八个中山杉无性系耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中山杉(Taxodium distichum×T.mucronaturm)是通过落羽杉属树木种间杂交选育出来的无性系,具有耐水湿,耐盐性强特性,在沿海盐碱地(pH8-8.5,含盐量0.1%左右)上生长良好,是开发利用滩涂广阔的土地资源,改善生态环境的优良树种。近年来以中山杉302为母本与墨西哥落羽杉回交叉选育出系列无性系,本试验以8个中山杉无性系为研究对象,评价了它们的耐盐力,并选择其中有代表性的两个耐盐性不同的无性系研究了NaCl胁迫对其生理特性及离子吸收运输的影响,初步探讨了中山杉无性系的耐盐机制。
     采用水培法对8个中山杉新无性系1年生扦插苗进行不同浓度NaCl(3.0,3.5,4.0,4.5,5.0 g·L~(-1))处理,以苗高相对生长量、盐害指数和叶片相对电导率为主要指标,结合茎粗相对生长量、干重、根冠比、地上部相对含水量及根部相对含水量等指标,对8个中山杉无性系进行了耐盐力评价,结果表明,在水培条件下不同无性系的耐盐力从3.0 g·L~(-1)~4.5 g·L~(-1)不等。中山杉118号具有较好的耐盐性,耐盐力为4.0g·L~(-1)~4.5 g·L~(-1);中山杉136号、1号、146号和149号耐盐力为中等,为3.5 g·L~(-1)~4.0g·L~(-1);而中山杉102号,27号和24号的耐盐性较差,为3.0g·L~(-1)~3.5 g·L~(-1)。对以上指标进行相关性分析表明,盐害指数、苗高相对生长量和叶片相对电导率两两之间在0.01水平上均呈极显著相关,且分别与茎粗相对生长量、干重、根冠比、地上部相对含水量及根部相对含水量五个指标均有显著相关性。因此,盐害指数、苗高相对生长量和叶片相对电导率可作为中山杉耐盐能力综合评价指标。
     从上述无性系中选出2个耐盐力差异较大的中山杉无性系,分别为118号(耐盐性较强)和102号(耐盐性较弱),研究了NaCl胁迫对其生理反应的影响。研究表明,盐胁迫下,叶片叶绿素含量持续下降,在低浓度(3.0 g·L~(-1))NaCl处理时与对照之间差异不显著,随着盐浓度的增加,耐盐性较强无性系118号叶片叶绿素含量下降幅度低于耐盐性较弱无性系102号;耐盐性较强无性系在低浓度盐胁迫下具有较强地清除自由基的能力,叶片SOD活性在3.5 g·L~(-1)盐浓度时达到最大值,且显著高于对照,而随着盐浓度的增大其活性显著下降,清除能力下降;叶片可溶性蛋白含量持续增加,且在低盐浓度时耐盐性较强无性系增幅远大于耐盐性较弱无性系,随着盐浓度的增大,两者差异不显著;叶片电解质渗漏率持续增大,且耐盐性较强无性系118号增幅小于耐盐性较弱无性系102号;叶片脯氨酸含量在低浓度(3.0g·L~(-1)-3.5g·L~(-1))盐胁迫下总体呈上升趋势,其中118号的脯氨酸含量成倍增加,102号增幅较小,当高浓度(5.0g·L~(-1))盐胁迫时,118号的脯氨酸含量在增加,102号则下降;盐胁迫下,较耐盐无性系118号的叶部和根部可溶性糖含量增加,且根部可溶性糖含量增幅远远超过叶部的增幅,而102号均下降。中山杉118号无性系主要是通过增加可溶性糖的含量和增加脯氨酸的含量进行渗透调节。
     以2个中山杉无性系118号(耐盐性较强)和102号(耐盐性较弱)为材料,研究了NaCl胁迫对其离子吸收运输的影响。结果表明:NaCl处理下,118号根部通过选择性吸收Ca~(2+)和K~+来抑制Na~+进入根系的能力比102号强,且叶片积累较少的Na~+,说明118号根部吸收较多的K~+、Ca~(2+)和Mg~(2+)并运输至叶片,以维持叶片的代谢活性,以及维持根茎叶较低的Na~+/K~+比率是其具有较强耐盐力的重要原因。
Taxodium 'Zhongshansha'[(Taxodium distichum×T.mucronatum)×T.mucronatum] which have strong water-resistance and salt-tolerance characteristic,are excellent trees widly used to empoldering salina and meliorating entironment because they can grow well at littoral salina(pH8-8.5,contained salt about 0.1%).Backcross hybrids were got by Taxodium 'Zhongshansha302' and T.mucronatum.Their salt-tolerance and salt-tolerant mechanism are short of study.In this paper,salt tolerance of eight clones(CL) of 'Zhongshansha' were appraised and two different salt-tolerant clones of 'Zhongshansha' were chosen to study the salt-tolerant mechanism by comparing their physiological reaction and ion uptakes and transports in condition of salt stress.
     Eight clones of 'Zhongshansha' breeding were used for studying their salt tolerance treated by different concentration(3.0,3.5,4.0,4.5,5.0 g·L~(-1)) of NaC1 in condition of water culture.The relative growth of breeding height(RG),salt indexes and relative electrolytic leakage which were main indexes and the other indexes which were relative growth of stem,dry weight,root shoot ratio,RWC in overground and RWC in root were used to study their salt tolerance.Results indicated that the tested clones were classified into three groups:weak salt tolerance,moderate tolerance and strong tolerance.CL118 had strong salt-tolerance,which salt-tolerance limit was 4.0 g·L~(-1)~4.5 g·L~(-1);CL136,CL1, CL146 and CL149 had moderate tolerance,which salt-tolerance limit was 3.5 g·L~(-1)~4.0 g·L~(-1);CL 102,CL 27 and CL 24 had weak tolerance,which salt-tolerance limit was 3.0 g.L~(-1)~3.5 g·L~(-1).There were exceedingly significant correlation in level of 0.01 between RG and Relative electrolytic leakage or RG and SI,or SI and Relative electrolytic leakage by twos,and three indexes(RG,SI and Relative electrolytic leakage) and five indexes (Relative growth of stem,Dry weight,Root shoot ratio,RWC in overground and RWC in root) had significant correlation.So RG,SI and Relative electrolytic leakage could be used as synthetic identification index for salt tolerance of 'Zhongshansha'.
     CL 118(with relatively strong salt resistance) and CL 102(with relatively weak salt resistance) were chosen and studied in NaCl stress on physiological reaction.Results indicated that chlorophyll content in leaves decreased at all times.Compared with the control,chlorophyll content was inapparent treated by lower NaC1 concentration(3.0 g·L~(-1))but with NaC1 concentration increasing,chlorophyll content degressive extent of CL 118 was much lower than CL 102;CL 118 had stronger ability to clear away free radical treated by lower NaC1 concentration,which SOD activity reached maximum at 3.5 g·L~(-1) concentration and was higher than the control.,but its activity observably declined with NaCl concentration increasing.The soluble protein in leave all increased and its amplitude of CL 118 was much lower than CL 102,and the difference between CL 118 and CL 102 was inapparent with NaCI concentration increasing.Relative electrolytic leakage in leave all increased and its amplitude of CL 118 was much lower than CL 102.Pro content in leave ascended as a whole at lower NaCl(3.0g·L~(-1)-3.5g·L~(-1)) concentration,that of CL 118 doubly increased,and its amplitude of CL 118 was bigger than CL 102.Pro content in leave of CL 118 ascended at higher NaC1(3.0g·L~(-1)-3.5g·L~(-1)) concentration and CL 102 failed.Soluble sugar content in leaf and root of CL 118 enhanced and its amplitude in leave was much higher than in root.Soluble sugar content in leaf and root of CL 102 were declined.CL 118 osmoregulated mainly through increasing of soluble sugar content and pro content.
     The effects of salt stress on ion uptakes and transports on CL 118 and CL 102 were studied.Results indicated that important reasons for stronger salt resistance of CL 118 were root selectivity absorbency toward K+ and Ca2~ of CL 118 in order to restrain Na~+ coming into root was stronger than that of CL 102,and Na~+ in leaves of CL 118 accumulation was less than that of CL 102.It showed that root transported much more K~+,Ca~(2+) and Mg~(2+) to leaves for keeping metabolized active and lower level of Na~+/K~+ value in root,stem,and leaf of CL 118.
引文
1.曹福亮,金继良,汪贵斌,等.截干萌芽在银杏叶用园培育中的应用机理[J].南京林业大学学报,1999,23(5):60-63.
    2.陈德明,俞仁培.盐胁迫下不同小麦品种的耐盐性及其离子特征[J].土壤学报,1998.35(1):88-94.
    3.曹福亮.银杏培育机理及综合开发利用[M].北京:中国林业出版社,2000.
    4.陈立松,刘星辉.果树逆境生理[M].北京:中国农业出版社,2003,16-256.
    5.陈沁,刘友良,陈亚华.盐胁迫下大麦叶片的活性氧伤害与液泡膜H~+-ATPase活性的关系[J].南京农业大学学报,1998,21(3):21-25.
    6.陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365-371.
    7.陈少良,李金克,尹伟伦,等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(56):84-88.
    8.陈少裕,陈如凯,陈启锋,周可涌.自由基清除剂的保护作用与甘蔗的抗早性[J].作物学报,1994,2(2):149-155.
    9.陈文利,徐朗莱,沈文飚,等.盐胁迫下两品种大麦叶片H_2O_2累积及其清除酶活性的变化[J].南京农业大学学报,1998,22(2):97-100.
    10.陈小燕,秦素平,何蓓如.NaCl胁迫对黑麦根尖细胞染色体行为的影响[J].麦类作物学报,2003,23(4):10-14.
    11.陈亚华,沈振国,刘友良,等.NaCl胁迫下棉花幼苗的离子平衡[J].棉花学报,2001,13(4):225-229.
    12.陈耀锋,贺普超,廖样儒,等同基因型葡萄愈伤组织脯氨酸累积变异系的抗盐性研究[J].农业生物技术学报,1997,5(1):58-63.
    13.陈一舞,邵桂花,常汝镇.盐胁迫对大豆幼苗子叶各细胞器超氧化物歧化酶(SOD)的影响[J].作物学报,1997,23(2):214-219.
    14.陈永辉,等.落羽杉属树木速生耐盐碱类型的杂交选育.见:南京中山植物园研究论文集,南京:江苏科学技术出版社,1987.92-97.
    15.陈永辉,等.中山杉302和401无性系在碱地上的生长和适应性的初步研究[J].江苏林业科技,1989,(3):14-18.
    16.陈永辉,伍寿彭,毕绘蟾,等.中山杉无性系耐盐力的水培试验[J].江苏林业科技,1990,(2):11-16.
    17.陈永辉,伍寿彭,李永荣,等.落羽杉中山杉系列新品种选育初报[J].江苏林业科技,2006,8 (4):1-5.
    18.陈永辉,伍寿彭,殷云龙等.江苏滨海盐碱地中山杉造林推广试验[J].江苏林业科技,1996,23(4):18-22.
    19.陈竹生,聂华堂,计玉,等.柑桔种质的耐盐性鉴定[J].园艺学报,1992,19(04):289-295.
    20.程金永.园林植物遗传育种学[M].第1版.北京:中国林业出版社,2000,75-77.
    21.戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响[J].上海农业学报,2002,18(1):58-62.
    22.董必慧.中山杉扦插繁殖育苗试验[J].东北林业大学学报,2005,33(5):19-20.
    23.董发才,苗琛,荆艳彩,安国勇,杨惠娟,宋纯鹏.小麦根系过氧化氢积累与耐盐性的关系[J].武汉植物学研究,2002,20(4):293-298.
    24.杜中军,翟衡,罗新书.苹果砧木耐盐性鉴定及指标判断[J].果树学报,2002,19(1):4-7.
    25.冯长青,闫琳,刘静,等.新疆杨对K~+、Na~+、Ca~(2+)、Mg~(2+)的吸收、运输及分布特征[J].内蒙古农业大学学报.2007,28(2):26-31.
    26.冯立田,卢元芳.盐胁迫下灰绿藜叶片光合特性与叶绿体离子调节的研究[J].曲阜师范大学学报,1998,24(3):57-61.
    27.郭望模,傅亚萍,孙宗修,等.盐胁迫下不同水稻种质形态指标与耐盐性的相关分析[J].植物遗传资源学报,2003,4(3):245-251.
    28.何开跃,郭春梅.盐胁迫对3种竹子体内SOD,POD活性的影响[J].江苏林业科技,1995,22(4):11-14.
    29.侯振安,李品芳,郭世文,等.NaCl胁迫对苜蓿和羊草生长与水分利用的影响[J].中国农业科学,2002,35(7):894-900.
    30.黄健,唐学玺,付萌.盐胁迫对海滨香豌豆叶片三种物质含量的影响[J].青岛海洋大学,1997,27(4):509-515.
    31.黄利斌,李晓储,张定瑶,等.丘陵岗地中山杉302生长规律的研究[J].江苏林业科技,2006,6(3):6-9.
    32.纪淑梅.草坪草耐盐性研究Ⅱ.盐胁迫对草坪草脯氨酸含量的影响[J].草业科学,1999,16:54-59.
    33.姜卫兵,马凯,王业遴.无花果耐盐性生理指标的探讨[J].江苏农业学报,1991,7(3):29-33.
    34.姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效性[J].江苏农业学报,1992,8(4):13-17.
    35.金兰,罗桂花.盐胁迫对紫花苜蓿SOD,丙二醛及SOD同工酶的影响[J].黑龙江畜牧兽医,2004,5:15-16.
    36.柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3):229-233.
    37.柯玉琴,潘廷国.NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系应用[J].生 态学报,2002,13(10):1303-1306.
    38.克热木.伊力,袁琳,齐曼.尤努斯,杨文英.盐胁迫对阿月浑子SOD,CAT,POD活性的影响[J].新疆农业科学,2004,41(3):129-134.
    39.李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗保护酶系统活性的影响[J].河北农业大学学报,1994,17(3):52-56.
    40.李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,164-168.
    41.李永荣,刘永智,陆小清,等.8个中山杉新无性系耐盐力的水培试验研究[J].江苏林业科技,2007,10(5):1-4.
    42.廖祥儒,贺普超,万恰震,等.盐胁迫对葡萄新梢叶片的伤害作用[J].果树科学,1996,13(4):211-214.
    43.廖祥儒,贺普超,朱新立.盐渍对葡萄色素含量的影响[J].园艺学报,1996,23(3):300-302.
    44.刘爱峰,赵檀方,段友臣.盐胁迫对大麦叶片细胞超微结构影响的研究[J].大麦科学,2000,13:20-22.
    45.刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].Pratacultural Science,1997,2:18-20.
    46.刘静,王林和,王兴.土壤及地下水含盐量对小美早杨可溶盐离子质量分数的影响[J].浙江林学院学报,2005,22(1):33-39.
    47.刘友良,曹鸣庆.植物的耐盐性及其改良[M].农业出版社,1986.
    48.刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987(4):1-7.
    49.卢昌义,周一鸣.引种的海莲抗寒生理生态研究[J].厦门大学学报(自然科学版),2001,40(3):812-816.
    50.卢少云,陈斯萍,陈斯曼,等.三种暖季型草坪草在干早条件下脯氮酸含量和抗氧化酶活性的变化[J].园艺学报,2003,30(3):303-306.
    51.陆小青,李永荣,陈永辉,等.中山杉系列新无性系区域试验[J].江苏林业科技,2007,12(6):1-6.
    52.陆小青,毛志滨,陈永辉,等.中山杉扦插繁殖技术[J].江苏林业科技,2004,31(6):38-42.
    53.吕庆,郑荣梁.干早及活性氧引起的膜脂过氧化与脱酯化[J].中国科学(C辑),1996,26(1):26-30.
    54.马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报,2000,29(2):161-166.
    55.马翠兰,刘星辉,杜志坚.盐胁迫对抽、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报(自然科学版),2003,32(3):320-324.
    56.马翠兰,刘星辉.盐对柚幼苗的胁迫效应分析[J].热带作物学报,2004,25(1):28-31.
    57.马焕成,蒋东明.木本植物抗盐性研究进展[J].西南林学院学报,1998,18(1):52-59.
    58.马淑时,王伟.大豆品种资源的抗盐碱性研究[J].吉林农业科学,1994,(4):69-71.
    59.马宗仁.短芒披碱草和老芒草在水分胁迫下游离脯氨酸积累的研究[J].中国草地,1991(4):12-14.
    60.任东涛,赵松岭.水分胁迫对半干早区春小麦旗叶蛋白质代谢的影响[J].作物学报,1997,23(4):468-473.
    61.阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报,2002,11(2):45-47.
    62.阮松林,薛庆中.盐胁迫条件下杂交水稻种子发芽特性和幼苗耐盐生理基础[J].中国水稻科学,2002,16(3):281-284.
    63.史燕山,骆建霞,张涛,等.核果类果树砧木耐盐性差异的研究[J]西北农林科技大学学报(自然科学版),2004,32(3):45-48.
    64.束怀瑞.果树栽培生理学[M].第1版.北京:中国农业出版社,1993,120-122.
    65.孙方行,李国雷,夏阳,等.刺槐对盐分胁迫的生理生化反应[J].山东林业科技,2004,150(1),5-7.
    66.孙孟键,李本湘.植物耐寒防寒技术[M],北京:学术书刊出版社,1989.93-115.
    67.田野,张焕朝,方升佐.盐胁迫下土壤-杨树系统中离子运移与分布特征[J].南京林业大学学报(自然科学版),2003,27(4):5-9.
    68.汪贵斌,曹福亮,张往祥.银杏品种耐盐能力的研究[J].林业科学,2003,39(5):168-172.
    69.汪贵斌,曹福亮.盐胁迫对落羽衫生理及生长的影响[J].南京林业大学学报(自然科学版),2003,27(3):11-14.
    70.汪良驹,王业遴,刘永良.无花果耐盐机理研究Ⅰ.盐逆境下脯氨酸和可溶性蛋白质的积累[J].南京农业大学学报,1989,12(4):124-125.
    71.王宝山,姚敦义.盐胁迫对沙枣愈伤组织膜透性、膜质过氧化SOD活性的影响[J].河北农业大学学报,1993,16(3):20-24.
    72.王锁民,朱兴运,舒孝喜.碱茅离子吸收与分配特性研究[J].草业学报,1994,3(1):39-43.
    73.王业遴,马凯,姜卫兵,等.五种果树耐盐力试验初报[J]冲国果树,1990,(3):8-12.
    74.王弋博,李勃,未丽,等.外源甜菜碱对两种玉米耐盐性影响的研究[J].兰州大学学报(自然科学版),2005,(2):34-37.
    75.王影,黄敏仁,陈道明,等.杨树细胞悬浮培养及体细胞胚胎发生的研究[J].南京林业大学学报(自然科学版),1991(3).
    76.王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    77.魏爱丽,杨臣,陈云昭,等.盐胁迫下大豆小真叶愈伤组织可溶性蛋白含量变化的研究[J].山西农业大学学报,1997,17(4):318-321
    78.翁迈东.海涂柑桔适用砧木探讨[J].中国南方果树,1980:12-17.
    79.吴成龙,周春霖,尹金来,等.NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J].西北植物学报,2006,26(11):2289-2296.
    80.吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版),2002,26(3):19-22.
    81.伍寿彭,陈永辉,王名金冲山杉光合生理特性的初步研究[J].江苏林业科技,1990(4):9-12.
    82.许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na~+、k~+吸收的影响[J].西北植物学报,2002,22(2):278-284.
    83.阎秀峰,王琴.两种外生菌根真菌在辽东栎幼苗上的混合接种效应[J].植物生态学报,2004,28(1):17-23.
    84.杨国会,马尧,李如升.NaCl对甘草叶片脯氨酸含量以及质膜相对透性的影响[J].农业与技术,2000,(5):43-45.
    85.杨剑平,杨秋瑾,王文平.MDA作为叶片衰老指标的范围.[J]北京农学院学报,2000,15(3).
    86.杨敏生.李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    87.杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J].应用生态学报,2003,14(12):2237-2240.
    88.姚春娜,裴新梧,孔英珍,等.盐胁迫下小麦新品系89122的抗氧化酶活性和内源ABA含量变化的研究[J].兰州大学学报(自然科学版),2001,37(4):76-79.
    89.仪慧兰,李秀芬.盐胁迫浓度与大麦幼苗生长分裂和遗传损伤的相关性研究[J].植物研究,2001,21(4):592-595.
    90.殷云龙,陈永辉.中山杉与池杉、落羽杉和水杉对比造林的调查和评价[J].植物资源与环境,1997,6(3):23-28.
    91.殷云龙,尹晓明,於朝广,等.中山杉302回交一代的早期选育[J].植物资源与环境学报,2003,12(2):22-27.
    92.殷云龙,尹晓明,於朝广,等.中山杉302回交一代的早期选育[J].植物资源与环境学报,2003,12(2):22-27.
    93.尹晓明,殷云龙,陈永辉.中山杉302和墨西哥落羽杉及其回交一代的同工酶分析[J].植物资源与环境学报,2002,11(3):59-61.
    94.於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报,2001,27(6):776-780.
    95.詹亚光,陈全涉,苑盛华,等.盐胁迫下树木的K~+和Na~+含量变化特点及其耐盐性[J].东北林业大学学报,1999,27(1):24-27.
    96.詹亚光,陈全涉,苑盛华,等.盐胁迫下树木的K~+和Na~+含量变化特点及其耐盐性[J].东北林业大学学报,1999,27(1);24-27.
    97.张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,38(2):27-31.
    98.张福锁.植物营养生态生理学和遗传学[M].中国科技出版社,1993.
    99.张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-61.
    100.张建锋,李吉跃,宋玉民,等.植物耐盐机理及耐盐植物选育研究进展[J].世界林业研究,2003,16(2);16-21.
    101.张建锋,乔勇进,焦明,等.盐碱地改良利用研究进展[J].山东林业科技,1997,3:5-8.
    102.张俊莲,陈勇胜,武季玲等.盐胁迫下马铃薯耐盐相关生理指标变化的研究[J].学术园地,2002,6:323-327.
    103.张立钦,郑勇子,金佩英.用组织培养技术筛选杨树耐盐种质[J].浙江林学院学报,1996,(4).
    104.张立钦,郑勇平,罗士元,等.杨树湿地松组织培养愈伤组织耐盐性[J].浙江林学院林学系,1997(01).
    105.张立钦,郑勇平,吴纪良,等.黑杨派新无性系水培苗对盐胁迫反应的研究[J].浙江林学院学.报,2000,(02).
    106.张显强,张宇斌,王家远,等.NaCl胁迫对玉米幼苗叶片蛋白质降解和脯氨酸累积的影响[J].贵州农业科学,2002,30(2):3-4.
    107.张宪政.作物生理研究法[M].北京:中国农业出版社,1990,148-150.
    108.张云,原雅玲.刘庆林.百合品种改良与生物技术研究进展[J].北京林业大学学报,2001,23(3):56-59.
    109.张治安,张美善,蔚荣海.植物生理学实验指导[M].第1版,北京:中国农业科学技术出版社,2004:140-143.
    110.赵可夫,Harris P J C.盐胁迫对沙枣生理特性的影响[J].山东师范大学学报,1992,7(4):94-101.
    111.赵可夫.植物抗盐生理[M].北京:科学出版社,1993.
    112.赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1998.
    113.赵可夫,王韵糖.作物抗性生理[M].农业出版社,1990.
    114.赵可夫,张万钧.范海,等.改良和开发利用盐渍化土壤的生物学措施[J].土壤通报,2001,32(6):115-119.
    115.赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1999.
    116.赵世杰,刘华山.董新纯.植物生理学实验指导[M].北京:中国农业科技出版社,1998:61-170.
    117.阵锐,邓慧莹.松嫩平原碱化草甸朝鲜碱茅、獐毛耐盐碱特性的比较研究[J].植物生态学报, 1996,20(4):322-329.
    118.郑国琦,马宏玮,许兴.盐胁迫下宁夏枸杞盐分与甜菜碱累积及其与光合作用的关系[J].中国生态农业学报,2003,11(3):51-54.
    119.郑青松,王仁雷,刘友良.盐浓度处理对棉花幼苗Ca~(2+)吸收分配的影响[J].植物生理学报,2001,27(4):325-330.
    120.郑少玲,严小龙.盐胁迫下不同水稻基因型根内Na~+和Cl~-的分布情况比较[J].华南农业大学学报,1996,17(4):24-28.
    121.周婵,张卓,杨允菲.实验羊草种群幼苗对不同梯度盐碱胁迫的生理响应[J].东北师大学报(自然科学版),2003,35(4):62-67.
    122.周峰,.李平华,王宝山.K~+平衡与植物耐盐性的关系[J].(植物生理学通讯),2003,39(1):37-70.
    123.朱德民.植物生长与耐盐性[J].科学农业(台),1982,30(3-4):202.
    124.朱新广,张其德.NaCl对光合作用影响的研究进展[J].植物学通报,1999,332-338.
    125.朱志华.不同生育时期盐胁迫对小麦产量的影响[J].作物品种资源,1998,3:31-33.
    126.Abed S,Moshe T.The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tlerant relative Lyeopersicon pennellii.Physiologia plantarum,1998,104:169-174.
    127.Abou El-khashab A M,El-sammak A F,Elaidy A A,et al.Paclobutrazol reduces some negative effects of salt stress in peach[J].J Amer Soc Hort Sci.1997,122(1):43-46.
    128.Adam S P,Thomas J C,Vernon D M,Bohnert H J,etal.Distinct cellular and organic responses to salt stress[J].Plant Cell Physiology.1992,33:1215-1223.
    129.Asish K P,Anath B D.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60:324-349.
    130.Bush D S.Calcium regulation in plant cells and its role in signaling.Annu Rev Plant Physiol Plant Mol Boil,1995,46:95-122.
    131.Cramer GR,Lauchli A,Polito VS.Displacement of Ca~(2+) by Na~+ from the plas malemma of root cells.A Primary response to salts tress?[J].Plant Physiology,1985,79:207-211.
    132.Cruz V,Cuartero J.Effects of salinity at several developmental stages of six genotypes of tomato (Lyeopersieonspp.)[J].Scientia Horticulturae,1999,78:83-125.
    133.Davies W J,Zhang J.Root signal and the regulation of growth and development of plants in drying soil.Annu Rev Plant Physiol Plant Mol Boil,1991,42:55-76.
    134.Divate M R,Pandey R.M.Salt tolerance in grapes I.Effect of salinity on chlorophyll photosynthesis and respiration[J].Indian J.Plant Physiol.,1981,24(1):74.
    135.Downton W J S.Phorosynthesis in salt stressed grapevines[J].Aust.J.Plant Physiol.,1977,4:183.
    136.Ericson M C,Alfinito S H.Proteins produced during salt stress in tobacco cell culture.Plant Physiol,1984,74:504-509.
    137.Flowers T J,Yeo A R.Ion relation of salt tolerance[A].In:Baker DD,Hall JL(eds).Solute Transport in Cells and Tissue[C].New York,1998,John Wiley and Sons,Inc.
    138.Friedman R,Altman A.The effect of salt stress on praline bioynthesis and content in mung bean plants and in halophytes[J].Aust J Plant Physiol,1995,22:747-754.
    139.Gueci R,Tattini M.Salinity tolerance in olive.Hort Rev.1997,21:177-184.
    140.Hason J B.Ion uptake by soybean Root Tissue Depleted of calcium by Ethycenediamine tetraacetie Acid[J].Plantphysiol,1960,39:450-460.
    141.Hemandez J A,Del Rio I A,Sevilla F.Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata.New Phytol,1994,126:37-44.
    142.Itai C,Benzion A.Water and plant life[M].Springer Verlag,Berlin,Heidelberg,NewYork.1976:207-224.
    143.Katsu M,Kuehitsu K.,Tskeshige,Taza wa M,Salt stress-induced cytoplamie acidification and vacuolar alkalization in Nitellopsis obtuse cells[J].Plant Physiol,1989,90:1102-1107.
    144.Khan A H,AshrafM Y,Azmi A R.Osmotic adjustment in sorghum under NaCl stress[J].Physiol.Plant,1992,14:159-164.
    145.Kim TE,Kim SK,Han TJ,et al.ABA and polyamines act independently in primary leaves of cold-stressed tomato(LyCopersicon esculentum )[J].Physiol Plant,2002,115(3):370-376.
    146.King G J,Hussey C E JR,Turner V A.A protein induced by NaCI in suspension cultures of Nicotiana tabacum accumulates in whole plant roots.Plant Mol Biol,1986,7:441-449.Kingsbury R.W.EpsteinE.Salt sensitivity in wheat[J].Plant Physiol,1986,80:651-654.
    147.Leivitt J.responses of plant to environmental stresses[J].Volume Ⅱ.New York:Academic Press,1980:365-390.
    148.Liu T,Staden JV.Growthrate,water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief[J].Plant Growth Regulation,2001,34:277-285.
    149.Marsehner H.Mineral nutrition of higher plants(2nd edition)[M].London:Academic Press,1995.
    150.Moran J F,Beeana M,Iturke Onnaetxe I,et al.Drought induces oxidative stress in pea plants.Planta,1994,94:346-352.
    151.Munns R.,Termaat A.,Whole plant responses to salinity[J].Aust.J.Plant Physiol,1986, 13:143-160.
    152.Munns R.Physiological processes limiting plant growth in saline soils:Some dogmas and hypotheses[J].Plant Cell Environ,1993,16:15-24.
    153.Neelam M,Dwivediu N.Genotypic difference in salinity tolerance of green gram cultivars[J].Plant Science,2004,166:1135-1142.
    154.Poustini K,Sissemardeh A.Ion distribution in wheat cultivars in response to salinity stress[J].Field Crops Research,2004,85:125-133.
    155.Prabucki A,Serek M,Andersen A S.Influence of salt stress on stock plant growth and cutting performance of Chrysanthemum morifoliumRamat[J].Journal of Horticultural Science &Biotechnology,1999,74(1):132-134.
    156.Schachtman D P,Bloom A J,Dovorak J.Salt-tolerant Triticum x tophopyrm derivatives Limit the accumulation of sodium and chloride ions under saline-stress[J].Plant Cell Envrion,1989,12:47-55.
    157.Schachtman D P,Munns R.Sodium accumulation in leaves of Triticum species that difer in salt tolerance[J].Aust J Plant Physlol,1992,19:311-340.
    158.Seel W E,Hendyg A F,Leej.A.Effects of desiccation on some activated oxygen processing enzyme sand antioxidants iumosses J.Exp.Bot.,1992,43:1031-1035.
    159.Seel W E,Hending G A F,Lee J A.Efforts of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses[J].J Exp Bot,1992,43:1031-1056.
    160.Singh N K,Handa A K,Hasegawa P M,et al.Proteins associated with adaptation of cultured tobacco cells to NaCl.Plant Physiol,1985,79:126-137.
    161.Singha S,Choudhuri M A.Effect of salinity(NaCl) stress on H_2O_2 metabolism in Vigna and Oryza seedling.Biochem Physiol Pflanzen,1990,18:69-74.
    162.Termaat A.et al.Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley [J].Plant Physiol,1985,77:869-873.
    163.Troncosd A,Atte CM,Cantos M.Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties[J].Vitis,1999,38(2):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700