过渡金属钌配合物纳米球及铱配合物的复合纳米纤维的发光及传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于多个领域,其中具有新性质、新功能的有机-无机复合纳米发光材料由于兼具了纳米材料和发光材料的双重优点而受到人们的关注。在发光材料中,过渡金属铱和钌的有机配合物得到了广泛的研究,因为它们在室温下具有高的发光效率、良好的热稳定性、化学稳定性和光化学稳定性等许多优点。在这里我们通过纳米技术制备了掺杂过渡金属钌和铱的有机配合物的纳米发光纤维及纳米球材料,期望为实现纳米光电器件和生物体内氧气传感提供基础数据。
     本文设计合成了钌配合物[Ru(Bphen)_2Phen–Si]Cl_2,利用共价嫁接技术将该配合物连接至二氧化硅纳米球的表面壳层,从而得到了具有良好分散性的集发光及传感性能于一体的复合纳米材料。通过调控纳米球的粒径,实现了传感性能的优化。与原纯钌配合物相比,抑制了配合物的非辐射跃迁,使得复合纳米材料的荧光衰减寿命有所增长,在氧气浓度为0-60%时,该复合纳米材料对氧浓度呈较好的线性关系。通过嫁接方法将配合物与无毒二氧化硅核壳结构相连,为测定生物体内低浓度氧的含量提供了可能。
     设计合成了铱的配合物Ir(ppy)_2Bphen,并以聚乙烯吡咯烷酮(PVP)为前驱体溶液制得了Ir(ppy)_2Bphen/PVP复合纳米发光纤维,通过荧光光谱分析、荧光寿命测试、扫描电镜等分析手段对样品进行了表征,纤维表面形貌光滑不粘连,直径在245-590nm之间,研究了配合物浓度对纤维直径和形态及发光强度的影响,发现当掺杂浓度为0.20%,复合纤维材料具有最佳的发光强度,并通过对纺丝这种载体使配合物激发态寿命延长。
Nanomaterials have been widely used in many fielde due to it’s excellent performance, especially its performance can be planned. In recent years nano-composite materials is one of the most attractive part of the developed rapidly.Many developed countries regards the development of strategies for the nano-composite materials as important position. But with the new nature, features of organic-inorganic composite nano-light-emitting materials are preferred, because it combines nano-materials and the dual advantages of luminescent materials. In the light-emitting materials, transition metal iridium and ruthenium have been extensively studied, because the transition metal-organic complexes have good light-emitting efficiency, thermal stability, chemical stability and photochemical stability, and many other advantages. In this paper, we got nanospheres of [Ru(Bphen)_2Phen-Si]Cl_2 and Ir(ppy)_2Bphen/PVP nanofibers by nanotechnology at room temperature.
     We designed and synthesized [Ru(Bphen)_2Phen-Si]Cl_2, it was linked to the surface shell-layer of SiO_2 nanospheres by useing of covalently grafting, then obtained nanocomposites with good dispersion, which have good luminescence and sensing properties. Realized sensing performance optimization by regulating nanospheres’diameter. The excited states of composite materials life have been increased compare with pure complex because the non-radiative transition of complex has been inhibited. we get a good linear relationship between the composite and the concentration of oxygen by testing the oxygen concentration from 0 to 60%. The complex was linked to non-toxic SiO_2 nanospheres surface shell-layer, which make them candidates for monitoring the dissolved oxygen in liquid phase, especially could be used in biological fluids.
     Luminescent composite nanofibers doped with Ir(ppy)_2Bphen was fabricated by electrospinning technique, using poly(vinylpyrrolidone)(PVP) as precursor. The materials were characterized by fluorescence spectrophotometers,scanning fluorescence lifetimes spectrophotometer and electron microscope(SEM), nanofibers with smooth and less beads and branches were obtained, the average diameter were between 245 and 590nm. We studied the concentration of complex affect on fibers’morphology, diameter and the luminescen intensity, when doping concentration’s of complex was 0.20%, Composite materials have the best luminescence intensity, and the excited states of complex life have been increased by fibers.
引文
[1] <材料科学技术百科全书>编辑委员会材料科学技术百科全书1995.
    [2]山崎義一,刘辅庭.纳米技术[J].合成纤维, 2007,4,46-47.
    [3] Edelstein A S, Cammarata R C. Nanomaterials: synthesis, properties,and applications[M]. 1998.
    [4]潘劲松,黄擎辉,顾少姆.纳米材料的类别划分及其依据[M].材料导报,2000,14(1l):28.
    [5]李嘉,尹衍升.纳米材料的分类及基本结构效应[J].现代技术陶瓷,2003,2(96):26-30.
    [6]张立德.纳米材料的发展[J].中国科学基金, 1994, 3, 198-202.
    [7] Hageue D C,MaYo M ,Effect of crystallization and phase transformation in nanoscrystalline TiO_2[J].Nanostructured Materials,1993,3,61-67.
    [8]殷亚东,张志成,纳米材料的辐射合成法制备[J].化学通报,1998,(12):21-24.
    [9]张莉勤,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报自然科学版,2003,26(3):234-238.
    [10]李嘉等,纳米材料的分类及基本结构效应[J].现代陶瓷技术,2003,2:26-30.
    [11]周剑秋,张振忠,尹侠,贺小华等,纳米晶体材料的本构模型研究进展[J].南京工业大学学报,2006,28,(5):105-109.
    [12] Gletter H. Nanoscrystalline materials [J].Europhysics News,1989,20(4):223-315
    [13] Siegles R W, Hahn H, Yussouff M,et al.Current Trends in the physics of Material[M]. Singapore:Word Scientific,1987.403-420.
    [14] Xu B S,Tanaka SI.Phase transformation and bonding of ceramic nanopaticals in the TEM[J]. Nanostructured Materials,1995(6):727-730
    [15]张立德,牟季美.纳米材料和纳米结构.[M].北京:科学出版社,2001.
    [16]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    [17] Shingu P H,Huang B, et al.Large elusters and colloids metals in the embryonic state[J].Chem Rev,1992(92):1709-1711.
    [18] Wu X L,Tong S,Liu X N,et a1.X-ray diffration study of alternaling nanocrys talline silicon/ a morphous silicon multilayers [J].Appl Phys Lett,1997,70(7):838-840.
    [19] AWAJI N,OIIKUBO S, NAKANISHI T,et a1.Thermal oxide glowth at chemi- cal vapol deposited SiO_2/Si interface during annealing evaluated by difference x-ray reflectivity[J] .Appl Phys Lett,1997,71(14):1954—1956.
    [20]贾宏,郭错,郭奋.用超重力法制备纳米二氧化硅[J].材料研究学报,2001,15(1):120—124.
    [21]许珂敬,杨新春,段贤峰等多孔纳米SiO_2微粉的制备与表征[J].硅酸盐通报,2001(1): 58—62.
    [22]李茂琼,项金钟,胡永茂等.纳米SiO_2的制备及性能研究[J].云南大学学报(自然科学版), 2002,24(6):445—448.
    [23]沈新璋,金名惠,孟厦兰.纳米二氧化硅的制备厦表征[J].涂料工业,2002,2(9):15—17.
    [24]王明聪,尹铁飞.超微细二氧化硅的生产及应用[J].有机硅材料及应用,1997,5,11-12.
    [25]罗宁,闫双景.纳米SiO_2的制取技术及应用研究[J].淮阴工学院学报.2003,12(1):28-30.
    [26]洪金福,金鑫.超细二氧化硅的制备与改性[J].北京化工大学报,2004,31(5):69-72.
    [27] Arrigada F J, Osseo A K.[J]. Colloids and Surfaces A,1999,154(3):3l1-326.
    [28] Ritva L, Johan S, Goran S,et a1.[J].Colloidsand Surfaces A,1995,99(1):79-88.
    [29] Kolbe G. Das komlexchemisehe verhahen der kieselsaure [M].Germany:Dissertation Jena,1956.
    [30] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J].Colloid Interf Sci. 1968, 26(1): 62-69.
    [31]谢荣国.光子晶体用结构基元的制备、自组装与性能[D].杭州浙江大学,2006.
    [32]林健.催化剂对正硅酸乙酯水解一聚合机理[J].无机材料学报,1997,12(3):363-366.
    [33]刘立营,王秀峰,章春香,程冰.改进St?ber法制备光子晶体用SiO_2微球[M].材料导报,2008,12(22):113-121.
    [34]王玲玲,方小龙,唐芳琼等.单分散二氧化硅超细颗粒的制备[J].过程工程学报, 2001,4(2):167-172.
    [35] Nozawa K,Raison L, Panizza P, et al, Smart Control of Monodisperse Stober Silica Particles: Effect of Reactant Addition Rateon Growth Process[J]. Langumuir,2005,21,1516-1523
    [36] Liane M.Rossi, Shi L F,Frank H.Quina,et al, Stober Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays,[J]. Langumuir, 2005, 21, 4277-4280.
    [37]张密林,丁立国,景晓燕等.纳米二氧化硅制备、改性与应用[J].无机硅化合物2006,1(134):10-13.
    [38] Zhang M L,DingL G, Jing X Y,et al. Preparation,modification and applicationof nanoscale SiO_2[J]. Applied Science and Technol ogy,2004,6,64-67.
    [39] Lin C K, Li Y Y, Yu M,et al. A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure [J]. Adv Funct Mater 2007, 17, 1459–1465.
    [40]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2003
    [41]任洪波,张林,杜爱明等.紫外光固化丙烯酸酯二氧化硅杂化光学增透膜的研制[J].强激光与粒子束,2004,16(5):623-626.
    [42] Nobrega M C,Gomes L C F,LaTorre G P,et al. West microstructure,optical,and dielectric characterization of porous gel silica impregnated with PMMA[J]. Materials Characterization, 1998, 40:1-5.
    [43] Han Y H, J.Chinese Journal of Luminescence, 2002, 23(3):296-298.
    [44]征茂平,金燕苹,顾明元等.Sol-Gel法制备TiO_2/PVP纳米复合材料薄膜及性能研究[M].功能材料,2000,31(2):127-130.
    [45]苏学军,郑典模.纳米SiO_2的研究应用进展[J].江西化工,2002(1):6-10.
    [46] Hu B, Jiang B B, Chen J Z. Manufacture Technologies and Applications of Monodisperse Silicon Dioxide[J]. Chemical Industry and Engineering Progress, 2005,24(6) 603-611.
    [47]冯乙巳,张立德. SiO_2溶胶“纳米粘合剂法”制备介孔纳米复合材料和应用[J].材料导报2004,4 (18):165-167.
    [48] Kreuter J. Influence of the surface properties on nanoparticle mediated transport of drugs to the brain [J]. J Nanosci Nanotechnol.2004,4(5):484-488.
    [49] Shvedova A A,Kisin E R, Mercer R,et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice[J]. Am J Physiol Lung CellMol Physiol. 2005,289(5):698-708.
    [50]李霞,彭蜀晋,张云龙等.纳米材料在生物医学领域的应用[J].化学教育. 2006,11,10-13.
    [51] Akurati K K, Rainer D, Andri V, et a1.Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis [J]. Journal of Nanoparticle Research,2006,8(3): 379-393.
    [52] Massimo Bottini, Shane Bruckner, Konstantina Nika, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis[J]. Toxiol Lett. 2006,160(2):121-126.
    [53]金华芳,袁琳,邱乐,武奎等,纳米材料在医学领域的应用及安全性研究进展, [J].生物骨科材料与临床研究,2009,10 6(5):33-35.
    [54] Edilberto B,James B M, Brian A W,et al. Pulmonary responses ofmice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J]. Toxicol Sci,2004,77(2):347-357.
    [55] Feng L, Li S, Li H, et al. Super-hydrophopic suface of aligned polyacrylonitrile nanofibers[J]. Angew Chem Int Ed, 2002, 41(7): 1221-1223.
    [56] Martin C R.Membrane-based synthesis of nanomaterials[J].Chem Mater,1 996(8)1739-1746.
    [57] Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns[J]. Europhys Lett, 1998, 42(2): 215-20.
    [58] Huang Z M,Zhang Y Z,Kotakic M,et a1.A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science and Technology,2003,63,2223-2253.
    [59] Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix[J]. J Biomed Mat Res, 1999, 46: 60-72.
    [60] Whitesides G M, Grzybowski B A. Self-assembly at all scales[J]. Science, 2002, 295(29): 2418-2421.
    [61] Liu G J,Ding J F,et a1.Polystyrene-block-poly(2-cinnamoylethylmethacrylate)nanofibers, Preparation,characterization,and liquid crystallin properties[J].Chem-A European J,1999(5):2740—2749.
    [62] Deitzel J M, Kleinmeyer J, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42, 8163-8170.
    [63] Fong H, Reneker D H. Electrospinning and formation of nanofibers[M]. In: Salem DR, editor. Structure formation in polymeric fibers[J]. Munich Hanser, 2001, 225-246.
    [64] Maser W K, Munoz E, Benito A M, et a1.Production of high-density single-walled nanotube material by a simplel laser-ablation method[J]. Chem Phys Letts, 1998(292):587-593.
    [65] Iijima, S. Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58.
    [66] Min B M. You Y, Kim J M. Formation of nanostmetured poly(1actic-co-glycolic)/chitin matrix and its cellular response to normal human keratinacytes and fibreblasts[J]. CarbohydratePolymer,2004(54):285-292.
    [67]付文丽,康为民,程博闻等.静电纺纳米纤维的工艺原理、应用及发展前景[J].现代纺织技术,2009,17(1):51-54.
    [68] Ding B,Kimura E J,Sato T,et a1.Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet e1ectrospinning[J].Polymer,2004,45 (6):1895-1902.
    [69] Chang HawJer.Apparatus and method for manufacturing polymeric fibrils[P].US,2006/0024399.2005-7-27.
    [70]刘雍,何吉欢,俞建勇等.一种可用于大批量生产纳米纤维的喷气式静电纺丝装置[P].中国,20071O036447.2007-7-25.
    [71] He J H,Liu Y,Xu L,et a1.Biomimic fabrication of electrospun nanofibers with high-throughput[J].Chaos Solitons Fractals,2008,37,643-651.
    [72] Fang X, Reneker D H. DNA fibers by electrospinning [J]. J Macromolecular Sci-Phys, 1997,B (36): 169-173.
    [73] Taylor G I. Electricallydriven jets[J]. Proc R Soc London, Ser A, 1996, 313,453-475.
    [74]王晓琳,彭宁,张文晶等.静电纺丝法制备聚吡咙纳米纤维[M].科技创新导报.2009,22,5-6.
    [75] Xiao X L,Wei Q F,et al. Comparison between formic-acid-soluble PVA and water-solublePVA of static electrospinning [J]. Tianjin Polytechnic University.2009,28(3):10-13.
    [76] Son W K,Youk J H,Lee T S,et a1.The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers[J].Polymer,2004,45:2959-2966.
    [77]龙云泽,刘抗抗,曹珂等.静电纺丝法制备图案化微纳米纤维薄膜[J].青岛大学学报2009,22(3):33-36.
    [78] Hohman M M,Shin M,Rutledge G,et a1.Electrospinning and Electrically Forced Jets.II.Applications[J].Phys Fluids,2001(13):2221-2235.
    [79] Ki M Y,Christopher J H,Yasuko M,et al. Nannopartical filtration by electrospun polymer fibers[J].chemical Engineering Science,2007(62):4751-4759.
    [80] Irnperial chemical Industries PLC.Production of electrostically spun products[P].US 4689186.1987-08-25.
    [81] Buchko C J, Kozloff K M, Martin D C.Surface Characterization of Porous Biocompatible Protein Polymer thin Films[J].Biomaterials,2001(22):1289-1300.
    [82] Wang X,Fang D,Yoon K,et al.Hight perfommce ultra-filtration composite membranes based on poly(vinyl alcohol)hydrogel coating on crosslinked nanofibrom poly(vinyl alcohol) scaffold [J].Membrane Science,2006(278):26l-268.
    [83] Gibson P W, Schreuder-Gibson H L, Rivin D. Transport Properties of Porous Membranes Based on Electrospun Nanofibers[J].Col1oids Surf A,2001(187):469-481.
    [84] Gibson P W, Schreuder-Gibson H L, Rivin D. Electrospun fiber mats: Transport properties[J].AIChE J,1999(45):190-195.
    [85] Tsai P P,Schreuder-Gibson H,Gibson P.Different Electrostatic Methods for Making Electret Filters[J].J Electrostatics,2002,54:333-341.
    [86] Kloster G M, Taylor C M, Watton S P.Effects of Multiple Covalent Attachments on Immobilized Iron(II)?1,10-Phenanthroline Complexes in Silica Sol?Gels, Inorg Chem, 1999, 38 (18): 3954–3955.
    [87] (a)游效曾,孟庆金,韩万书.《配位化学进展》[M].第一版.高等教育出版社,2000.(b)樊美公等.《光化学基本原理与光子学材料科学》[M].第一版.科学出版社,2001.
    [88] Beer R H, Jimenez J, Drago R S. Syntheses of 2, 9-bis(halomethyl-1, 10-phenanthrolines: potential robust ligands for metal oxidation catalysts[J].J Org Chem,1993,58:1746-1747.
    [89] Amadelli R, Argazzi R, Bignozzi C A, et al. Design of Antenna-Sensitizer Polynuclear Complexes: Sensitization of Titanium Dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)2[J].J Am Chem Soc, 1990, 112: 7099-7103.
    [90] Larson S L,Cooley L F,Elliott C M,et al.Charge separation in donor-chromophore-acceptor complexes:inverted region behavior in reverse electron transfer reactions[J].J Am ChemSoc,1992,114:9504-9509.
    [91]上官文峰.太阳能光解水制氢的研究进展[J].无机化学学报,2001,17(5):619-626.
    [92] Swiegers G F,Malefetse T J.New Self-Assembled Structural Motifs in Coordination Chemistry[J].Chem Rev,2000,100:3483-3538.
    [93] Tyson D S,Bignozzi C A,Castellano F N. Metal-Organic Approach to Binary Optical Memory[J].J Am Chem Soc,2002,124:4562-4563.
    [94] Demas J N, Degraff B A, Applications of luminescent transition platinum group metal complexes to sensor technology and molecular probes[J].Coord Chem Rev,2001,211:317-351.
    [95] Lo K K-W, Chung C K,Lee T K-M. New Luminescent Cyclometalated Iridium(III) Diimine Complexesas Biological[J].Inorg Chem,2003, 42 (21): 6886–6897.
    [96] Sullivan B P,Salmon D J,Meyer T J.Mixed phosphine 2,2'-bipyridine complexes of ruthenium[J].Inorg Chem,1978,17:3334-3341.
    [97] Innocenzi P, Kozuka H, Yoko T.FluorescencePropertiesoftheRu(bpy)32+Complex Incorporated in Sol-Gel-DerivedSilica Coating Films[J].J Phys Chem B 1997,101(13): 2285-2291.
    [98] Caspar J V, Sullivan B P, Kober E M, et al.Application of the energy gap law to the decay of charge transfer excited states, solvent effects [J].Chem Phys Lett, 1982,91(2): 91-95.
    [99] Stern V O, Volmer M. Ueber die Abklingzeit der Fluores- zenz[J]. Phys Zeitschr. 1919,20, 183-187.
    [100] Lei B F, Li B, Zhang H R, et al. Mesostructured Silica Chemically Doped with Ru(II) as a Superior Optical Oxygen Sensor. Adv Funct Mater,2006,16(14):1883-1891.
    [101]樊美公等.《光化学基本原理与光子学材料科学》[M].第一版.科学出版社,2001.
    [102]游效曾,孟庆金,韩万书.《配位化学进展》[M].第一版.高等教育出版社,2000.
    [103] Lamansky S, Djurovich P, Murphy D,et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. JACS, 2001,123(18):4304–4312.
    [104] Yan E Y, Huang Z H , Xin Y,et al. Polyvinylpyrrolidone/tris(8-quinolinolato) aluminum hybrid polymer fibers by electrospinning [J].Mater Letters. 2006,60(24):2969–2973.
    [105] Li D, Babel A, Jenekhe S A,et al.Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Tow-Capillary Spinnerrt[J]. Adv Mater. 2004, 16 (22):2062-2066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700