TA11本构关系及叶片微观组织模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空发动机中,叶片起着能量转换的关键作用。近年来,对叶片成形过程的研究,已从宏观塑性流动行为转向内部微观组织模拟、力学性能预测与质量控制等方面。金属内部的微观组织演变在很大程度上决定了叶片的宏观力学性能。因此,了解材料的微观组织演变及其影响因素对控制产品的力学性能是非常重要的。而现有的有限元模拟软件不具备模拟微观组织演变的功能,因此,有必要将微观组织模型加入有限元模拟软件DEFORM-3D的用户子程序中,以实现金属在热锻过程中的微观组织演变数值模拟研究。本文完成的主要工作如下:
     (1)以TA11合金为研究对象,通过热模拟压缩实验,获得了TA11合金在热变形过程中的应力应变曲线,并对其高温流变行为进行了分析。基于高温流变行为建立了TA11合金的塑性变形本构方程。模型的计算值与实验值的平均误差小于13.9%,能较好的描述TA11钛合金在高温变形时的流动行为。
     (2)通过金相实验研究了变形工艺参数对微观组织的影响,基于微观组织演变规律建立了(α+β)两相区塑性变形过程中动态再结晶体积分数和动态再结晶晶粒尺寸模型,并建立了初生α相平均晶粒尺寸模型。模型的计算值与实测值的平均误差小于14.9%,可以较好的描述TA11合金在高温变形过程中的微观组织演变行为。
     (3)将TA11合金的微观组织模型添加至DEFORM-3D的用户子程序中,使其具备了对TA11合金热成形过程中微观组织的预测及模拟功能,并通过对圆柱体镦粗的模拟验证了程序的可靠性。
     (4)对TA11合金叶片的精锻过程进行了微观组织模拟,分析了变形速度、变形温度和压下量对叶片微观组织演变的影响,获得了叶片在制坯、预锻和终锻过程中的工艺参数的优化和微观组织演变的分布规律。研究结果对叶片精锻过程工艺参数的制定具有重要的指导意义。
Blade plays a key role in energy conversion in aero-engine. In recent years, the studies of blade forming process have turned from the macro-plastic flow behavior to the microstructure simulation, mechanical property prediction, quality control and so on. The microstructure evolution of the metallic material determines the macro-mechanical properties of the blade to a large extent. Therefore, it is extremely important to control the mechanical properties of the product by understanding the microstructure evolution and its influencing factors of materials. The existing finite element simulation software does not have the function to simulate microstructure evolution. Therefore, it is necessary to embed the microstructure evolution model in user subroutines of DEFORM-3D software in order to simulation the microstructure evolution during hot forging process. The research works are summarized as follows.
     (1) Through the thermal simulation compression test of TA11 alloy, the stress-strain curves during the hot deformation have been obtained. And the flow behavior of high temperature has also analyzed. Based on flow behavior of high temperature, the constitutive equations of plastic deformation for TA11 alloy is established. The average error between the equation and experimental data of the model is smaller than 13.9%. The model can be used to describe the flow behavior of TA11 titanium alloy during the thermal processing.
     (2) Through the metallurgical technique, the effects of the deformation process parameters on the microstructure have been studied. The models of volume fraction of dynamic recrystallization and grain size of dynamic recrystallization during dual phase (α+β) plastic deformation process have been established based on microstructure evolution. Average grain size model of primaryαphase of TA11 titanium alloy is established. The average error between the equation and experimental data of the model is smaller than 14.9%. The model can be used to describe the law of microstructure evolution of TA11 titanium alloy during the thermal processing.
     (3) In order to have the function to predict and simulate microstructure during hot forging process of TA11 alloy, the microstructure evolution model have been embedded in user subroutines of DEFORM-3D software. And the reliability of the program is verified through the simulation of cylinder upsetting.
     (4) The microstructure simulation of TA11 precision forging process is carried out. The influences of the deformation speed, deformation temperature and height reduction on microstructure evolution are analyzed. The distributing rule of the microstructure evolution and optimization of parameters have been obtained during cogging, pre-forging and finish forging processes of the blade. The results are of great significance to select the technology parameters of the precision forging process of the blade.
引文
[1]杨健.钛合金在飞机上的应用.航空制造技术, 2006, 11: 41-43
    [2]陈明和,茆汉湖,朱知寿.热成型过程微观组织模拟研究进展[J].塑性工程学报, 2005, 12(2): 1-6
    [3]王广春,管婧,赵国群.锻造成形微观组织优化建模及应用[J].塑性工程学报, 2005, 12(5): 49-53
    [4] Li Miaoquan, Xiong Aiming, Huang Weiehao, etal. Microstructural evolution and modeling of the hot compression of a TC6 titanium alloy[J]. Materials Characterization, 2003, 49: 203-209
    [5]张青. TB8合金热变形组织的分形研究及演变模拟.合肥工业大学博士学位论文, 2008, 1-2
    [6]薛利平,鹿守理,窦晓峰,赵辉,金明.金属热变形时组织演化的有限元模拟及性能预测.北京科技大学学报, 2000, 22(1): 34-37
    [7]《有色金属及其热处理》编写组.有色金属及其热处理.北京:国防工业出版社, 1981
    [8]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社, 2005: 287-288 67-75
    [9]黄虹.钛及其合金的非航空航天用途.稀有金属与硬质合金, 2001,(146): 46-49
    [10]吴建设,徐秀茹,朱昱.新能源开发用钛现状及发展前景.世界有色金属. 1999,(12): 12-15
    [11]李玉涛. TC11钛合金热压缩过程组织演变规律研究.哈尔滨工业大学工学硕士学位论文, 2006: 2-3
    [12]徐彬. TC11钛合金高温压缩变形行为研究.哈尔滨工业大学工学硕士学位论文, 2006: 2-4
    [13]中国航空材料手册编辑委员会.《中国航空材料手册铝合金镁合金钛合金》.中国标准出版社, 1989: 539-719
    [14]张宝昌.《有色金属及其热处理》.西北工业大学出版社, 1993: 88-125
    [15]彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析[J].材料工程, 1997,(10): 3
    [16]赵树萍,吕双坤.钛合金在航空航天领域中的应用[J].钛工业进展, 2002,(6): 18
    [17]訾群.钛合金研究新进展及应用现状[J].钛工业进展, 2008, 25(2): 26
    [18]《透平机械现代制造技术丛书》编委会.叶片制造技术.北京:科学出版社, 2002: 20-21
    [19]崔忠圻.金属学与热处理.北京:机械工业出版社, 2000: 214-218
    [20]王锋. TA15合金热变形组织和性能研究.合肥工业大学硕士学位论文, 2008: 8-11 34-35
    [21]洪权,张振祺. Ti-6Al-2Zr-1Mo-1V合金的热变形行为.航空材料学报, 2001, 21(1): 10-12
    [22]徐文臣,单德彬,李春峰,吕炎. TA15钛合金的动态热压缩行为及其机理研究.航空材料学报, 2005, 25(4): 10-16
    [23]冯亮,曲恒磊,赵永庆,李辉,张颖楠,曾卫东. TC21合金的高温变形行为.航空材料学报. 2004, 24(4): 11-13
    [24]娄燕,李落星,彭大暑. Ti-3Al-5Mo-5V合金在热压缩变形状态下的组织和应力分析.金属热处理. 2002, 28(4): 36-39
    [25]周军,曾卫东,舒滢,周义刚.热变形参数对Ti-17合金的片状α球化过程的影响.热加工工艺. 2005, l: 16-18
    [26] C. M. Sellars and J. A. Whiteman. Computer modeling of hot working processes. Mater. Sci. Tech., 1955, 1: 325-332
    [27] C. M. Sellars and J. A. Whiteman. Recrystallization and grain growth in hot rolling. Mater. Sci., 1978, 13(3):187-194
    [28] H. Yada and T.Senuma. Resistance to hot deformation of steel. J. JSTP, 1986, 27: 33-44
    [29] R. Kopp, K. Karnhausen and M. M.de Souza. Numerical Simulation Method for Designing Thermomechanical Treatment, Illustrated by Bar Rolling scand. J. Metal, 1991, 20: 351-363
    [30] Y. S. Jang, etc. Application of the Finite Element Method to Prediet Microstructum Evolution in the Hot Forging of Steel [J]. Journal of Materials Processing Technology, 2000, 101: 85-94
    [31] Young-Sang Na, Jong-Taek Yeom. Simulation of Microstructures for Alloy 718 Blade Forging using 3D FEM Simulator[J]. Journal of Materials Processing Technology 2003,(141): 337-342
    [32] N. Bontcheva, G. Petzov. Microstructure Evolution during Metal Forming Processes[J]. Computational Materials Science 2003,(28): 563-573
    [33] H. grass C. krempaszky, T. Reip, E. W erner. 3-D Simulation of Hot Forming and Microstructure Evolution[J]. Computational Materials Science 2003 ,(29): 469-477
    [34] P. F. Bariani, S. Bruschi. Integrating Physical and Numerical Simulation Techniques in Forging Process of Stain Less Steel Blades[J]. International Journal of Machine Tools and Manufacture 2004,(24): 945-951
    [35] G. S. Shen, S. L. Semiatin, R. Shivpuri. Modeling Microstructural Development During the Forging of Waspaloy. Metallurgical and Materials Transactions A, 1995, 26A: 1795-1803
    [36] W. G. Frazier, J. C. Malas. Application of Control Theory Principles to Optimization of Grain Size During Hot Extrusion. Mater. Sci. Tech. 1998, 14: 25-31
    [37] A. J. Brand, K. Karhansen, R. KoPP. Microstructural Simulation of Nickel Base Alloy Inconel 718 in Production of Turbine Discs. Materials Science and Technology. 1996, 12: 963-969
    [38] Z. M. Hu, J. W. Brooks, T. A. Dean. Experimental and Theoretical Analysis of Deformation and Microstructural Evolution in the Hot-Die Forging of Titanium Alloy Aerofoil Sections. J. Mater Process Technol. 1999, 88: 251-265
    [39] T. Ishikawa. Modeling the Microstructural Evolution and Mechanical Properties of Forged Parts. Casting, Forging and Heat Treatment. 1995, 4: 29-35
    [40]许思广,曹起镶等.金属成形中晶粒度变化的计算机模拟.清华大学学报. 1994, 35: 61-68
    [41] L. Wang, Q. Cao, Z. Liu. Numerical Simulation and Experimential Verification of Microstructure Evolution in a 3-Dimensional Hot Upsetting Progress. J. Mater Process Technol. 1996, 58(2-3): 331-336
    [42]崔振山,刘才.热轧过程微观组织演变得数值预报与试验研究.机械工程学报. 2000, 36(7): 92-95
    [43]蔡旺,杨合,李从心.热力耦合作用下叶片锻造晶粒尺寸的预测[J].锻压技术, 2004, (6): 67-69
    [44]李淼泉,薛善坤,陈胜晖,等.钛合金叶片等温精锻时晶粒尺寸的数值模拟[J].机械科学与技术, 2004, 23(11):1380-1386
    [45]李晓丽,李淼泉,李锋,熊爱明. TC6合金等温锻造过程中晶粒尺寸的数值模拟[J].中国有色金属学报, 2005,(9):1332-1337
    [46]刘君,刘郁丽,杨合,李虹艳.基于多场耦合分析的TC4叶片精锻成形的微观组织模拟[J].塑性工程学报, 2007,(4): 64-68
    [47]马秋,林忠钦,于忠奇. IN718合金多步锻造过程中微观组织演变数值模拟[J].上海交通大学学报, 2007, 41(3):629-633
    [48]熊爱明,薛善坤,李晓丽等.叶片锻造技术的现状与发展趋势探讨[J].机械科学与技术, 2001, 20(6):806-807
    [49]刘君,刘郁丽,杨合,高涛.热锻成形过程微观组织模拟技术的研究现状[J].机械科学与技术, 2005,(5):533-535
    [50]韩冰. 7075z铝合金高温塑性变形行为研究.广东工业大学硕士学位论文, 2003, 8-10
    [51]陈胜晖.基于微观组织演变的钛合金本构关系模型及应用.西北工业大学硕士学位论文, 2004, 1-2 12-13 19-20
    [52]汪大年主编.《金属塑性成形原理》西安交通大学.机械工业出版社, 101-103
    [53]姚泽坤,郭鸿镇,苏祖武.热力参数对α+β两相钛合金再结晶百分数和力学性能的影响.稀有金属材料与工程, 2000, 29(5): 340-343
    [54]熊爱明,陈胜晖,黄维超,林海,李淼泉. TC6钛合金的高温变形行为及组织演变.稀有金属材料与工程, 2003, 32(6): 447-450
    [55] J. Langkruis, W. H. Kool, S. Zwaag. Assessment of Constitutive Equations in Modelling the Hot Deformability of Some Overaged Al-Mg-Si Alloys With Varying Solute Contenis. Materials Science and Engineering, 1999, A266(l/2): 135-145
    [56] J. Langkruis, R. Bergwerf, S. Zwaag. Linking Plane Strain Compression Tests onAA6063 to Laboratory Scale Extrusion via Constitutive Equations. Materials Science Forum, 2000, 331(2): 565-570
    [57] Z. Gronostajski. The Constitutive Equations for FEM Analysis. Journal of Materials Processing Technology, 2000, 106(l/3): 40-44
    [58]周纪华,管克智.高温高速下合金结构钢的流动应力研究.金属学报, 1986, 22(1): B31-B38
    [59] A. Wahlen, U. Feurer, J. Reissner. Computer Controlled Measurement and Analytical Modeling of Flow Stresses During Hot Deformation of the Copper Alloy CuZn42Mn2. Journal of Materials Processing Technology, 1997, 63(l/3): 233-237
    [60] L. X. Kong, P. D. Hodgson, B. Wang. Development of Constitutive Models for Metal Forming with Cyclic Strain Softening. Journal of Materials Processing Technology, 1999, 89/90(5): 44-50
    [61] D. G. Robertson, H. B. Mcshane. Analysis of High Temperature Flow Stress of Titanium Alloys IMI550 and Ti-10V-2Fe-3Al during Isothermal Forging. Materials Science and Technology, 1998, 14(4): 339-345
    [62]何宜柱,陈大宏,雷廷权.热变形动态软化本构模型.钢铁, 1999, 34(9): 29-33
    [63] C. Zener and J. H. Hollomon. Effect of strain-rate upon the plastic flow of steel. Journal of Applied Physics, 1944, 15: 22-27
    [64] C. M. Sellars and W .J. McG. Tegart. On the mechanism of hot deformation. Acta Metallurglca, 1966, 14, 9: 1136-1138
    [65] McQueen H. J, Yue S, Ryan N D, et al. Hot Working Characteristics of Steels in Austenitic State. J Mater Process Technol, 1995, 53: 293-310
    [66] Fensei F. Today’s Copper Alloy for Leadframe. SEMI Technology Symposium, 1988, 88
    [67]杨立斌,张辉,彭大暑等. 7050铝合金高温流变行为的研究.热加工工艺, 2002, (1)
    [68] P. F. Bariani, S. Bruschi, T. D. Negro. A New Constitutive Model for Hot Forging of Steels Taking into Account the Thermal and Mechanical History. Annals of the CIRP, 2000, 49(1): 195-198
    [69] A. J. Beaudoin, A. Acharya, S. R. Chen, D. A. Karzekwa, M. G. Stout. Consideration of Grain-size Effect and Kinetics in the Plastic Deformation ofMetal Polycrystals. Acta Materialia, 2000, 48(13): 3409-3423
    [70] J. Y. Cheng, S. Nemat-Nasser, W. G. Guo. A Unified Constitutive Model for Strain-rate and Temperature Dependent Behavior of Molybdenum. Mechanics of Materials, 2001, 33(11): 603-616
    [71] A. Laasraoui, J. J. Jonas. Prediction of Steel Flow Stress at High Temperatures and Strain Rates. Metallurgical and Materials Transactions A, 1991, 22A(7): 1545-1558
    [72] E. G. Donahue, G. R. Odette, G. E. Lucas. A Physically Based Constitutive Model for a V-4Cr-4Ti Alloy, Journal of Nuclear Materials, 2000, 283-287: 637-641
    [73] K.Karhausen and R.Kopp,Model for Integrated Process and Microstructure Simulation in hot Forming[J],Steel Research,1992,63:247-266
    [74]金泉林.金属细晶超塑本构方程及应用.清华大学博士论文, 1991, 5
    [75]金泉林.一个全新的动态再结晶过程的分析模型.塑性工程学报, 1994, v1, 1, 3-12
    [76]曾志朋. DEFORM软件的二次开发与大型锻件锻造工艺优化.机械科学研究院硕士论文, 2002, 3-11 30-33
    [77] M.Yamaguchi, M.Futamura, T.Shiraishi. Numerical prediction of grain size distribution for hot forging processes, 2001, 6
    [78] J.R.Cho, H.S.Jeong, D.J.Cha, W.B.Bae, P.Hartley & I.Pillinger, Prediction of microstructural evolution and recrystallization behaviors of die steel, 2001, 6
    [79]窦晓峰,赵辉,鹿守理.金属热变形时动态组织变化的模拟.北京科技大学学报, 1996, 18(6): 53
    [80]窦晓峰,鹿守理,赵辉. Q235钢动态再结晶模型的建立[J].北京科技大学学报, 1998, 20(5):467-468
    [81]万晶晶.高温合金叶片精锻成形过程中微观组织的数值模拟.沈阳理工大学硕士学位论文, 2009, 59-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700