PPARγ对骨髓MSC向心肌样细胞分化的影响及调控作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     心肌细胞在出生后就不能再生,对有丝分裂信号的反应是细胞肥大而不是增生。心肌细胞的丧失会导致所在区域心肌收缩功能减退,以致心力衰竭,坏死心肌终而被成纤维细胞形成的疤痕组织所取代。近年来,采用自体细胞和生长因子修复组织的再生医学迅猛发展。有人将培养的心肌细胞移植到损伤区心肌内能够明显改善心功能,并称之为“细胞心肌成形术”(cellular cardiomyoplasty),有可能成为治疗心力衰竭的有效手段。许多作者对胚胎干细胞诱导成心肌细胞进行了大量研究,并取得了显著进展。但是,胚胎干细胞移植仍然存在许多问题,诸如免疫排斥,伦理道德问题等。继胚胎干细胞后,骨髓间充质干细胞(MSC)受到了高度重视。来源于中胚层的MSC,是多能干细胞,在诱导后可以定向分化为成骨细胞、软骨细胞、脂肪细胞、成肌细胞以及肌腱细胞等多种细胞。MSC与心肌细胞同属于中胚层。近期已经有人应用5-氮杂胞苷(5-Aza)成功地将体外培养的MSC诱导成为心肌样细胞。Tomita等将人骨髓MSC植入免疫缺陷鼠心肌后,发现这些细胞可分化成为心肌细胞,且表达心肌细胞特有的desmin,α-actin,β-MHC2。有作者将骨髓MSC注射入心梗边缘部位心肌内,这些移植的MSC分化成为心肌细胞,且受损的心功能得到明显改善。进一步研究表明,MSC经5-Aza诱导后分化为心肌样细胞再行移植受损心肌部位,疗效明显优于未诱导组。目前对于骨髓MSC定向分化为心肌样细胞的研究处于起步阶段,心肌样细胞定向分化率仍然不高,对于心肌分化的调控机制研究甚少。因此,深入研究MSC分化过程中的调控机制对于寻求控制干细胞分化方向的手段,从而提高MSC向心肌样细胞定向分化率,促进细胞心肌成形术的应用有重要意义。
     PPARγ(peroxisome proliferator-activated receptorγ)作为核激素受体超家簇中的成员,是细胞分化重要的调控因子。通过调节其他转录因子的表达,参与调节MSC分化,并在诱导MSC分化不同特异性表型之间起到开关作用。PPARγ在MSC向心肌样细胞分化过程中的作用如何,目前尚无相关报道。
     资料显示,Nkx 2.5、GATA4、MEF-2C等基因是调控心肌细胞分化开始阶段的重
    
    第三军医大学博士学位论文
    要转录因子。本文应用培养小鼠MSC为研究材料,以5一Aza作为诱导剂,叫睬美辛
    作为PPARY的配体,利用表达载体pEGFP一1一PPA助2转染MsC,检测PPA助对细
    胞分化及其对转录因子MEF一ZC、Nkx2.5、GATA4 mRNA表达的影响,旨在探讨PPA助
    对MSC分化为心肌样细胞的影响及其在分化过程中的调控作用。
     方法与结果:
     第一部分:探讨了小鼠MSC的体外分离、纯化、扩增、多向诱导和向心肌样细
    胞定向分化的诱导条件。首先采用密度为1.082留ml的Percou细胞分离液分离小鼠骨
    髓细胞中的单个核细胞,所获细胞应用DME树低糖培养基+l0%胎牛血清进行培养,
    通过及时、反复传代对MSC进行纯化和扩增。平均5一6d在细胞达到80%左右融合时
    进行传代。采用流式细胞仪检测细胞周期。应用不同的诱导方法对细胞进行多向诱导
    分化,使细胞向成骨细胞、成心肌样细胞、成脂肪细胞三个不同的方向分化。诱导成
    心肌样细胞分化时选取了5一Aza3林mol/L、5林mol/L、10林mol/L三种不同浓度。应用四
    环素荧光标记检测钙结节,油红O染色检测脂滴,免疫组织化学检测ThT表达。
     结果:MSC细胞形态保持均一的短梭形。12一14d细胞长成单层。细胞生长曲线:
    第1、Zd细胞数量无明显增加,第3d开始细胞数量明显增加,MSC在第7d达到最
    高峰。第8d开始进入平台期。细胞周期结果显示:MSC中GI期的细胞占91 .74%,
    S+GZ的细胞约占8.26%,表明只有少数细胞进入了活跃增殖期。成骨诱导后,细胞
    出现钙结节。成脂诱导的细胞胞浆内出现大量脂滴。成心肌样细胞诱导中以5-Aza
    3林mol几浓度为最佳,诱导后l月,部分细胞TnT表达阳性。5一Aza以5林mol/L及
    10娜ol/L浓度诱导后虽有肌管样结构出现,但TnT表达始终呈阴性。
     第二部分:应用叫噪美辛作为P队RY的配体作用于MSC以激活PPA助。将细胞
    分为4组:A组用5一Aza3林mol/L诱导细胞分化;B组分别采用叼}噪美辛10一、10一,mol/L
    两种不同浓度作用于MSC,观察细胞生长情况,形态变化;C组联用5一Aza鸿}噪美辛
    作用于MsC;D组为对照组,不诱导。应用油红一O检测脂滴,免疫组织化学检测PPARY
    表达情况。
     结果:叫噪美辛在10一mol几浓度时对细胞有明显的毒性,而10一smol/L时细胞生
    长良好。对照组及单用10一,mol几叫睬美辛作用Msc时,PPA助表达均呈阴性。单用
    叫垛美辛并不能诱导MSC分化。单用5一Aza3卜mol几诱导后的第3d,部分细胞PPARY
    表达阳性。联用6一Aza/叫噪美辛诱导时发现,诱导后第3d几乎所有细胞PPA助表达
    阳性,继续培养后分化为脂肪细胞。
    
    第三军医大学博士学位论文
     第三部分:分题卜重组表达载体pCAG一PPARYZ及pEGFP一Nl。将前者中的
    PPA助2目的片段构建入后者中。采用5’端一粘性末端一3’端平端构建策略对目的基因
    进行亚克隆,构建成pEGFP一Nl一PPA助2表达载体。酶切鉴定与测序鉴定相结合。分
    题2:经鉴定正确的重组质粒用脂质体转染法转染入MSC,应用吼;:并采用休克法进
    行筛选?
Background and Objectives Cardiomyocytes do not regenerate after birth, and they respond to mitotic signals by cell hypertrophy rather than by cell hyperplasia. Loss of cardiomyocytes leads to regional contractile dysfunction, and necrotized cardiomyocytes in infarcted ventricular tissues are progressively replaced by fibroblasts to form scar tissues. The regenerative medicine which repaires damage tissue with autologous cell transplantation has been developed recent years. Studies revealed that transplantation of cultured cardiomyocytes into the damaged myocardium could prevent postinfarction heart failure. This new way which was called cellular cardiomyoplasty has been proposed as a future method for the treatment of heart failure. Many achievements have been gained in the feild of inducing the differentiation of embryonic stem cells into cardiomyocytes. But there are still problems we didn't solved, such as immunologic rejection and ethnics. Recent published reports have revealed that mesenchymal stem cel
    ls (MSCs) from mesoderm are multipotential stem cells. MSCs induced with 5-Aza can differentiate into cardiac-like muscle cells in culture and in vivo in ventricular scar tissue and improve myocardial function. In addition, the cells are easy to be collected and cultured, and have the potential ability to expansion. Unfortunately, only about 30% MSCs induced with 5-Aza can differentiate into cardiomyocytes, and little is known about the molecular mechanism.
    PPARs (peroxisome proliferator activated receptor) are a family of ligand-activated nuclear hormone receptors which include three sub-types, PPARa, PPARP and PPARr. It was reported that activation of PPARy is involved in cell proliferation, differentiation and apoptosis. But its certain role and regular mechanism in the differentiation of MSCs into cardiomyocytes is to be determined. The current study is initiated to investigate the regulate mechanism of PPARr and its ligand indomethacin in the differentiation of mouse MSCs into cardiomyocytes in vitro.
    Materials and Methods We examined the isolation, purification, expansion of mouse MSCs and capacity to differentiate into cardiomyocytes in vitro. First, bone marrow
    
    
    
    mononuclear cells were harvested from male Balb/c mouses femur and tibia with Percoll separating medium at the density of 1.082g/mL. Then, cells were cultured with DMEM/ Low glucose medium and 10% foetus cattle blood serum. Mesenchymal stem cells were obtained by removing the non-adherent cells 24h after seeding and purified and expanded through passaging in time. Primary cells were passgaed at a ratio of one to three plates when they reached 70-80% confluence. After 2-3 passages, cells were induced to differentiate into three different directions, such as osteoblasts, lipoblast and cardiomyogenesis, with three different inducing methods. Different concentrations of 5-Aza were selected including 3, 5 and 10umol/L. Cell cycles were measured with flow cytometry.
    To examine the effects of PPARy on the differentiation of mouse MSCs into cardiomyocytes, we constructed the mammalian expression plasmid pEGFP-N1-PPARr2 for mouse PPARy2. Indomethacin was choosed as ligand to activate PPARy. Cells were randomly divided into groups as follows: Control group; 5-Aza group (induced with 5-Aza); indomethacin group (induced with indomethacin); 5-Aza/indomethacin group(induced with 5-Aza/indomethacin); PPARr2 transfection group (transfected with expression plasmid pEGFP-N1- PPARr2 and activated with indomethacin). Cells were transfected using the cationic liposome-mediated transfection method and incubated under conditions permissive for differentiation in the presence of indomethacin. Cardiomyogenesis was monitored by immunostaining with an antibody, Troponin T, directed against the troponin. Adipogenesis was measured as lipid droplet by staining with oil red O. Osteogenesis was measured as calcium nod and by fluorescence staining with tetracyn. The changes of PPARy,GATA4, MEF-2C and Nkx2.5 mRNA expression were observed with RT-PCR at the time of lh,3h,5h,1
引文
1. Yoo KJ, Li RK, Weisel RD, et al. Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation. 2000;102(19 suppl 3):Ⅲ204-Ⅲ209
    2. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001; 108:407-414
    3. Mummery CL, Ward D, Van den Brink CE, et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat. 2002;200:233-242
    4. Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91:501-508
    5. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21 st century. TRENDS in Molecular Medicine. 2001; 7:259-264
    6. Wang, JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000;129:999-1006
    7. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701-705
    8. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001 ;98: 10344-10349
    9. Escher P, Wahli W. Peroxisome proliferator-activated receptor: insight into multiple cellular functions. Mutat Res. 2000;448:121-138
    10. Friedenstein AJ, Chailakhyan RK, Gersimov UV, et al. Bone marrow osteogenic stem cells in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987; 20:263-272
    11. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng. 2001; 7:211-228
    12. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human
    
    mesenchymal stem cells. Science. 1999;284:143-147
    13. Bianco P, Robey PG. Marrow stromal stem cells. J Clin Invest. 2000;105: 1663-1668
    14. Pittenger MF, Mosca JD, McIntosh KR, et al. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr. Top Microbiol. Immunol. 2000; 251: 3-11
    15. Rickard DJ, Sullivan TA, Shenker BJ, et al. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev. Biol. 1994; 161:218-228
    16. Ferrari G, Cusella- G, Angelis D, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279:1528-1530
    17. Umezawa A, Maruyama T, Segawa K, et al. Multipotent marrow stromal cell line is able to induce hematopoiesis in vivo. J. Cell. Physiol. 1992; 151:197-205
    18. Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinical uses. Exp Hematol. 2000;28:875-884
    19. Fukuda K. Reprogramming of bone marrow mesenchymal stem cells into cardiomyocytes. C.R. Biologies. 2002; 325:1027-1038
    20. Scriba A, Luciano L, Steiniger B. High-yield purification of rat monocytes by combined density gradient and immunomagnetic separation. J Immuno Meth. 1996;189:203-216
    21.周进明,邹仲敏,郭朝华,等.小鼠骨髓间充质干细胞的生物学特性及分化潜能鉴定.第三军医大学学报,2002;24:58-61
    22. Goodpaster BH, He J, Watkins S, et al. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86:5755-5761
    23. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Re s. 1998; 16:155-162
    24. Phinney DG, Kopen G, Isaacson RL, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell Biochem. 1999; 72:570-585
    25. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenytor cells
    
    enriched by flow cytometry. Blood. 1997;90:3471-3481
    26. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001 ;98:2615-2625
    27. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999; 181:67-73
    28. Jiang Y, Jahagirdar RN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41-49
    29. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forbrain and cerebellum,and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711-10716
    30. Deryugina EI, Muller-Sieburg CE. Stromal cells in long term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol. 1993; 13: 115-150
    31. Conget PA, Allers C, Minguell JJ, et al. Identification of a discrete population of human bone marrow-derived mesenchymal cells exhibiting properties of uncommitted progenitors. J. Hematother. Stem Cell Res. 2001; 10: 749-758
    32. Minguell JJ, Erices A, Conget P, et al. Mesenchymal stem cells. Exp. Biol. Med. (Maywood) 2001; 226:507-520
    33. Wolf NS, Penn PE, Rao D, et al. Intraclonal plasticity for bone, smooth muscle, and adipocyte lineages in bone marrow stroma fibroblastoid cells. Experimental Cell Research. 2003; 290 : 346-357
    34. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697-705
    35. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heat function. Circulation. 1999; 100(19 Suppl): Ⅱ 247-256
    36. Rogers JJ, Young HE, Adkison LR, et al. Differentiation factors induce expression of muscle,fat,cartilage,and bone in a clone of mouse pluripotent mesenchymal stem cells. Am Surg. 1995; 61:231-236
    37. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs. 2001; 25:187-193
    38. Wakitani S, Saito T, Caplan AT. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18:1417-
    
    1422
    39. Hassink RJ, Rivie're AB, Mummery CL, et al. Transplantation of Cells for Cardiac Repair. J Am Coll Cardiol. 2003;41:711-717
    40. Hutcheson KA, Atkins BZ, Hueman MT, et al. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant. 2000;9:359-368
    41. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet. 2001 ;357:279-280
    42. Ghostine S, Carrion C, Souza LC, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002; 106 Suppl 1 :I131-I136
    43. Christman JK, Mendelsohn N, Herzog D, Schneiderman N. Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells (HL-60). Cancer Res. 1983; 43:763-769
    44. Lassar AB, Paterson BM, Weintraub H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell. 1986; 47:649-656
    45.王劲 罗成基.DNA甲基化.国外医学临床生物化学与检验学分册.2002;23:206-220
    46. Robertson KD, Jones PA. DNA methylation: past, present and future directions. Carcinogenesis. 2000; 21:461-467
    47. Holliday R, Ho T. DNA methylation and epigenetic inheritance. Methods. 2002; 27:179-183
    48. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979; 17:771-779
    49. Konieczny SF, Emerson CP. 5-azactyidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell. 1984; 38:791-800
    50. Jones PA. Altering gene expression with 5-azacytidine. Cell. 1985; 40:485-486
    51. Juttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2'-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA. 1994; 91:11797-11801
    
    
    52. Glover AB, Jones BL. Biochemistry of azacytidine: a review. Canoe Treatment Reports. 1987;71:959-962
    53. Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell. 1985;40:417-424
    54. Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003; 75: 775-779
    55. Jin JP, Lin JJ. Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T. J Bio Chem. 1989;264:14471-14477
    56. Xu HE, Lambert MH, Montana VG, et al. Structural determinants of ligand binding selectivity between the peroxisome proliferatoractivated receptors. PNAS. 2001; 98: 13919-13924
    57. Nolte RT, Wisely GB, Westin S, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptorγ. Nature. 1998;395:137-143
    58. Houseknecht KL, Cole BM, Steele PJ. Peroxisome proliferator-activated receptor gamma and its ligands: A review. Domestic Animal Endocrinology. 2002;22:1-23
    59. Bailey BD, Wray J. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins & other Lipid Mediators. 2003;71:1-22
    60. Sakamoto J, Kimura H, Moriyama S, et al. Activation of human peroxisome proliferator- activated receptor (PPAR) subtypes by pioglitazone. Biochemical and Biophysical Research Communications. 2000; 278: 704- 711
    61. Takamura T, Nohara E, Nagai Y, Kobayashi K. Stage-specific effects of a thiazolidinedione on proliferation, differentiation and PPARγ, mRNA expression in 3T3-L1 adipocytes. European Journal of Pharmacology. 2001; 422:23-29
    62. Camp HS, Li O, Wise SC, et al. Differential activation of peroxisome proliferator- activated receptor γ, by troglitazone and rosiglitazone. Diabetes. 2000; 49:539-547
    63. Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. Lancet. 1999; 354:141-148
    64. Lehmann JM, Lenhard JM, Oliver BB, et al. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal
    
    anti-inflammatory drugs. J Bio Chem. 1997; 272:3406-3410
    65. Jaradat MS, Wongsud B, Phornchirasilp S, et al. Activation of peroxisome proliferator- activated receptor isoforms and inhibition of prostaglandin H2 synthases by ibuprofen, naproxen, and indomethacin. Biochemical Pharmacology. 2001; 62: 1587-1595
    66. Knight DM, Chapman AB, Navre M. et al. Requirements for triggering of adipocyte differentiation by glucocorticoids and indomethacin. Mol. Endocrinol. 1987;1:36-43
    67. Berger J, Moiler DE. The mechanisms of action of PPARS. Annu Rev Med. 2002; 339:953-959
    68. Lemberger T, Desvergne B, Wahli W, et al. Peroxisome protiferator- activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu. Rev. Cell Dev. Biol. 1996; 12:335-363
    69. Tontonoz P, Hu E, Spiegelman BM, et al. Stimulation of adipogenesis in fibroblasts by PPARgamma 2, a lipid-activated transcription factor. Cell. 1994; 79:1147-1156
    70. Yeow K, Phillips B, Dani C, et al. Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line. FEBS Letters. 2001; 506:157-162
    71. Mbalaviele G, Amer YA, Meng A, et al. Activation of peroxisome proliferator-activated receptorγ pathway inhibits osteoclast differentiation. J Bio Chem. 2000; 275:14388-14393
    72. Hoist D, Luquet S, Kristiansen K, and Grimaldi PA. Roles of peroxisome proliferator- activated receptors delta and gamma in myoblast transdifferentiation. Experimental Cell Research. 2003; 288:168-176
    73. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc. Natl. Acad. Sci. USA. 1995; 92:9856-9860
    74. Hunter JG, Dell MFV, Rachubinski RA, et al. Peroxisome Proliferator-activated Receptoγ Ligands Differentially Modulate Muscle Cell Differentiation and MyoD Gene Expression via Peroxisome Proliferator-activated Receptor γ-dependent and-independent Pathways. J Bio Chem. 2001; 276:38297-38306
    75. Subbaramaiah K, Lin DT, Hart JC, et al. Peroxisome proliferator-activated receptor γ, ligands suppress the transcriptional activation of cyclooxygenase-2. Evidence for
    
    involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem. 2001; 276: 12440-12448
    76. Negrel R, Gaillard D, Ailhaud G. Prostacyclin as a potent effector of adipose-cell differentiation. Biochem. J. 1989; 257:399-405
    77. Bronstein I, Martin CS, Fortin JJ, et al. Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem. 1996; 42:1542-1546
    78. Seethala R, Menxel R. A fluorescence polarization competition immunoassay for tyrosine kinases. Annal Biochem. 1998;255:257-262
    79. Chalfie M, TuY, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802-805
    80. Heim R, Prasher DC, Tsien RY. Wave length mutations and posttranslational autoxidation of greenfluorescent protein. Proc Natl Acad Sci USA. 1994; 91:12501-12504
    81. Xu W, Liu L, Mooslehner K, et al. Structural organization of the human vesicular mono.amine transporter type-2 gene and promoter analysis using the jelly fish green fluorescent protein as a reporter. Brain Res Mol Brain Res. 1997;45:41-49
    82. Marx JC, Allay JA, Persons DA, et al. High-efficience transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Hum Gene Ther. 1999;10:1163-1173
    83. Persons DA, Allay JA, Allay ER, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 1997;90 : 1777-1786
    84. Rolland AP. From genes to gene medicines: recent advances in nonviral gene delivery. Crit Rev Ther Drug Carrier Syst. 1998; 15:143-198.
    85. Hofland H, Huang L. Inhibition of human ovarian carcinoma cell proliferation by liposome- plasmid DNA complex. Biochem Biophys Res Commun. 1995; 207: 492-496
    86. Ropert C. Liposomes as a gene delivery system. Braz J Med Biol Res. 1999; 32:163-169
    
    
    87. Mueller E, Drori S, Aiyer A, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor γ isoforms. J Bio Chem. 2002; 277: 41925-41930
    88. Hunter JG, Delf MFV, Rachubinski RA, et al. Peroxisome proliferator-activated receptorγ ligands differentially modulate muscle cell differentiation and MyoD gene expression via peroxisome proliferator-activated receptor γ-dependent and-independent pathways. J Bio Chem. 2001; 276:38297-38306
    89. Czernik BL, Moerman EJ, Grant DF, et al. Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143:2376-2384
    90. Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645-9652
    91. Lecka-Czernik B, Gubrij I, Moerman EJ, et al. Inhibition of Osf2/Cbfal expression and terminal osteoblast differentiation by PPARγ2. J Cell Biochem. 1999;74: 357-371
    92. Dennis JE, Charbord P. Origin and differentiation of human and murine stroma. Stem Cells. 2002;20:205-214
    93. Grepin C, Robitaille L, Antakly T, et al. Inhibition of transcription factor GATA-4 expression blocks in vitro cardiac muscle differentiation. Molecular and Cellular Biology. 1995;15:4095-4102
    94. Charron F, Nemer M. GATA transcription factord and cardiac development. Cell & Developmental Biology. 1999; 10:85-91
    95. Herzig TC, Jobe SM, Aoki H et al. Angiotensin Ⅱ typela receptor during cardiac hypertrophy and is required for normal postnatal gene expression in the heart: AP1 and GATA-4 participate in the growth of the myocardium. Curr Biol. 1999;9: 1203-1206
    96. Moore ML, Wang G-L, Belaguli NS et al. GATA-4 and serum response factor regulate transcription of the muscle-specific carnitin palmitoyltransferase Ⅰ β in rat heart. J Biol Chem. 2001;276:1026-1033
    97. Evans SM. Vertebrate tinman homologues and cardiac differentiation. Cell
    
    &Developmental biology. 1999; 10:73-83
    98. Morin S, Charron F, Robitaille L et al. GATA-dependent recruitment of MEF1 proteins to target promoters. EMBO J. 2000; 19:2046-2055
    99. Poizat C, Sartorelli V, Chung G, et al Proteasome-Mediated Degradation of the Coactivator p300 Impairs Cardiac Transcription. Mol Cell Biol. 2000;20: 8643-8654
    100. Gelman L, Zhou G, Fajas L, et al. p300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem. 1999; 274: 7681-7688.
    101. Lehtinen SK, Rahkila P, Helenius M, et al. Down-regulation of transcription factors AP-1, Sp-1, and NF-kappa B precedes myocyte differentiation. Biochem Biophys Res Commun. 1996; 229:36-43
    102. Grimaldi PA. The roles of PPARs in adipocyte differentiation. Progress in Lipid Research. 2001; 40:269-281
    103. Kutoba N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4:597-609
    104. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611-617
    105. Oberfield JL, Collins JL, Holmes CP, et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci. 1999; 96:6102-6106
    106. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145-171
    107. Auwerx J. PPARγ, the ultimate thrifty gene. Diabetologia. 1999;42:1033-49
    108. Hamm JK, Park BH, Farmer SR. A role for C/EBPαin regulating peroxisome proliferator- activated receptor-γactivity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem. 2001;276:18464-18471
    109. Wu Z, Xie Y, Bucher NLR, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995; 9 : 2350-2363
    110. Wu Z, Bucher NLR, Farmer SR. Induction of PPARγ, during the conversion of 3T3
    
    fibroblasts into adipocytes is mediated by C/EBPb, C/EBPd and glucocorticoids. Mol Cell Biol. 1996;16:4128-4136
    111. Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol. 1993;13:4753-4759
    112. Yokahama C, Wang X, Briggs MR, et al. SREBP-1, a basic-helix- loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75:187-197
    113. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996; 10:1096-1107
    114. Fajas L, Schoonjans K, Gelman L, et al. Regulation of peroxisome proliferator- activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol. 1999;19:5495-5503
    115. Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci USA. 1998;95:4333-4337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700