TB8合金热变形组织的分形研究及演变模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着塑性成形技术的发展以及对产品质量要求的进一步提高,需要更为全面、细致、深入地了解和掌握生产中工件内部组织的变化过程,因而分析变形过程中的微观组织形貌并采用计算机对其演变进行模拟近年来已成为科学工作者研究的热点,具有重要的理论意义和实际应用前景。晶粒形貌作为表征材料微观组织的重要指标,迄今为止还无法采用传统的数学方法对其进行定量描述,分形几何的应用则为解决这一难题提供了强有力的工具。本文对新型近β型钛合金—TB8合金的高温变形行为及变形过程中动态再结晶规律进行了系统研究,首次采用分形理论对其热变形显微组织进行深入分析,建立了组织演变的计算机分形模拟模型,利用该模型对动态再结晶过程进行模拟。本文主要工作如下:
     1、在热模拟试验机上对TB8合金进行了恒温恒应变速率热模拟压缩实验,研究其高温变形行为,并建立了该合金的高温流变应力模型,该模型能够精确描述高温变形条件下合金的流变应力,是进行有限元数值模拟的先决条件。
     2、采用刚粘塑性有限元法,引入前面得到的TB8合金流变应力本构模型对热压缩过程进行了热力耦合有限元数值模拟,结果与实验吻合较好,在此基础上得出应变、位移等场变量,为热变形组织模拟提供必要前提。
     3、精确的显微组织预测模型是提高组织模拟精度的关键环节。本文依据热模拟实验结果,对TB8合金动态再结晶规律进行研究,建立了其动态再结晶晶粒尺寸模型和动态再结晶动力学模型,研究表明所建模型能够比较精确地预测显微组织参数随变形工艺参数的变化而变化的情况。这不仅为提高组织模拟精度创造前提,也为制定合理的热加工工艺提供了理论依据。
     4、要进行组织的分形模拟,首先必须根据分形理论对热塑性变形显微组织进行分析。本文在图像处理的基础上,分别采用小岛法和盒维数法对再结晶和形变显微组织的分形维数进行计算,研究表明变形过程中的显微组织具有典型的分形结构,可以采用分形维数对其进行定量描述。文章系统分析了显微组织分形维数与变形条件之间的关系,首次采用人工神经网络的方法建立了形变显微组织的分形维数与变形温度、应变速率关系的预测模型,为变形金属显微组织的定量研究及精确的微观组织演变模拟提供了更为科学的理论基础。
     5、以分形模拟方法—元胞自动机方法为基础,实现正常晶粒生长的二维计算机模拟,获得了与实际金属较为相似的显微组织形貌。分析表明,模拟所得晶粒形貌具有分形特征,且晶粒的演化符合动力学生长规律,采用该方法模拟得出的显微组织是合理有效的。
     6、为了既能反映动态再结晶组织演变的动力学机制,又能真实再现组织演变的过程,本文在晶粒长大模拟的基础上,将热力耦合刚粘塑性有限元模拟、微观组织的动力学模型和基于分形的随机性模型—元胞自动机模型相结合,建立了动态再结晶显微组织演变的分形模拟模型。结果表明,模拟结果很好地描述了动态再结晶动力学规律,获得的组织与实际组织非常接近,其分形维数数值及变化趋势也均与实际结果符合较好,因而可以精确再现动态再结晶显微组织的整体形貌。以上研究表明,本文所采用的热力耦合有限元模拟、再结晶显微组织的动力学模型、晶粒生长的元胞自动机模型以及将三者进行结合所得到的再结晶显微组织演变模型具有较高的可靠性和稳定性,对于优化工艺参数、提高产品的组织性能具有实际的指导意义。
With the development of hot deformation technique and the higher requiring to product quality, it is necessary to know microstructure evolution of products during hot deformation comprehensive and thoroughly. Therefore, analysis and simulation on the evolution of microstructure has been a researching hotspot in recent years. It has important theory significance and utility. Grain shape is one of the important indexes to characterize microstructure. However, classical stereology has some difficulties in describing irregular shapes of grain quantificationally. The use of fractal geometry offers a powerful instrument for solving the problem. In this study, the hot deformation behavior and dynamic recrystallization rule of TB8 alloy were systemic studied. The fractal theory was applied to analyse the microstructure during hot deformation for the first time. On the basis of kinetic theory, a fractal simulation model was established to simulate the microstructure evolution during dynamic recrystallization process. The major content can be summarized as follows:
     Hot compression test of TB8 alloy were performed on Gleele-1500. Hot deformation behavior was studied and the model of flow stress was obtained by hyperbolic-sine-type Arrhenuis equation. This model can describe the flow stress during hot deformation accurately and become a predeterminate condition of FE numerical simulation.
     The thermal-mechanical coupled rigid-viscoplastic finite element simulation was carried adopting the model of flow stress of TB8. Simulation result show good agreement with experiment. Strain and displacement during hot deformation were calculated which provided an essential precondition for microstructure simulation and proved the correctness of flow stress model.
     In order to improve precision of the microstructure simulation, accurate microstructure predicting model is needed. In this paper, dynamic recrystallization rules of TB8 alloy were studied, size model and kinetic model of dynamic recrystallization were established by experience formula. The results show that this method is able to predict the variation of microstructural parameters with technique parameters successfully. It not only creates necessary prerequisite for improving the accuracy of microstructure simulation, but also lays a scientific foundation for determining reasonable hot forming process.
     To perform fractal simulation for microstructure, the fractal theory was applied to analyze the recrystallized microstructure during hot deformation. Based on the computer image treatment, Slit Island Method and Box Counting Method were applied to calculate the fractal dimension of recrystallized microstructure and deformed microstructure. It is shown that microstructure presents typical fractal character, and fractal dimension can be used to describe its degree of irregularity. With decreasing strain rate and increasing deformation temperature, the fractal dimension of recrystallization grain decreases while grain size increases. At the same time, the variety of deformation temperature and strain rate results in the changes of grain amount in unit volume, recrystallization grain size, the size and shape of original grains to a certain extent, which influences the fractal dimension of deformed microstructure consequently. Owning to the nonlinear and complexity of relationship between fractal dimension and deformed parameter, the predicting model was established with a three-layer feed-forward artificial neural network with a back-propagation learning rule for the first time. It provides more scientific theory foundation for the quantitative study of deformed microstructure and accurate simulation of microstructural evolution.
     Based on the fractal simulation method—Cellular Automaton method, efficient simulation on normal 2D grain growth was accomplished, the simulated microstructure was similar to actual alloy. Analysis shows that the grain shape by simulation presents fractal character and simulation results accords with the kinetic rule of grain growth. So the initial microstructure by this method is rational and effective.
     In order to reflect kinetic mechanism of DRX microstructural evolution and show the evolutional process truly, dynamic fractal simulation of recrystallized microstructure was realized by incorporating the coupled thermomechanical rigid-viscoplastic FE model and the kinetic model of microstructure into Cellular Automaton model. Compared with the experimental results, it shows that the simulated microstructures are similar to the actual ones. The fractal dimensions and their variety tendency agree well with the actual results too. So the whole shapes of dynamic recrystallized microstructure can be displayed accurately. The simulated results describe the kinetic rule of DRX well. The study shows that: the thermomechanical rigid-viscoplastic finite element simulation, kinetic model of dynamic recrystallization, Cellular Automaton model of grain growth and microstructural evolution model by combining them are reliable and stable. It has important practical meanings for optimizing the deformation process and improving the microstructure and capability of product.
引文
[1]陈明和,茆汉湖,朱知寿.热成型过程微观组织模拟研究进展[J].塑性工程学报,2005,12(2):1-6.
    [2]R.Ding,Z.X.Guo.Coupled quantitative simulation of microstructural evolution and plastic flow duringdynamic recrystallization[J].Acta Mater,2001,49:3163-3175.
    [3]Li Miaoquan,Xiong Aiming,Huang Weichao,et al.Microstructural evolution and modeling of the hot compression of a TC6 titanium alloy[J].Materials Characterization,2003,49:203-209.
    [4]王广春,管婧,赵国群.锻造成形微观组织优化建模及应用[J].塑性工程学报,2005,12(5):49-53.
    [5]张凯锋,尹德良,韩文波.热轧AZ31镁合金温变形中的微观组织演变[J].航空学报,2005,4:505-509.
    [6]Medeiros S C,Prasad Y V R K,Frazier W G,et al.Microstructural modeling of metadynamic recrystallization in hot working of IN718 superalloy[J].Mater.Sci.Eng.,2000,A293:198-207.
    [7]Wang L S,Cao Q X,Liu Z.Numerical Simulation and Experimental Verification of Microstructure Evolution in a 3-dimensional Hot Upsetting Process[J].Journal of Material Processing Technology,1996,58:331-336.
    [8]G.Kugler,R.Turk.Modeling the dynamic recrystallization under multi-stage hot deformation[J].Acta Materialia,2004,52:4659-4668.
    [9]付艳艳,宋月清,惠松骁等.航空用钛合金的研究及应用进展[J].稀有金属,2006,30(6):850-856.
    [10]莱因斯c,皮特尔斯M.钛与钛合金[M].北京:化学工业出版社,2005.
    [11]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2005,Z4(3):218.
    [12]Sellars C M,Tegart W J M.On the mechanism of hot deformation[J].Acta Metallurgica,1996,14(9):1136-1138.
    [13]Yada H,Senuma T.Resistance to hot deformation of steel[J].Soc.Tech.Plasticity,1988,27:33-44.
    [14]Y.Estrin,H.Mecking.A unified phenomenological description of work hardening and creep based on one-parameter models[J].Acta Metal.,1984,32(1):57-70.
    [15]K.P.Rao,E.B.Hawbolt.Development of constitutive relationships using compression testing of a medium carbon steel[J].Trans.ASME.,1992,114:116-123.
    [16]Siamak Serajzadeh,Ali Karimi Taheri.Prediction of flow stress at hot working Condition[J].Mechanics Research Communications,2003,30:87-93.
    [17]林高用,张辉等.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001,3:412-415.
    [18]熊爱明,陈胜晖,黄维超等.TC6钛合金的高温变形行为及组织演变[J].稀有金属材料与工程,2003,6:447-450.
    [19]张红钢,张辉,彭大暑等.KFC铜合金热压缩变形流变应力[J].热加工工艺,2004,1:21-24.
    [20]Siamak Serajzadeh.A mathematical model for evolution of flow stress during hot deformation[J].Mechanics Reserarch Communications,2005,59:3319-3324.
    [21]P.F.Bariani,S.Bruschi,T.Dal Negro.Prediction of nickel-base superalloys'theological behaviour under hot forging conditions using artificial neural networks [J].Journal of Materials Processing Technology,2004,152:395-400.
    [22]P.P.Madakasira,K.L.Ashok.The applicability of neural network model to predict flow stress for carbon steels[J].Journal of Materials Processing Technology,2003,141:219-227.
    [23]李萍,薛克敏,吕炎.热变形参数对Ti-15-3合金流动应力的影响[J].哈尔滨工业大学学报,2000,32(4):29-32.
    [24]G.Ganesan,K.Raghukandan,R.Karthikeyan,et al.Development of processing map for 6061 Al/15%SiCp through neural networks[J].Journal of Materials Processing Technology,2005,166:423-429.
    [25]李依依,李殿中,朱苗勇等.金属材料制备工艺的计算机模拟[M].北京:科学出版社,2006,10-12.
    [26]金文忠.热加工过程静态再结晶的元胞自动机模拟.东北大学硕士学位论文,2006:2-4.
    [27]D.J.Srolovitz,G.S.Grest,M.P.Anderson.Computer simulation of recrystallization -Ⅰ homogeneous nucleation and growth[J].Acta Metal.,1986,34:1833-1845.
    [28]A.D.Rollet,D.J.Srolovitz,M.P.Anderson.Computer simulation of recrystallization-Ⅲ influence of a dispersion of fine particles[J].Acta Metal.,1992,40:3475-3495.
    [29]Rene Messina,Michele Soucail,Ladislas Kubin.Monte carlo simulation of abnormal grain growth in two dimensions[J].Materials Science and Engineering,2001,A308:258-267.
    [30]H.W.Hesselbarth,I.R.Gobel.Simulation of recrystallization by cellular automata[J].Acta Metal Mater.,1991,39(9):2135-2143.
    [31]Rollett A D,Luton M J,Srolovize D J.Microstructural simulation of dynamic recrystallization[J].Acta metal Mater.,1992,40:43-55.
    [32]T.A.Walasek.Experimental verification of Monte Carlo recrystallization model[J].Journal of Materials Processing Technology,2004,157:262-267.
    [33]Rene Messina,Michele Soucail,Ladislas Kubin.Monte Carlo simulation of abnormal grain growth in two dimensions[J].Materials Science and Engineering,2001,A308:258-267.
    [34]Peczak P,Luton M J.A monte carlo study of the influence of dynamic recovery on dynamic recrystallization[J].Acta metal Mater,1993,41:59-71.
    [35]PeczakP,Luton M.The effect of nucleation models on dynamic recrystallizaton Ⅰ,Homogenous stored energy distribution[J].Philosophical Magazine B,1993,68:115-144.
    [36]PeczakP,Luton M.The effect of nucleation models on dynamic recrystallizaton Ⅱ,Heterogeneous stored energy distribution[J].Philosophical Magazine B,1994,70:817-849.
    [37]PeczakP.A monte carlo study of influence of deformation temperature on dynamic reciystallization[J].Acta metal Mater,1995,43:1279-1291.
    [38]佟铭明,莫春利,李殿中等.纯铜动态再结晶的Monte Carlo法模拟[J].金属学报,2002,38(7):745-749.
    [39]佟铭明,莫春利,李殿中等.用Monte Carlo法模拟纯铜的静态再结晶[J].材料研究学报,2002,16(5):485-489.
    [40]M.Rappaz,J.L.Desbiolles,G.A.Gandin.Modeling of solidification microstructures[J].Materials Science Forum,2000,329:389-396.
    [41]Hesselbarth H W,Gobel I R.Simulation of recrystallization by cellular automata[J].Acta Metal Mater,1991,39:2135-2143.
    [42]R.Ding,Z.X.Guo.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J].Acta Mater.,2001,49(16):3163-3175.
    [43]R.Ding,Z.X.Guo.Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach[J].Computational Materials Science,2002,23(1):209-218.
    [44]Marx V,Rehev F R,Gotlstein G.Simulation of primary recrystallization using amodified three dimensional cellular automaton[J].Acta Mater,1999,47(4):1212-1230.
    [45]Raabe D.Introduction of a scaleable 3D cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena[J].Philosophical Magazine A,1999,79:2339-2358.
    [46]花福安,杨院生,郭大勇等.基于曲率驱动机制的晶粒生长元胞自动机模型[J].金属学报,2004,40(11):1210-1214.
    [47]郑成武,兰勇军,肖纳敏等.热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J].金属学报,2006,42(5):474-480.
    [48]Y.J.Lan,N.M.Xiao,D.Z.Li,et al.Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton automaton method with a crystal plasticity finite element model[J].Acta Materialia,2005,53:991-1003.
    [49]Mc Queen H J,Jonas J J.Role of the dynamic and static soften mechanisms in mutltistage hot working[J].Applied Metal Working,1985,3:410-420.
    [50]Mc Queen H J,Ryum N.Hot working and subsequent static recrystallization of A1 and A1-Mg alloys[J].Scand J Metallurgy,1985,14(4):183-194.
    [51]Sellars C M,Whiteman J A.Recrystallization and grain growth in hot rolling[J].Materials Science,1979,3:187-194.
    [52]Sellars C M.Computer modelling of hot-working processes[J].Mater.Sci.Tech.,1985,1:325-332.
    [53]Sellars C M.Modeling microstructural development during hot rolling[J].Mater Sci Technol,1990,16(11):1072-1081.
    [54]H.Yada,T.Senuma.Resistance to hot deformation of steel[J].Journal of Japan Society of Technology Plasticity,1986,27:34-44.
    [55]Kopp R.Multi-level simulation of metal forming processes[J].Adv.Tech.Plast.,1987,2:1229-1233.
    [56]Kopp R,Karnhausen R,Souza M M.Numerical simulation method for designing thermomechanical treatment,illustrated by bar rolling scand[J].Journal of Metallurgy,1991,20:351-360.
    [57]Saito Y,Enami T,Tanaka T.The mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill[J].Trans ISIJ,1985,25(11):1146-1155.
    [58]Saito Y.Modeling of microstructural evolution in theromonechanical processing of structural steels[J].Materials Science and Engineering,1997,A233:134-145.
    [59]Medeiros S C,Prasad Y V R K,Frazier W G,et al.Microstructural modeling of metadynamic recrystallization in hot working of IN718 super alloy[J].Materials Science and Engineer,2000,A293:198-207.
    [60]刘东,罗子健.基于显微组织演化的本构关系的建立方法[J].塑性工程学报,2005,12(1):54-57.
    [61]刘东,罗子健.GH4169合金热加工过程中的显微组织演化数学模型[J].中国有色金属学报,2003,13(5):1211-1218.
    [62]Li Miaoquan,Xiong Aiming,Huang Weichao,et al.Microstructural evolution and modeling of the hot compression of a TC6 titanium alloy[J].Materials Characterization,2003,49:203-209.
    [63]张济忠.分形.北京:清华大学出版社[M],1995:111-138.
    [64]陈道伦.分形及其在材料科学中的应用[J].材料科学与工程,1989,7(3):1-7.
    [65]孙力玲,董连科,张静华等.定向凝固高温合金晶界形貌的分形描述[J].金属学报,1994,30(5):A200-A202.
    [66]Mandelbrot B B,Passonja D E,Paullay A.Fractal character of fracture surfaces of metals[J].Nature,1984,308(19):721-722.
    [67]Lung C W,Mu Z Q.Fractal dimension measured with perimeter aera relation and toughness of materials[J].Phys Rev B,1988,38(16):781-784.
    [68]王瑞春,郭敬东,高明等.具有分形结构金属镍的制备[J].材料研究学报,2002,16(6):605-608.
    [69]Ali Eftekhari.Fractal study of LIMn_2O_4 film electrode surface for Lithium batteries application[J].Electrochimica Acta,2002,47:4347-4350.
    [70]Andrea Carpinteri,Andrea Spagnoli.A fractal analysis of size effect on fatigue crack growth[J].International Journal of Fatigue,2004,26:125-133.
    [71]张玮,梁成浩.金属材料表面腐蚀形貌分形特征提取[J].大连理工大学学报,2003,43(1):61-64.
    [72]陈志新,刘莹.准分子激光加工表面微观形貌的分维表征研究[J].工业计量,2003,2:32-35.
    [73]A.L.Horovistiz,L.R.O.Hein.Fractal analysis along stretch zone for an aluminum alloy[J].Materials Letters,2005,59:790-794.
    [74]Marco Lattuada,Hua Wu,Massimo Morbidelli.A simple model for the structure of fractal aggregates[J].Journal of Colloid and Interface Science,2003,268:106-120.
    [75]Hornborgen E.Fractal analysis of grain boundaries in hotworked Polycrystals [J].Zeitschrift furMetallkunde,1987,78:622-625.
    [76]Kruhl J H,Nega M.The fractal shape of sutured quartz grain boundaries:application as a geothermometer[J].Geologishe Rundschau,1996,85:38-43.
    [77]M.Takahashi,H.Nagahama,et al.Fractal analysis of experimentally,dynamically recrystallized quartz grains and its possible application as a strain rate meter [J].Journal of Structural Geology,1998,20:269-275.
    [78]Rafael Cola's.On the variation of grain size and fractal dimension in an austenitistainless steel[J].Materials Characterization,2001,46:353-358.
    [79]Avery,F.R.Hall.Fractal Modeling of Materials[J].Journal of Materials Processing Technology,1998,80-81:565-571.
    [80]周捷,王印培.晶粒度的分形特征研究[J].理化检验-物理分册,2000,36(2):107-110.
    [81]王印培,陈进.孙晓明.珠光体球化的分形研究[J].理化检验—物理分册,2003,39(3):129-132.
    [82]H.T.Jiang,Y.L.Lu,W.C.Huang,ect..Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy[J].Materials Characterization,2003,51:1-10.
    [83]余同希.塑性力学[M].北京:高等教育出版社,1989.
    [84]孙胜,赵国群,黄少东等.非轴对称零件挤压过程的上限元法分析[J].山东工业大学学报,1987,4:1220.
    [85]C.H.Lee,S.Kobayashi.New solutions to rigid plastic deformation problems using a matrix method,Transaction of ASME[J].Journal of Engineering for Industry,1973,95:865-873.
    [86]O.C.Zienkiewicz,P.N.Godbole.A penalty function approach to problems of plastic flow of metal with large surface deformations[J].Strain Analysis,1975,10:180-183.
    [87]P.Perzyna.Fundamental problems in viscoplasticity[J].Adv.App.Meth.,1969,9:243.
    [88]S.I.Oh,N.M.Rebelo,S.Kobayashi.Finite-element formulation for the analysis of plastic deformation of rate-sensitive materials in metal forming[J].IUTAM Symposium,1978:273.
    [89]董永刚,张文志,宋剑锋.棒材轧制轧件出口断面形状预测及平均轧辊半径的新计算模型[J].塑性工程学报,2007,14(5):96-101.
    [90]周明智,薛克敏,李萍.粉末多孔材料等径角挤压热力耦合有限元数值分析[J].中国有色金属学报,2006,16(9):1510-1516.
    [91]魏志刚,汤文成,刘德仿.星形套冷挤压成形有限元方法研究[J].中国机械工程,2006,17(16)1752-1755.
    [92]O.C.Zienkiewicz,P.N.Gogbole.Flow of plastic and viscoplastic solids with special reference to extrusion and forming processes[J].Num.Meth.,1974,8:3-15.
    [93]O.C.Zienkiewicz,P.C.Jain,E.Onate.Flow of solids during forming and extrusion:Some aspects of numerical solutions[J].Solids Struct.,1978,14:15-38.
    [94]O.C.Zienkiewicz,S.Toyoshima.Flow formulation for numerical solution of forming processes:some new directs[J].Proc.NUMIFORM 86,Gothenburg,1986:3-10.
    [95]O.C.Zienkiewicz,G.C.Huang,Y.C.Liu.Adaptive FEM computation of forming processes-Application to porous and nonporous materials[J].International Journal for Numerical Methods in Engineering,1990,30:1527-1553.
    [96]N.Rebelo,S.Kobayashi.A coupled analysis of viscoplastic deformation and heat transfer,Ⅰ:Theoretical considerations[J].Int.J.Mech.Sci.,1980,22:699-705.
    [97]N.Rebelo,S.Kobayashi.A coupled analysis of viscoplastic deformation and heat transfer,Ⅱ:Applications[J].Mech.Sci.,1980,22:707-718.
    [98]Y.T.Im,S.Kobayashi.Coupled thereto-viscoplastic analysis in plane-strain compression of porous materials[J].Trans.ASME,1986:269-291.
    [99]J.P.Cescutl.Thereto-mechanical finite element caculation of three-dimensional hot forging with remeshing[J].Adv.Tech.Plast.,1989,11:1051.
    [100]Y.T.Im,S.Kobayashi.Investigation of metal flow in nonisothermal forgingusing ring and spike tests[J].Annals of the CIRP,1988,37:225.
    [101]邓炬,赵用庆,于振涛.钛及钛合金新材料的研究与开发战略[J].钛工业进展.2002,(4):30-32.
    [102]曹春晓,闰渊林,黄旭.我国航空系统钛合金发展现状与展望[J].钛工业进展,2002,(4):26-29.
    [103]D.eylon,S.R.Seagle.Titanium Technology in the USA-an Overview[J].Mater.Sci.Technol.,2000,17(1):14-19.
    [104]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社.2005.
    [105]J.S.Grauman.Corrosion behavior of Ti metal 21s for non-aerospace application [J].Titanium' 92:Science and Technology,TMS,1993:2737-2742.
    [106]陈玉文.β21s钛合金的组织和性能研究[J].材料工程,1998,1:11-14.
    [107]叶文君,脱祥明,王世洪.β21s钛合金热压缩变形行为[J].稀有金属,2002,26(1):23-27.
    [108]朱知寿,王庆如.TB8钛合金板材冷成形工艺及其应用研究[J].金属学报,2002,38(9):414-416.
    [109]W.Sha,C.J.Mckinven.Experimental study of the effects hydrongen penetration on gamma titanium aluminide and Beta 21S titanium alloys[J].Journal of Alloy and Compounds,2002,335:L16-L20.
    [110]叶文君,金桂彝.TB8板材的焊接性[J].金属学报,2002,9(38):302-304.
    [111]柳建韬.工模钢热变形行为研究.上海交通大学博士学位论文,1998:20-44.
    [112]万胜狄.金属塑性成形原理.北京:机械工业出版社.1994:36-39.
    [113]罗子健,杨旗,姬婉华.考虑变形热效应的本构关系建立方法[J].中国有色金属学报,2000,10(6):804-808.
    [114]刘全坤.材料成型原理.北京:机械工业出版社.2005:287-295,378-379.
    [115]张伟红,张士宏.NiTi合金热压缩实验数据的修正及其本构方程[J].金属学报,2006,42(10):1036-1040.
    [116]P.Wanjara,M.Jahazi,H.Monajati,S.Yue,et al.Hot working behavior of nearαalloy IMI834[J].Mater Sci Eng A,2005,396:50-60.
    [117]R.Ebrahimi,A.Najafizadeh.A new method for evaluation of friction in bulk metal forming[J].Journal of Mater Process Technol,2004,152(20):136-143.
    [118]张辉.铝合金多道次热轧显微组织演变的模拟研究.中南工业大学博士学位论文,2000:75-80.
    [119]McQueen H J,Jonas J J.Recovery and recrystallization in the hotworking of aluminum alloys[J].Treatise on Materials Science and Technology,Plastic Deformation of Materials 1975,6:393-493.
    [120]Poirier J P.关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989"24.
    [121]Wong W A,Jonas J J.Aluminum Extrusion as a thermally activated process[J].Trans.A M E,1968,242:2271.
    [122]李龙飞.低碳钢中铁素体动态再结晶规律及机制的研究.北京科技大学博士学位论文2005:84-91.
    [123]SELLARS C M,TAGARTW J.Study on the mechanism of hot deformation[J].Acta.Metal,1966,14(11):1136-1138.
    [124]刘建涛,张义文,陶宇等.FGH96合金动态再结晶行为的研究[J].材料热处理学报,2006,27(5):46-50.
    [125]Barraclough D R,Sellars C M.Static recrystallization and restoration after hot deformation of type 304 stainless steel[J].Metal Science,1979(13):257-267.
    [126]沙爱学,李兴无,王庆如等.热变形温度对TC18钛合金显微组织和力学性能的影响[J].中国有色金属学报,2005,15(8):1167-1172.
    [127]李治华,吴迪,赵宪明等.低碳钢热变形奥氏体的再结晶行为[J].钢铁研究学报,2006,15(5):46-49.
    [128]林启权,彭大暑,张辉等.2519铝合金热压缩变形过程的动态与静态软化行为[J].中南大学学报,36(2):183-187.
    [129]张颂阳,耿茂鹏,谢水生等.半固态金属金相图片的计算机定量分析[J].铸造技术,2005,26(11):1070-1071.
    [130]张晓昱,欧阳杰.定量金相分析系统与专家库的建立[J].河北电力技术,2003,22(6):52-54.
    [131]田勇.图像处理与分析在钨合金相图处理中的应用.北京理工大学硕士学位论文,2000:2-6.
    [132]丁保华,李文超,王福明.分形图像分析与分形维数计算程序的设计[J].北京科技大学学报,1999,21(3):304-307.
    [133]F.Y.Wan,Z.D.Yuan.Recognition and Classification of Metallography via Fractional Dimension[J].Proceedings of the 4~# World Congress on Intelligent Control and Automation,2002:2249-2253.
    [134]M.F.Ribeiro,A.L.Horovistiz,G.A.Jesuino,etc..Fractal Analysisof Eroded Surfaces by Digital Image Processing[J].Materials Letters,2002,56:512-517.
    [135]郭洪民,杨湘杰.凝固微观组织的多层次模拟[J].中国有色金属学报,2004,14(6):929-933.
    [136]H.J.Glass,G.de With.Fractal characteri-zation of the compaction and sintering of ferrites[J].Materials Characterization,2001,47:27-37.
    [137]王鲁,程兴旺,王富耻等.钨合金微观组织分形特征研究[J].中国体视学与图像分析,2001,6(3):149-156.
    [138]邢鹏飞,翟玉春,田彦文等.WS2颗粒的分形特征[J].中国有色金属学报,1996,6(2):36-41.
    [139]Rafael Cola's.On the variation of grain size and fractal dimension in an austeniti-stainless steel[J].Materials Characterization,2001,46:353-358.
    [140]李萍,薛克敏,吕炎.Ti-15-3合金热变形过程晶粒轴比的预测[J].中国有色金属学报,2002,12(1):92-95.
    [141]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [142]李人宪.有限元法基础[M].北京:国防工业出版社,2002.
    [143]辛啟斌.材料成形计算机模拟[M].北京:冶金工业出版社,2006.
    [144]S.L.Semiatin,J.C.Soper,I.M.Sukonnik.The Influence of Spatial Grain Size Correlation and Topology on Normal Grain in Two Dimensions[J].Acta.Mater.,1996,44(4):1681-1689.
    [145]Danan Fan,Chengwei Geng,L.Q chen.Computer Simulation of Topological Evolution in 2-D Grain Growth using a Continue Diffuse-Interface Field Mode[J].Acta.Mater., 1997,45(3):1115-1126.
    [146]孙霞,吴白勤,黄昀.分形原理及应用[M].合肥:中国科学技术大学出版社,2003:161-164.
    [147]VON NEUMANN J.Theory of self-reproducing automata[M].Urbana:University of Illinois Press,1966.
    [148]李萍.热塑性变形显微组织演变的模拟及可视化.浙江大学博士后工作报告,2003:13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700