杭州湾海岸带防护林植物材料评价和选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对杭州湾滨海盐碱地防护林和景观林带树种紧缺现状,围绕沿海防护林的树种选择,通过植被调查、树种评价和重要树种及其无性系的耐盐生理等三个方面展开研究,在树种资源现状评价的基础上,摸索了树种耐盐性评价指标体系建立方法,并对重要树种和洋白蜡(Fraxinus pennsylvanica)无性系盐胁迫后的生长、生理指标动态变化及其根、茎显微和超微结构的变化,耐盐指标和评价方法进行了讨论,为杭州湾沿海的耐盐树种选择奠定了理论基础。
     1、杭州湾沿海海岸带自然植被及防护林现状调查
     (1)典型新围垦海涂的调查发现高等植物种类简单,木本植物稀少;海滩主要群落有海三棱镳草(Scirpus mariqueter)和芦苇(Phragmites australis),海岸以旱柳(Salix matsudana)、柽柳(Tamarix chinensis)灌丛植物群落为主,辅以少量草本群落;主要的促淤植被是海三棱镳草和芦苇。滩地没有形成有效的防浪林带,对滩地环境需保护并结合人工促进为主。
     (2)北部海岛的主要自然植被群落包括野梧桐(Mallotus,japonicus)、青冈(Cyclobalanopsis glauca)-石竹(Stellaria media)-鳞毛蕨(Dryopteris spp.)群落和红楠(Persea thunbergii)、青冈-石竹-鳞毛蕨群落等两种,并正在向地带性森林群落——以壳斗科植物为主(青冈林)的群落演替,海岛物种资源基础较为薄弱,需采用人工促进手段加速森林植被的自然演替进程。
     (3)杭州湾沿海现有保存林分种类较少,防护林带保存率较差,病虫害严重。在纯林中,杨树生长速度最快,水杉次之,刺槐较差,刺槐林下植被多样性较高;而混交林,其林分结构、蓄积量、抗风效果、病虫害均较纯林为优。杨树防护林保存率逐年减少,防风效果逐渐变差,在人为干扰的情况下,很难形成复层结构,必须采用人为措施对防护林加以改造,增加植被多样性,形成稳定的复层林型。
     2、沿海耐盐树种适应性评价与选择
     通过建立涵盖生长、抗逆、景观等多因子的综合评价指标,采用综合评价法对杭州湾慈溪新围海涂54个树种三年生林分和奉贤水、盐胁迫32个树种二年生林分的实验结果进行防护林和景观树种评价筛选,结果表明:慈溪新围海涂54个树种的表现共分4类:在0.2-0.4%盐土下表现良好的树种11种;表现尚好的树种13种;表现一般树种20种;不适宜树种10种。根据综合评价结果,推荐沿海防护林乔木树种15种:木麻黄(Casuarina equisetifolia)、旱柳、中山杉(Taxodium distichum×T.mucronatu)、弗栎(Quercus virginiana)、美国皂荚(Gleditsia triacanthos)、国槐(Sophra japonica L.)、香花槐(Cladrastis platycarpa)、黄连木(Pistacia chinensis)、墨西哥落羽杉(Taxodium mucronatum)、大叶女贞(Ligustrum lucidum)、洋白蜡、银荆(Acacia dealbara)、乌桕(Sapium sebiferum)、红千层(Callistemon rigidus)、栾树(Koelreuteria paniculata);推荐沿海防护林灌木树种4种:夹竹桃(Nerium indicum)、珊瑚(Viburnum odoratissimum)、海桐(Pittosporum tobira)、海滨木槿(Hibiscus hamabo)。适宜做景观的树种与之差异不大,只是在选择顺序上略有变化。奉贤水、盐胁迫32个树种分为4类:表现良好的树种3种;表现尚好的5种;一般的6种;不适宜树种18种。根据综合评价结果,推荐水盐胁迫乔木树种5种,黄连木、乌桕、美国皂荚、侧柏(Platycladus orientalis.)、红叶椿(Ailanthus altissima)。水、盐胁迫灌木树种2种:胡颓子(Elaeagnus pungens)、海滨木槿。由于引种时间不长,其结果有待进一步观测。
     3、盐胁迫下弗栎等6个树种的生长、生理反应
     6个树种在盐胁迫后的生长、生理指标的研究结果表明:盐胁迫对不同树种生长性状抑制明显,大部分树种的细胞膜透性、脯氨酸、SOD活性、Na~+含量均随Nacl浓度的增加和处理时间的延长表现出逐渐增加的趋势;在中低盐度胁迫下增加趋势不明显,在高盐度胁迫下迅速上升;不同树种对于盐胁迫的响应浓度和时间有差异。利用主成分分析方法,筛选出苗高增长、脯氨酸、SOD活性、叶片盐害指数、生物量、相对电导率等6个指标作为树种耐盐性评价的指标,采用生长、生理指标与对照的比值,用座标综合评定法评定树种的耐盐性,依次为:旱柳、弗栎>洋白蜡、美国皂荚、腊杨梅>美国梧桐(Platanus occidenntalis)。
     4、盐胁迫下洋白蜡无性系生长、生理反应
     对水培条件下的洋白蜡无性系耐盐生长、生理动态的研究结果表明:盐胁迫下,洋白蜡无性系在苗高净生长、生物量、根系长、叶绿素、细胞膜透性,脯氨酸、丙二醛、Na~+含量的差异均达到显著水平;苗高、净光合速率、气孔导度、SOD活性等差异不显著。高盐对洋白蜡的生长和光合指标抑制明显,中、低盐度变化较缓;细胞膜透性,脯氨酸、丙二醛、Na~+含量随胁迫浓度和时间逐渐增加。无性系对盐胁迫的响应浓度、时间以及幅度上存在差异,在NaCl浓度4g/L~6g/L时,差异最大,在此浓度压力下选择效率较好,在盐胁迫下,其生物量模拟结果呈指数函数下降方式,不同无性系的下降速率有所不同。聚类分析的结果表明8个无性系可分为4类。在对指标进行相关、逐步回归、典型分析及主分量分析的基础上,选择苗高净生长、细胞膜透性、叶绿素a+b、Na~+含量4个指标进行生长和耐盐综合指数选择,入选无性系为4-20和1-17号。
     5、盐胁迫对洋白蜡根、茎显微和超微结构的影响
     光学和超薄切片技术结合透射电子显微镜清楚地显示了盐胁迫条件下根和茎的显微和超微结构变化。显微结构观测表明,盐胁迫对根和茎形成层细胞的活动和次生韧皮部和木质部细胞的分化产生显著影响。盐胁迫造成根和茎形成层带细胞不明显,未见新分化的木质部和韧皮部细胞。超微结构观测表明,盐胁迫使茎干形成层纺锤形细胞的中央液泡分裂成许多分散的小液泡,细胞质发生质壁分离现象,形成层纺锤形细胞形成条带状膜状结构,细胞质发生轻微的降解,细胞器结构不清晰,出现解体。
Considering the shortage of tree species for Shelter-forest and landscape forest on the coastal area of Hangzhou Bay.and focusing on the issue of tree species selection, we conducted the vegetation investigation, tree species evaluation, as well as the tree and clone saline-resistance physiological research. Based on the current situation, the establishment method for saline-resistant tree species evaluation indicator system was discussed. The dynamic of growth and physiological indicators of Fraxinus pennsylvanica clones under the salt stress were studied. The micro-structure and ultrastructure of root and stem of Fraxinus pennsylvanica were observed. The indicators for saline resistance and evaluation method were discussed. The research results will lay a theoretic foundation for saline resistance tree species selection for sea front of Hangzhou Bay.
     1. Investigation for current situation of natural vegetation and protection forest on the coastal area of Hangzhou Bay.
     The higher plant species is not rich in the investigation site in newly-enclosed tidal flats in Cixi, with the total species of 59 under 45 genera and 21 families. The main community is Scirpus mariqueter-reed, the natural vegetation are mainly the shrubs of Salix matsudana Koidz and Tamarix chinensi. There is a few herb communities. The main driving vegetation for silt-forming are Scirpus mariqueter and reed. There is no effective wave-provention forest belt, and the bottomland environment need to be protected by artificial promotion.
     The main natural vegetation in Dainshan Island include MalIotus japonicus, Cyclobalanopsis glauca (Thunb.) Oerst-Stellaria media (L.) Cyr.- Dryopteris spp and Persea thunbergii, Cyclobalanopsis glauca (Thunb.) Oerst.- Stellaria media (L.) Cyr.-Dryopteris spp. They are on succession for regional forest community with the species in Fagaceae as the dominance. Due to the weak natural basis on the sea island, it is necessary to accelerate the natural succession process with artificial method.
     The remaining stand type is few on the coastal area of Hangzhou Bay with low survival rate and serious diseases and insect pests. The investigation for the protection forest with different tree species and type as well as poplar protection forest with different age Showed that the poplar grows the fastest, followed by Metasequoia glyptostroboides and Robinia pseudoacacia in pure forest. The undergrowth biodiversity in Robinia pseudoacacia forest is high. The structure, volume, wind-shield and disease and pest attack of mixed forest are better than those of pure forest. The remaining rate of poplar decreases year by year, with the wind-shield effect weakening. With the human disturbance, it is difficult for the poplar protection forest to form multiple-layer structure. It is necessary to improve the forest with artificial measurement, increase the biodiverty and form stable multiple layer structure.
     2. The comprehensive evaluation and selection of salt-resistant trees on Coastal Shelter-forest of Hangzhou Bay
     By means of establishment of comprehensive evaluation index, including tree-growth, tree-resistance capacity and sight-view etc., method by Analytical Hierarchy Process and factor weight, 54 tree species in Cixi county, Hangzhou Bay and 32 tree species which were under water-salt stress experiment in Fengxian county, Shanghai, the pro-tection forest and sight-view forest were evaluated as follows: the 54 tree species under salt stress of 0.4% content in Cixi could be divided into four categories, 11 tree specie were excellent, 13 tree species were good, 20 tree species were suitable and 10 tree specie were not suitable. Based on the comprehensive evaluation result, the following 15 tree species, which were recommended as arbor tree of protection forest, were Casuarina equisetifolia, Salix matsudana Koidz, Taxodium distichum×T.mucronatu, Quercus virginiana, Gleditsia triacanthos, Sophrajaponica L., Cladrastis platycarpa, Pistacia chinensis Bunge, Fraxinus pennsylvanica, Ligustrum lucidum, Taxodium mucronatum, Acacia dealbara Link, Sapium sebiferum, Callistemon rigidus R.Br, Koelreuteria paniculata. The following 4 trees species which were recommended as shrub tree of protection forest, were Nerium indicum Mill., Viburnum odoratissimum, Pittosporum tobira (Thunb.) Ait., Hibiscus hamabo. There was no significant difference among these tree species for sight-view, except the selection sequence. The 32 tree species in FenXian county were divided into four categories, 3 tree specie were excellent, 5 tree species were good, 6 tree species were no bad and 18 tree specie were not suitable. Based on the comprehensive evaluation result,, the following 5 tree species which were recommended as arbor tree of water-salt resistant forest, Pistacia chinensis Bunge, Sapium sebiferum, Gleditsia triacanthos, Platycladus orientalis (L.) Franco., Ailanthus altissima Swingle v. and two shrub trees, which were Elaeagnus pungens Thunb, and Hibiscus hamabo, but due to short introduction period, further observation was suggested.
     3. Growth and Physiology reaction of 6 tree species under salt stress
     It was found that growth was inhibited apparently in all species. Permeability of cell membrane, Proline content, SOD activity, soluble protein and Na+ content increased under the stress of NaCl in most species. They were obviously elevated with higher Na+ concentration, but not with lower Na+ concentration. However, there were differences among the species in response time. Through PRLNCIPAL Component analysis, factors such as height growth rate, Proline content, SOD activity, index of salt harm, biomass, relative conductivity could be used for selection of tree species under salt stress. Based on Analysis of growth rate and physiology indexes, tree species were arranged in ordering according to their tolerance as Salix matsudana Koidz., Quercus virginiana, Fraxinus pennsylvanica, Gleditsia triacanthos, Myrica cerifera and Platanus occidenntalis.
     4. Growth and physiology reaction of Fraxinuspennsylvanica clones under salt stress
     The tolerance of Eight clones of Fraxinus pennsylvanica were analyzed using solution curare system. It was showed that there were obvious difference among the clones in Biomass, chlorophylls content, electrolyte leakage, Proline content, MDA content, Na+ content and root characters. However, no apparent differences were observed in net photosynthetic rate, stomatal conductance and SOD activity. Growth and photosynthesis decreased significantly under higher salinity. In contrary, permeability of cell membrane, Proline content, MDA content and Na+ content increased with salt treatment, the most variances appeared among Fraxinus pennsylvanica clones when the concentration NaC1 increased to 4g/L~6g/L. As the result, it was sutible to select clones in the salinity zone The best model was exponent equation for biomass decrease with salinity. 8 clones could be classified into 4 families by Cluster analysis, indexes of net growth, permeability of cell membrane, chlorophylls content and Na+ content could be used for selection. 4-20 and 1-17 were the best clones.
     5. The changes of root and stem in Fraxinus pennsylvanica under salt stress on microscopic structural and untrastruetural
     In the research on microscopic structural and untrastructural changes of root and stem in Fraxinus pennsylvanica under 6%Nacl stress, the cambium activity and secondary tissues differentiation were observed by light microscopy (LM) and transmission electron microscopy (TEM), respectively. The present results indicated the remarkable impact of salt stress on cambium cell activity and secondary xylem cell differentiation of both root and stem. In comparison with control samples, cambium cells of salt treated materials appeared low activity without any new differentiating phloem and xylem cells under LM. In the samples under salt stress, TEM observations shown the large central vacuole in active cambial cells divided into smaller ones and apparent plasmolysis. Protoplast of fusiform cell formed into strip membrane structure with slight degeneration. The fine structure of cell organelles appeared rough and unclear, and even disaggregating.
引文
[1] 任美锷.江苏省海岸带和海涂资源综合调查报告[M].北京:海洋出版社,1986.
    [2] 张纪林等江苏省沿海防护林体系建设和范围探讨[J]江苏林业科技2006 33(1)54-57.
    [3] 全国土壤普查办公室,中国土壤[M],北京:中国农业出版社,1998.
    [4] 浙江省海岸带和海涂资源综合调查办公室.浙江省海岸带和海涂资源综合调查(1980-1986)[M]海洋出版社,1988
    [5] 浙江土壤普查办公室,浙江土壤[M],浙江科学技术出版社,1994.
    [6] 冷福田,赵守仁.江苏省沿海地区盐碱土发生过程及盐碱特性的转化[J] 土壤学报,1957.5(3):195-204.
    [7] 方明等.江苏海涂土壤盐分地球化学特征的初步研究.[J]土壤学报,1992,29(2);208-217.
    [8] 陈邦本,方明.海岸带土壤[M].南京河海大学出版社,1988.
    [9] 陈邦本等.江苏海涂土壤资源的开发利用[J].南京农业大学学报.1986,(1),44-50.
    [10] 徐力刚,杨劲松,张妙仙.土壤水盐运移的简化模型拟盐在水盐动态预报上的应用研究[J].土壤通报,2004.35(1),8-11.
    [11] 厉仁安,章明奎,魏孝孚.浙江省土系概论[M],北京:中国农业出版社,2000,123-134.
    [12] 方明等.江苏省海涂土壤的盐碱生态特征[J].土壤学报.1990.27(3),335-341.
    [13] 李录久.区域土壤盐演化预报模型的初步研究[J].土壤学报,1992.29(3):257-263.
    [14] 袁宇明.治理江苏沿海盐碱土的水利措施[J].土壤.1996.(3),145-150.
    [15] 姚艳平、叶玫.如东沿海滩涂土壤形成与垦区土壤改良.土壤.1996,(6),316-318.
    [16] 高志强.福建滨海盐土壤客土改良效果研究[J].土壤学报,1995.32(1),101-107.
    [17] 林文棣.中国海岸防护林造林地类型分类[J],南京林业大学学报,1988.12(2),13-21.
    [18] 高智慧等.浙江省沿海基岩海岸宜林地立地类型的划分.[J] 防护林科技1997,33(4)7-10.
    [19] 舟山林科所.舟山群岛野生观赏资源调查研究及其开发利用(成果鉴定)2005.11.
    [20] 宗世贤等江苏海岸带泊海盐土植被和沙土植被生物量和能量研究[J].植物资源与环境,19921(2)25-30.
    [21] 宗世贤等.江苏省海滩植被演替的研究[J]植物资源与环境,1991 1(1)13-17.
    [22] 冯志坚、薛春泉广东省珍稀濒危植物和国家重点保护野生植物[J] 华南农业大学学报200223(3)24-27
    [23] 施得法、郭亮.台州列岛植物区系的研究[J] 浙江林学院学报.1996 13(1)48-52
    [24] 吴德邻、邢福武.南海种子植物区系的研究.热带亚热带植物学报19964(1) 1-22
    [25] 陈征海、孙海平.浙江海岛乡土树种资源调查研究[J]浙江林业科技.1995,15(6),-1-7
    [26] 林鹏,张宜辉,杨志伟.厦门海岸红树林的保护与生态恢复[J]厦门大学学报:自然科学 版.2005,44(B06).1-6.
    [27] 林鹏.红树林[M].北京:海洋出版社,1984.
    [28] 杜群,陈征海等.浙江省红树林资源调查及其发展规划[J].林业调查规划2004 29(3)9-12
    [29] 陈征海等浙江海岛盐生植被研究(I)植被的基本特征生态学杂志[J],1996,15(1)4-10.
    [30] 宋兆民,孟平.沿海防护林的发展与研究[J].世界林业研究,1993(增刊):2-5.
    [31] 仲崇禄、张勇、黄桂华等.华南沿海沙地防护树种木马黄的研究进展.[M].全国沿海防护林学术研讨会论文集.2006.83-89
    [32] 仲崇禄,木麻黄遗传变异规律的研究(博士论文)[D].广州.中国林科院.2000
    [33] 梁坤南, 白嘉雨,尾叶桉种源一家系生长与抗风性选择.林业科学研究2003,16(6):700~707
    [34] 郗金标,何源,许景伟,等.论山东沿海防护林体系建设的树种选择.防护林科技.2004(3).-17-20
    [35] 廖宝文,郑德璋.红树植物秋茄造林技术的研究.林业科学研究[J].1996,9(6).-586-592.
    [36] William G.et al.nvasion of the Subantarctic Auckland Islands,New Zealand,by the Asterad Tree Olearia lyallii and its Interaction with a Resident Myrtaceous Tree Metrosideros umbellata.[J]Journal ofBiogeography,1991,18 (5):493~508.
    [37] 张纪林.海岸带复合农林业系统构建原理及可持续经营技术.[M].全国沿海防护林学术研讨会论文集.2006.83-89 13
    [38] 万福绪,韩玉洁.苏北沿海防护林优化模式研究[J]北京林业大学学报.2004,26(2).-31-36
    [39] 王述孔,等.宝力地区农田防护林气象效应分析.[M]东北西部内蒙古东部防护林研究(第一集).向开馥主编,东北林业大学出版社,1989
    [40] 康力新,等.小网络农田防护林系统结构与效益分析:林农复合经营研究与实践[M].南京科技出版社.1994.73-85
    [41] 何小广、谢相林、葛世东.浙东南沿海防护林效益研究[J].防护林科技.2003(3).-8-9
    [42] 胡海波、康立新.国外沿海防护林生态及其效益研究进展[J].世界林业研究1998.2 20-23
    [43] 张金池.水土保持及防护林学.[M]北京,中国林业出版牡,1996
    [44] 胡海波,梁珍.海泥质海岸防护林改善土壤理化性能的研究[J].南京林业大学学报:自然科学版.1994,18(3).-13-18
    [45] 林武星、叶功富.对木麻黄防护林不同造林密度综合评价研究[J].防护林科技.2004(3).-1-3
    [46] 廖宝文,郑德璋.红树植物秋茄造林技术的研究[J].林业科学研究.1996,9(6).-586-592.
    [47] Tanji Kenneth K.Agricultural Salinity Assessment and Management[M].New York:American Society of Civil Engineers,1990.
    [48] Comey H J,Sasse J M,Ades P K.Assessment of salt tolerance in eucalypts using chlorophyIIfluorescence attributes[J].New Forests,2003.26(3):233—246.
    [49] 李树华,许兴,惠红霞.等.不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应[J].麦类156 作物学报,2000,20(4):63---67.
    [50] 韩希忠,赵保江.黄河三角洲耐盐园林树种的选择[J].中国林业,2002,10(A)40-42.
    [51] 董宝娣,刘小京,董文琦,等.近滨海区鲁梅克斯K—1杂交酸模的引种及耐盐性研究[J].干旱地区农业研究,2000,18(4):1201 26.
    [52] 张智,居住环境质量评价方法和管理系统研究.重庆大学博士论文[D]2003.
    [53] 王宝笙现代统计指标体系[M]上海社会科学院出版社,1989
    [54] Tanji Kenneth K.Agricultural Salinity Assessment and Management[M].New York:AmericanSociety of Civil Engineers,1990.
    [55] 苏为华.统计指标理论与方法研究[M]中国物价出版社1998.
    [56] 许树柏.层次分析法原理[M].天津:天津大学出版社,1988.51~59.
    [57] 左伟,周慧珍,王桥,区域生态安全评价指标体系选取的概念框架研究[J].土壤,2003,(1):2-7
    [58] Saaty T L.The Analytic Hierarchy Process[M].New York,Megraw—Hill Inc,1980.3—7
    [59] 林齐宁.决策分析[M].北京:北京邮电大学出版社,2003.
    [60] 姜启源.1987.数学模型[M].北京:高等教育出版社,132—148.
    [61] Belford R K,Klepper B。Rickman R W.1987.Studies of intact root systems of field grownwinter wheat.II.Root and shoot developmental patterns as related to nitrogen fertilizer.J Agron,790.310--319.
    [62] 宋如华,齐实,孙保平,等.地理信息系统支持下的区域土地资源适宜性评价[J].北京林业大学学报,1996.18(4):57—63.
    [63] 张晓萍,杨勤科,李锐.流域“健康”诊断指标—一种生态环境评价的新方法[J].水土保持通报,1998.18(4):57—62.
    [64] 龙明秀.邢志和.AHP模型在牧草饲用价值评定中的应用[J].西北农林科技人学学报:自然科学版,2003.31(6):127—130.
    [65] 朱孔采,马成霞.1991.生态农业综合效益评价方法的研究[J].生态学杂志,10(6):67—70.
    [66] 陈高,代力民,范竹华,等.森林生态系统健康及其评估监测[J].应用生态学报,2002.13(5):605—610.
    [67] 赵忠,李鹏,王乃江.黄土高原造林地生产力评价方法及其应用的研究[J].曲北农林科技大学学报:自然科学版,2003.31(6):19—21.
    [68] 金小麒.乌江流域主要林分类型的生态经济功能的研究[J].水土保持学报,2000.14(4):64—68.
    [69] 李世尔,瞿洪波.世界林业生态工程对比研究.[J]生态学报,2002.22(11):1976—1982.
    [70] 干义文.城市森林理论与指标体系的研究[M].北京:中国林业出版社,2002,9—30.
    [71] 彭镇华,王成.论城市森林的评价指标[J].中国城市林业,2003,1(3):4—9.
    [72] 刘录祥,孙其信.灰色系统理论应用于作物新品种综合评估初探[J].中国农业科学.1989,22(3).22-24.
    [73] 解迪,宋力等.沈阳城市绿化树种综合评价指标体系研究[J].沈阳农业大学学报(社会科学版),2006 3,8(1):58---60.
    [74] 张春锋,殷鸣放等.灰色关联度分析在树种综合评价中的应用[J].西北林学院学报2007,22(1):70-73.
    [75] 刘振虎,卢欣石,葛军.利用层次分析法综合评价9个草坪品种的耐盐性[J]草地学报2002 10(3)208-21I.
    [76] 何兴元等.应用AHP构建城市森林树种综合评价指标体系[J]辽宁林业科技2006,3,1-3.
    [77] 杨斌等运用层次分析法优选临夏北塬农田防护林树种[J]林业科学2006,42(6)51-54.
    [78] 许祥明,叶和春,李国风,植物抗盐机理的研究进展[J].应用与环境生物学报2000.6(4):379-387.
    [79] 张秀云.草坪草耐盐性研究进展草原与草坪[J].2000,89:8-11.
    [80] 马焕成.蒋东明.木本植物抗盐性研究进展[J].西南林学院学报,1998,18(1):52-59.
    [81] 刘晓麒,曹恩华.脂质过氧化引起的DNA损伤研究进展.生物化学与生物物理进展[J],1994,21(3):218-222.
    [82] 赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14(增刊):25-30.
    [83] 陈洁,林栖风.植物耐盐生理及耐盐机理研究进展[J].海南大学学报2003,2土(2):177-182.
    [84] 李艳华,杨敏生,王海英等.树木抗盐生理研究进展[J].河北林果研究,2000,15(2):189-196.
    [85] 林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    [86] Munns R et al.Encyclopedia of Plant Physiology.Springer-Verlag,Berlin,1983,59-63.
    [87] Storey.R.and R.R.Walker,Citrus and salinity[J].Scientia Hort.1999,78:66 39-81.
    [88] 郑国琦,马宏玮,许兴盐胁迫下宁夏枸杞盐分与甜菜碱累积及其与光合作用的关系.[J]中国生态农业学报[J].2003,11(3):51-54.
    [89] 阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报.2002,11(2):45-47
    [90] Tattini,M,P.Bertoni,and S.Caselli,1992,Genotypic responses of olive plant to sodiumchloride.[J].Plant.Nutr.15:1465-1485.
    [91] Story,E.,Salt tolerance relations and the effects of root medium on the response of citrus tosalinity.Austral.[J] Plant Physiol.1995,22:114-117.
    [92] Story,E.,Salt tolerance relations and the effects of root medium on the response of citrus tosalinity.Austral.J.Plant Physiol.1995,22:101-114.
    [93] Yeo,A.R,K.S.Lee,P.Izard,P.J.Bourssier,and J.I Flowers,Short and long-term effects of salinity on leaf growth in rice (Oryze sativa L.).J.Exp.Bot.1991,42:881--889.
    [94] Yadave-RB,OM-Prokash,Prakash-O.Effect of soil salinity and sodicity on growths and mineral 158 nutrition of some poplur clones [J] Indian Forester, 1995, 121(4):283~288.
    [95] 张川红,沈应柏,尹伟伦.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,38(2):27-31
    [96] Bongi,G.and F.Loreto,Gas-exchange proper types of salt stressed olive(olea europaea L.)leaves.[J]Plant Physiol.1989,90:533--545.
    [97] Bemstein,L.Effects of salinity on plant growth.[J] Annu.Rev.Phytopathol.1975,295-312.
    [98] 戴伟民,赵艳,蔡润,等.番茄耐盐愈伤组织的筛选及显微结构观察.上海交通大学学报(农业科学版)[J],2001 19(2):112-116.
    [99] 赵檀方,闫先喜,胡延吉.盐胁迫对大麦种子膨胀吸收萌发及根尖细胞结构的影响[J].大麦科学.1994,(4):17—20.
    [100] Mitsuya S.,Takeoka Y,and Miyake H.,Effects of sodium chloride on foliar ultrastructure of sweet potato plantlets grown under light and dark conditions in vitro [J].Plant Physiol,2000,157: 661-667.
    [101] 柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3)-229-233.
    [102] Bruns S.,and Hecht-Buchholz C.,Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages,[J] Potato Res,1990,33:33-41 151-154.
    [103] Khavarinejad R.A.,and Mostofi Y.,Effects of NaCl on photosynthetic pigments,saccharides,and chloroplast ultra-structure in leaves of tomato cultivars,[J]Photo synthetica,1998,35:151-154.
    [104] Parida A.K.,Das A.B.,and Mohanty P.,Defense potentials toNaCl in a mangrove,Bruguiera parviflora:differential changes of is forms of some antioxidative enzymes,J.Plant PhysioL,2004,161:531-542.
    [105] 王业遴,马凯,姜卫兵,等.五种果树耐盐力初报.[J]中国果树,1990,(3):8-12.
    [106] 陈竹生,聂华堂,计玉,等.柑橘种质的耐盐性鉴定[J].园艺学报,1992,19(4):289-295..
    [107] 赵可夫.植物抗盐生理[M],北京:中国科学技术出版社,1993:21-293.
    [108] Maynard G Hole,David M.The physiology of plant under stress (M).New York:John Wiley&son,1987,89-119.
    [109] Moran JF,Becana M,Iturkeonnaetxei,et.al.Drought induces oxide active stress in pea plants[J],Plante,1994,94:346-352.
    [110] 吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱氧化[J].中国科学(C辑)1996,26(1):26-30.
    [111] Davies W J,Zhang J.Root signal and the regulation of growth and development of plants in drying soil.Annu Rev Plant Physiol [J].Plant Mol Boil,1991,42:55-76.
    [112] Bush D S.Calcium regulation in plant cells and its role in signaling.Anna Rev Plant Physiol Plant Mal Boil,1995.
    [113] 廖祥儒,贺普超,万怡震,等.盐胁迫对葡萄离体新梢叶片的伤害作用[J].果树科学,1996,13(4):211-214.
    [114] 张川红,尹伟伦,沈漫.盐胁迫对国槐和中林46杨幼苗膜类脂的影响[J].北京林业大学学报,2002,24(5):89-95.
    [115] 杨传平,焦喜才,刘文样,等.树木的细胞膜透性与抗盐性[J].东北林业大学学报,1997,25(1):1-3.
    [116] Mckay H.M,Mason.W.L.Physiologically indicators of tolerance to cold storage in Sitka spruce and Douglas--fir seedings[J].Canadian Journal Forest Research,1991(21):890-901.
    [117] 陈贵,胡文玉,谢甫娣,等.提取植物体内MDA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,1991,27(1):44-46.
    [118] 龚明.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841—846.
    [119] Munns R,Termaat A.Whole plant responses to salinity.[J] Plant Physiol,1986,13:143-160.
    [120] KurbanH.,SaneokaH.,NehiraK.,AdillaR.,PremachandraG.S.,andFujitaK.,Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi,[J]Soil Sci.Plant Nutr.,1999,45: 851-862.
    [121] Agastian P.,Kingsley S.J.,and Vivekanandan M.,2000,Effect of salinity on photosynthesis and biochemical characteristics inmulberry genotypes,[J] Photosynthetica,38:287-290.
    [122] 吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版),2002,26(3):19-22.
    [123] 王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J]南京农业大学学报,2002,25(4):11-14.
    [124] Khavarinejad R.A,and Chaparzadeh N.The effects of NaC1 and CaCl_2 on photosynthesis and growth of alfalfa plants,[J] Photosynthetica,1998,35: 461-466.
    [125] 朱新广,张其德.NaCl胁迫对PSII光能利用和耗散的影响.[J]生物物理学报.1999,15(4).787-791.
    [126] 马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报,1998,18(1):33-41
    [127] 廖祥儒,贺普超,朱新立.盐溃对葡萄光合色素含量的影响[J].园艺学报,1996,23(3):300-302.
    [128] 肖雯,李恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J]西北植物学报,2000,20(5);R1R—R25
    [129] Corney H J,Sasse J M,Ades P K.Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes[J].New Forests,2003.26(3):233—246.
    [130] 赵可夫,卢元芳,张宝泽等,盐分和水分对盐生和非盐生植物细胞膜脂过氧化的效应[J]植160 物学报,1993,35:519-525.
    [131] 刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:222-290.
    [132] 杜秀敏。殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[[J]生物工程学报,2001,17:121—125.
    [133] Sreenivasulu N,Grimm B.,Wobus U,and Weschke W,Differential response ofantioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet,[J]Phsiol.Plant.,2000,109:435-442.
    [134] 金兰,罗桂花.盐胁迫对紫花苜蓿SOD,丙二醛及SOD同工酶的影响.[J]黑龙江畜牧兽医,2004,5:15-16.
    [135] 柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3)-229-233.
    [136] 刘宛,胡文玉,郝建军,陈贵.NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系,[J]植物生理学通讯,1997,33(6):423-425].
    [137] 刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.222-285,369-371.
    [138] Hare PD,Cress WA.Metabolic implications of stress—induced proline accumulation in plants[J].Plant Growth Regulation,1997,21:79-102.
    [139] 汤章城.逆境条件下植物脯氨酸累积及其可能的意义[J].植物生理学通讯,1984(1):15-21.
    [140] Hanson AD,Nelsen CE,Everson EH.Evalution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars.[J] Crop Sci,1977,17:720-734.
    [141] Delauney AJ,Verma DPS.Proline biosynthesis and osmoregulation in plants[J].Plant,1993,4:215—223.
    [142] 蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报,1997,23(4):347-352.
    [143] 陈洁.水稻幼苗耐盐性的定量鉴定及耐盐生理生化研究.华南热带农业大学2003年硕士论文.
    [144] 姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应[J].江苏农业学报,1992,8(4):13-17.
    [145] 夏阳,孙明高,李国雷盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响[J].山东农业大学学报(自然科学版),2005,36(1):30-34.
    [146] Liu J,Zhu JK.Proline accumulation and salt—stress,induced gene expression in salt hypersensitive mutant of Arabidopsis[J].Plant Physiol,1997,114(2):591—596.
    [147] 刘家尧,衣艳君,赵可夫,等.甜菜碱的测定技术及其在植物抗盐生理中的作用[J].曲阜师范大学学报,1994,20(2);66—69.
    [148] 张士功,高吉寅,宋景芝.甜菜碱对Nacl胁迫下小麦细胞保护酶活性的影响[J].值物学通报,1999,16(4):429-432.
    [149] 梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(1).1-8.
    [150] Pollard A,wyn jones RG.Enzyme activities in concentrated solutions of glycine betaine and other solutes[J].Planta,1979,144:291—298.
    [151] 陈亚华,沈振国,刘友良,等.NaCl胁迫下棉花幼苗的离子平衡[J]棉花学报,2001,13(4):225-229.
    [152] 陈少良,李金克,尹伟伦,等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(5)84-88.
    [153] 陈沁,刘友良,陈亚华.盐胁迫下人麦叶片的活性氰伤害与液泡膜H+-ATPase活性的关系[J].,南京农业大学学报,1998,21(3):21-25.
    [154] 阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报.2002,11(2):45-47.
    [155] Gadallah M.A.A.Effects ofproline and glycinebetaine on Vicia faba response to salt stress,[J] Biol.Plant,1999,42:249-257.
    [156] Fusuo Zhang.Environ mental Stress and Plant Breeding〔M〕.Beijing:Agriculture Press,1993:330-335.
    [157] 马挺军, 李茁.胡杨液泡膜H+-ATPase 的部分纯化及其耐盐性研究. [J]西北植物学报.2004,24(7). 1246-1249.
    [158] Kurban H.,Saneoka H.,NehiraK.,AdillaR.,PremachandraG.S.,andFujitaK.,Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudo alhagi [J].Soil Sci. Plant Nutr.1999,45:851-862.
    [159] Cheeseman J M.Mechanisms of salinity tolerance in plants[J].Plant Physiology,1988,87:547-550.
    [160] Volkrnar KM,Hu Y,Steppuhn H.Physiological responses of Plants to salinity:a review[J].Can J Plant Science,1998,78:19-27
    [161] MicheletB,BoutryM.The plasma membrane H+-ATPase.A highly regulated enzyme with multiple physiological functions [J].Plant Physiology,1995,108:1-6.
    [162] Allakhverdiev S l,Nishiyama Y,Suzuki iet al.Genetic engineering of the unsaturation of fatty acids in membrane lip ids alters the tolerance of Synechocystis to salt stress.[J] PNAS.1999,96(10):5862-5867.
    [163] 孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验[J]作物学报.2001,27(6):794—801.
    [164] 马翠兰等.果树对盐胁迫的反应及耐盐性鉴定的研究进展.[J]福建农业大学学报,2000,29(2):161-169.
    [165] 李磊等.大麦苗期耐盐性鉴定指标的研究,[J]莱阳农学院学报,1997,15(4):253-257.
    [166] 张丽娟等.不同品种羊草耐盐性模糊综合评价[J].哲里小畜牧学院学报,2001,10(1):1-5.
    [167] 赵可夫,范海.盐胁迫下真盐生植物与泌盐植物的渗透调节物质及其贡献的比较研究[J].应用与环境生物学报,2000,6(2):99-105.
    [168] 董哓霞等.杂交酸模耐盐性鉴定的生埋指标筛选[J]山东农业科学1999,6:22-24.
    [169] Allen R D.Dissection of oxidative stress tolerance using transgenic plants [J].Plant Physiol,162 1993,107:1049-1054.
    [170] 曹福亮.中国南方主要造林树种耐盐耐旱机理研究[M].北京:中国林业出版社,1993.
    [17l] 苑增武,张孝民,毛齐来,等.大庆地区主要造林树种耐盐碱能力评价[J].防护林科技,2000.(1):15—16.
    [172] 叶功富,邱进清.小麻黄国际种源苗期生长及抗盐性试验[J].福建林学院学报.1995,15(4).-301-306.
    [173] 张术忠,李悦.剌槐家系耐盐性状的变异、相关分析及选择[J].北京林业大学学报.2002,24(2).-12-17
    [174] 曹福亮,方升佐.杨树新无性系耐盐水平的综合评定[J].江苏林业科技.1994,21(3).-1-6.
    [175] 季永华.海滨湿地杨树、柳树新无性系苗期耐盐性研究[J]江苏林业科技.2005,32(4).-1-4.
    [176] Bell D T,et al Comparisons of selected and cloned plantlets against seedlings for rehabilitation of saline and waterlogged discharge zones in.Australian agricultural catch mints.Aust.For.1994,57(2):69-75.
    [177] 汪贵斌,曹福亮、游庆方等.盐胁迫对4树种叶片中K和Na的影响及耐盐能力的评价[J].植物资源与环境学报,2001,10(1):30-34.
    [178] Grieve G M,Guzy M R,Poss J A et al.Screening Eucalyptus clone for salt tolerance.[J] Hort science,1999,34(5):867-870.
    [179] 张立饮,郑勇平,吴纪良,等.黑杨派新无性系水培苗对盐胁迫反应的研究[J].浙江林学院学报,2000,17(2):121-125.
    [180] Qin G H,Jiang Y Z,Qiao Y L.Resistance to adversity of new poplar clones.Forestry Studies in China,2003,5(4):18-21.
    [181] Subbarao Ggg V,et al.Strategies and scope improving salinity tolerance in crop plants.[M] New York,Basel,Hong Kong,1993.
    [182] 王仑山,王鸣刚,王亚馥.利用组织和细胞培养筛选怍物耐盐突变体的研究[J].植物学通报.1996.15(1).7-12.
    [183] 李周岐.高等值物休细胞突变体离体筛选技术及其在林小抗盐育种的应用.[J]陕两林业科技,1994,4:50 55
    [184] 李玲,韩凡.杨树耐盐突变体筛选的研究[J].林业科学,1990,26(4):359-362.
    [185] 李周岐.徐养福,郭军战.河北杨体细胞抗盐突变体抗性稳定性研究[J]西北林学院学报,1996,11(4):94-97.
    [186] 张绮纹,张望东.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导.[J]林业科学研究,1995,8(4):395-401.
    [187] 陈受宜等.水稻抗盐突变体的RFLP分忻[J]植物学报,1991,33(8):569~573
    [188] 郭岩等.应用细胞工程获得受主效应基因控制的水稻耐盐突变系[J]遗传学报.1997,24(2):122~126
    [189] Michell C T.Expression of a bacterial mtI-D gene in transgenic tobacco leads to production and accumulation ofmannitol.Proc.Natl.Acad Sci-USA,1992,2600-2604.
    [190] 刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基冈植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    [191] 刘凤华,孙仲序,崔德才,等.细菌mtl-D基冈的克隆及在转基因八里庄杨中的表达.[J]遗传学报,2000,27(5):428-433.
    [192] 浙江省环杭州湾森林生态圈建设规划.[M]国家林业调查舰划院,2005.
    [193] 张志良,瞿伟普.植物生理学实验指导[M].高等教育出版社.
    [194] 赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社,1998:61-170.
    [195] 上海植物生理学会植物生理学实验于册[M].上海:上海科学技术出版社,1985.67-70.
    [196] 唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社.2002,238-241.
    [197] 唐守正编著.多元统计分析方法.[M]北京:中国林业出版社.1984,84-89.
    [198] 李根有,陈征海,浙江省湿地植被分类系统及主要植被类型与分布特点.[J]浙江林学院学报2002,19(4):356~362.
    [199] 于明坚,青冈常绿阔叶林群落动态研究.[J]林业科学,1999,35(6):498-503
    [200] 张远彬,王开运,胡庭兴,等.扁刺栲-木荷群系次生林林下物种多样性分析.[J]应用与环境生物学报,2003,9(5):465-470.
    [201] 蒋仃绪,世界森林生态系统结构与功能的研究综述.[J]林业科学研究.1995,8(3),314-321.
    [202] 张福锁.环境胁迫与植物育种[M].北京:农业出版社,1993.
    [203] Filter A.Environmental physiology of plant.London:Academic Press,1987 112-113.
    [204] Levitt J.Responses of plants to environmental stress (2ndEd.).New york:Academic Press,1980,100-150.
    [205] Cramer G R,Epstein E and Lauchli A.Effects of sodium,potassium salt-stressed barely I.Growth analysis[J]. PhysioL Plant,1990,80:93-97.
    [206] Passioura J B.Root signals control leaf expansion in wheat seedlings growing in drying soil.Australian JournalofPlantPhysiology,1988,15:687—693.
    [207] Gregory P J.Root,rhizosphere and soil:the route to a batter understanding of soil science?[J]Europe an Journal of Soil Science,2005.56:1—11.
    [208] 赵可夫,范海.盐生植物及其对盐溃生境的适应生理.[J]北京:科学出版社,2005.72.
    [209] 徐炳成,山仑,黄瑾,等.柳枝稷和白羊草苗期水分利用与恨冠比的比较.[J]草业学报,2003,12(4):73—77.
    [210] Munns R.Physiological processes limitation plant growth in saline soils:some dogmas and hypotheses.[J] Plant Cell and Environment,1993,16:15-24.
    [211] Rita G.Borges,William R.Chaney.Root Temperature Affects Mycorrhizal Efficacy in Fraxinus pennsylvanicaMarsh.[J]New Phytologist,Vol.112,No.3(Jul.,1989),pp.411-417.
    [212] 蒋高明.植物生理生态学.[M]北京:高等教育出版社,2004.203.
    [213] 衣艳科,刘家尧,马宗琪.等,NaCl对盐生植物和非盐生植物生理效应的比较.[J]曲阜师范大学学报(自然科学版),1995,21(1):69—73.
    [214] ChapinFS,RuessRW.Therootsofthematter.[J]Nature,2001.411:749752
    [215] 曾莹,盖钧镒,吕彗能.作物根系形态与非生物胁迫耐性关系的研究进展[J].植物遗传资源学报,2003,4(3):265—269.
    [216] 贺金生,王政权,王精云.全球变化下的地下生态学:问题与展望.科学通报,[J]2004.49(13):1226--1233.
    [217] CopleyJ.Ecology goesunderground.[J]Nature.2000,406:452—454.
    (218] 孙存华,白嵩,白宝璋等.水分胁迫对小麦幼苗根系生长和生理状态的影响.[J]吉林农业大学学报,2003,25(5):485-489.
    [219] Vogt K A,Publicover D A,Bloomfield Jet al.Belowground responses as indicators of environmental change.[J] Environ.Exp.Bot.,1993,33:189-205.
    [220] 冯立田.赵可夫.叶绿体对盐胁迫的某些生量适应机制[J]植物学通报,1998,15(增刊):62-67.
    [221] 王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1989,(2):12-16.
    [222] 王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J]值物学通报,1997,14(增刊):25-30.
    [223] Li.Ping-Hua.CHEN Min,WANG Bao-Shall.Effect of K+Nutrition on Growth and Activity of Leaf Tonoplast V-H+-ATPaseand V-H+-ATPase of Suaeda salsa Under NaCl Stress.[J] 植物学.报.2002, 44(4): 433—440.
    [224] Mitsch,W J;Rust,WG Tree growth responses to flooding in a bottomland forest in northeastern lllinois.Forest Science [FOR.SCI.].1984.Vol.30,No.2,pp.499-510.
    [225] Steiner.K.C.WILLIAMS M.W.Juvenile performance in a range-wide provenance test of Fraxinus pennsylvanica Marsh...Silvae genetica (Silvae genet.)1988,vol.37,104-111.
    [226] Katuhara M.elt Salt stress induced nuclear and DNA degradation in meristematic cell of barley[J].Plant Cell Physiolo 1996,37:169—173.
    [227] Katuhara M.Apoptosis-like cell death in barley roots under salt stress[J].Plant Cell Physiol1997.38:1091—1093.
    [228] CUI Shi-mao,Wakana TAKASE,Naosuke Nil.Effected of sodium Chkride on root and Leaf Mineral Concentration and root Anatomy in citrus sudachi[J].Journal of Mingcheng University.2002.23(31):23—30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700