogue Recognition. J. Med. Chem., 1995, 38(13): 2278~2285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700