基于置信信念函数的群决策过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
决策问题自身的部分无知性、随机性、难以描述性,决策信息的不确定性、不完备性,决策者的有限理性,使得不确定决策,尤其是不确定群决策成为决策科学研究的一个热点。针对不确定群决策问题,涌现出各种不确定群决策方法,包括模糊多属性群决策方法、基于语言评价信息的群决策方法和基于证据理论的群决策方法等。各种方法注重不确定信息的表达、群体一致性分析、群体意见的集结和方案的统一量纲排序。然而,它们对应的群决策过程缺乏高置信性,主要表现在对专家评价的置信性与偏好无差异性等方面考虑不足。针对这一问题,以证据理论为基础,本文研究如何构建基于置信信念函数的群决策过程,并进行实际应用。具体的研究内容和创新点如下:
     (1)信念函数间的一致度分析。本文对Liu Weiru提出的信念函数间的冲突分析进行修正、改进,克服二元冲突测度的内在差异性及基于冲突测度的Dempster规则适应判断的不合理性,提出信念函数间的一致度,基于一致度将信念函数间关系划分为冲突、相容、一致三类,进而运用三类关系进行Dempster规则适用性判断。信念函数间的一致度为源自专家的置信信念函数和群体一致性构建提供了必要基础。
     (2)源自专家的置信信念函数构建。本文以Simon的有限理性为理论指导,分析由专家意见定性定量构建信念函数存在的不足;以源自专家的一组给定时间区间上的采样信念函数为基础,提出源自专家的置信信念函数的定性定义;根据定性定义,使用基于一致度的信念函数间关系对采样信念函数组进行一致子集划分,在统计框架下对置信信念函数进行定量定义,并给出获取置信信念函数的一般流程;以某通信公司策略升级为背景,阐述置信信念函数的构建过程及在意向决策中的应用;针对置信信念函数构建方法可能存在的计算复杂度指数增长问题,提出通过计算机实验方法选择合适的框架长度以及对原始问题框架进行层次划分来加以解决。
     (3)源自客观观察数据的置信信念函数构建。分析典型工程应用中基于客观观察数据构建信念函数存在的瞬时异常问题;以基于客观观察数据的一组信念函数的最大一致子集为基础,给出置信信念函数的定性定义;针对使用信念函数间关系进行基于客观观察数据的一组信念函数的一致划分存在的不足,构建结构同分布规则,给出规则的5个性质;根据定性定义,给出置信信念函数的量化定义,并分析其合理性;以粗糙集作为理论基础,讨论获取置信信念函数的一般流程。
     (4)基于置信信念函数使用扩展TOPSIS(Technique for Order Preference by Similarity to Ideal Solutions)的群决策过程。构建TOPSIS的前向、内部、后向三种扩展模型;提出基于源自专家的置信信念函数使用TOPSIS扩展模型的群决策过程;针对典型算例,分别运用三种扩展TOPSIS模型进行群决策求解,并进行结果对比。所建立的群决策过程适用于客观条件不允许或决策规则不指定群体一致约束的应用场合。
     (5)基于置信信念函数面向群体一致的群决策过程。提出以源自专家的置信信念函数为基础,以群体一致性为约束的群决策过程,构建包含属性、方案、全局三个层次上的群体一致性,研究基于选定层次上的群体一致的不确定群体决策问题求解,包括不同专家的决策意见的统一效用正规化,不同方案各属性上各专家的权重确定,方案上评价等级效用集结,以及整个过程的详细叙述。以某汽车制造公司乘用车研究院工程项目管理软件选择问题为背景,描述一个完整的群决策过程。所建立的群决策过程适用于客观条件允许或决策规则指定群体一致约束的应用场合。
     上述研究丰富了基于证据理论的不确定群决策方法,发展了一个基于置信信念函数的群决策过程,使得此方法可以应用于更多的实际场合,合理、有效地解决更多的实际问题。
Decision making under uncertainty, especially uncertain group decision making (GDM), has already become a hot point in the domain of decision science owing to the partial ignorance, randomicity, difficult-description of decision problems, the uncertainty and imperfection of decision information, and the unbounded rationality (BR) of decision makers.
     Focusing on uncertain GDM problems, many approaches have been emerged, including fuzzy multiattribute GDM approach, linguistic assessment based GDM approach, evidence theory based GDM approach, and etc.. Almost all kings of approaches concentrate on the expressions of uncertain information, the analysis of group consensus, the aggregation of group opinions, and the unified dimensional ranking order of alternatives. However, their corresponding GDM processes take no enough confidence into account, which is shown as lack of consideration for the confidence of group assessments, the non-distinct preference of group assessments, and etc.. For lack of full confidence, based on Dempster-Shafer theory (DST), this dissertation investigates the construction of the GDM process on the basis of confidence belief functions and its real application. The main detailed contents and innovative points include:
     (1) The analysis of consistency degree among belief functions. This dissertation improves the conflict analysis among belief functions proposed by Liu Weiru in order to overcome the intrinsic difference between two dimensions of Liu’s conflict measure and the irrationality of Liu’s conflict measure based suggestions on the applicability of Dempster’s rule. A consistency measure between a pair of belief functions is proposed to divide beliefs’pairwise relationships (BPRs) into three categories composed of conflict, compatible, and consistency. Three BPRs are further used to validly recommend the applicability of Dempster’s rule. The consistency measure provides necessary foundations for the constructions of confidence belief functions from experts and group consensus.
     (2) The construction of confidence belief functions from experts. Regarding the BR of Simon as theoretical guidance, this dissertation analyzes the drawbacks of qualitatively and quantitatively producing a belief function from an expert, and proposes the qualitative definition of a confidence belief function from the expert based on a set of belief functions sampled from the expert within a given time interval. In terms of the qualitative definition of confidence belief function, a set of belief functions are partitioned into a finite number of consistent subsets with BPRs on the basis of consistency measure, and the confidence belief function is quantitatively defined under a statistical framework. Furthermore, a general procedure for generating a confidence belief function is elaborated. The strategy upgrade of a communication company is examined to demonstrate the construction of a confidence belief function and its application in intention decision. In order to deal with the exponential increasing of computational complexity when constructing confidence belief functions, we discuss how to select an appropriate frame by experimenting on computer and hierarchically partition original problems.
     (3) The construction of confidence belief functions from objective observation data. The instantaneous exceptions of constructing belief functions from objective observation data in representative engineering applications are analyzed. On the basis of the maximal consistent subset generated from a set of belief functions constructed from objective observation data, a confidence belief function from objective observation data is qualitatively defined. Because of the drawbacks of consistently partitioning a set of belief functions based on objective observation data using BPRs, a structure-equivalent rule is constructed and its five characteristics are explained. According to the qualitative definition of confidence belief function, the quantitative definition of the confidence belief function is given and its validity is analyzed. Taking Rough Set as theoretical foundations, we discuss a general procedure for generating a confidence belief function from a set of belief functions.
     (4) The confidence belief functions based GDM process using extended TOPSISs (Technique for Order Preference by Similarity to Ideal Solutions). Three extended TOPSIS models which are composed of premodel, intermodel, and postmodel, are constructed and used to build a GDM process based on confidence belief functions. A representative example is examined to make solutions using three extended TOPSIS models and compare them. The GDM process is suitable to be used in such applications that is not allowed by objective conditions or is not specified by decision rules.
     (5) The confidence belief functions based GDM process oriented to group consensus (GC). A GDM process based on confidence belief functions and constrained by GC is proposed. The GC in three levels including the attribute level, the alternative level, and the global level, is constructed. Solving the uncertain GDM problem based on GC in a specific level is studied. Hereinto, the main research contents include the unification of opinions of different experts using unified utilities, the confirmation of the relative weight of each expert on each attribute for each alternative, the aggregation of group utilities of assessment grades for alternatives, and the detailed interpretation of the whole process. An engineering project management software selection problem in the research institute of passenger car in an automobile manufacturing company is made to describe a whole GDM process. The GDM process is suitable to be used in such applications that is allowed and required by objective conditions or is specified by decision rules.
     The above research enriches the DST based uncertain GDM approaches and developes a confidence belief functions based GDM process. This makes the approaches more flexible to be used in practical applications, and further more rational and effective to solve real problems.
引文
[1] C.L. Hwang. Group decision making under multiple criteria, methods and applications. New York: Springer-Verlay, 1987.
    [2] A.I. Olcer, A.Y. Odabasi. A new fuzzy multiple attribute goup decision making methodology and its applicaton to propulsion/manoeuvring system selection problem. European Journal of Operational Research, 2005, 166: 93-114.
    [3] G. Pasi, R.R. Yager. Modeling the concept of majority opinion in group decision making. Information Sciences, 2006, 176: 390-414.
    [4] D.F. Li, J.B. Yang. Fuzzy linear programming technique for multiattribute group decision making in fuzzy environment. Information Sciences, 2004, 158: 263-275.
    [5] Y.J. Wang, H.S. Lee. Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. International Journal of Computers and Mathematics with Applications, 2007, 53: 1762-1772.
    [6] D.F. Li. Compromise ratio method for fuzzy multi-attribute group decision making. Applied Soft Computing, 2007, 7: 807-817.
    [7] Z.S. Xu, J Chen. An interactive method for fuzzy multiple attribute group decision making. Information Sciences, 2007, 177: 248-263.
    [8] F. Herrera, L. Martinez, P.J. Sanchez. Managing non-homogeneous information in group decision making. European Journal of Operational Research, 2005, 166: 115-132.
    [9]徐泽水.纯语言多属性群决策方法研究.控制与决策, 2004, 19(7): 778-781, 786.
    [10]王坚强,孙超.基于语言判断矩阵的信息不完全的群决策方法.系统工程与电子技术, 2006, 28(9): 1348-1352.
    [11]廖貅武,李垣,董广茂.一种处理语言评价信息的多属性群决策方法.系统工程理论与实践, 2006, 9: 90-98.
    [12] J.I. Pelaez, J.M. Dona. A majority model in group decision making using QMA-OWA operators. International Journal of Intelligent Systems, 2006, 21: 193-208.
    [13] Z. Xu. Induced uncertain linguistic OWA operators applied to group decision making. Information Fusion, 2006, 7: 231-238.
    [14] F. Herrera, L. Martinez. A model based on linguistic tuples for dealing with multigranularity hierarchical linguistic contexts in multiexpert decision making. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2001, 31(2): 227-234.
    [15]王欣荣.基于语言评价信息的群决策理论与方法研究.东北大学,博士学位论文, 2003.
    [16] K.S. Chin, Y.M. Wang, G.K.K. Poon, J.B. Yang. Failure mode and effects analysis using agroup-based evidential reasoning approach. Computers and Operations Research, 2008 (in press).
    [17] K.S. Chin, D.L. Xu, J.B. Yang, J. P-K Lam. Group-based ER-AHP system for product project screening. Expert Systems with Applications, 2008, 35(4): 1909-1929.
    [18] M.J. Beynon. A method of aggregation in DS/AHP for group decision-making with the non-equivalent importance of individuals in the group. Computers & Operations Research, 2005, 32(7): 1881-1896.
    [19]杨萍,刘卫东.基于证据理论的群决策层次评价方法研究.系统工程与电子技术, 2002, 24 (2): 42-44, 92
    [20]吕文红,吴祈宗,郭银景.基于D-S证据理论的群决策专家意见集结方法.运筹与管理, 2005, 14 (2): 10-13, 25.
    [21]吕文红,吴祈宗,邵全.证据理论在群决策中的应用.决策参考, 2005, 7: 47-49.
    [22]王侃,张金隆,方凌云.基于证据推理的移动商务风险群决策方法.武汉理工大学学报(信息与管理工程版), 2008, 30 (3): 470-473.
    [23]陈增明.群决策环境下证据理论决策方法研究与应用.合肥工业大学,博士学位论文, 2007.
    [24] E. Herrera-Viedma, L. Martinez, F. Mata, F. Chiciana. A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Transactions on Fuzzy Systems, 2005, 13: 644-658.
    [25] W.L. Oberkampf, J.C. Helton, C.A. Joslyn, S.F. Wojtkiewicz, S. Ferson. Challenge problems: uncertainty in system response given uncertain parameters. Reliable Engineering and System Safety, 2004, 85: 11-19.
    [26]赵勇,岳超源.模糊偏好下社会选择问题的研究.系统工程学报, 1996, 11(3): 54-61.
    [27] A. Banerjer. Fuzzy preferences and Arrow-type problems in social choice. Social Choice and Welfare, 1994, 11: 121-130.
    [28] H. Hsu, C.T. Chen. Aggregation of fuzzy opinion under group decision making. Fuzzy Sets and Systems, 1996, 79(3): 279-285.
    [29]杨雷,席酉民.一种模糊偏好的群体决策方法.系统工程理论与实践, 1997, 17(9): 22-66.
    [30]姜艳萍,樊治平.群组模糊判断矩阵集结方法的理论分析.东北大学学报, 2001, 22 (3): 343-346.
    [31]宋光兴,杨德礼.模糊判断矩阵的一致性检验及一致性改进方法.系统工程, 2003, 21(1): 110-116.
    [32] C.S. Yu. A GP-AHP method for solving group decision-making fuzzy AHP problems.Computers & Operations Research, 2002, 29: 1969-2001.
    [33] L.S. Chen, C.H. Cheng. Selecting IS personnel use fuzzy GDSS based on metric distance method. European Journal of Operational Research, 2005, 160: 803-820.
    [34]王欣荣,樊治平.基于二元语义信息处理的一种语言群决策方法.管理科学学报, 2003, 6(5): 1-5.
    [35]姜艳萍,樊治平.基于二元语义符号运算的群决策方法.系统工程与电子技术, 2003, 25(11): 1373-1376.
    [36] I. Contreras, A.M. Marmol. A lexicographical compromise method for multiple criteria group decision problems with imprecise information. European Journal of Operational Research, 2007, 181: 1530–1539.
    [37] Z.P. Fan, J. Ma, Y.P. Jiang, Y.H. Sun, M. Louis. A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. European Journal of Operational Research, 2006, 174: 311–321.
    [38] G. Shafer. The combination of evidence. International Journal of Intelligent Systems, 1986, 1: 155-179.
    [39] G. Shafer. Non-additive probabilities in the work of Bernoulli and Lambert. Archive for History of Exact Sciences, 1978, 19: 309-370.
    [40] A. Dempster. Upper and lower probabilities induced by multivalued mapping. Annals of Mathematical Statistics, 1967, 38: 325-339.
    [41] G. Shafer. A mathematical theory of evidence. Princeton: Princeton University Press, 1976.
    [42] T. Denoeux. Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning, 2006, 42: 228-252.
    [43] L.V. Utkin. Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model. Fuzzy Sets and Systems, 2005, 154: 413-431.
    [44] B. Barshan, B. Aryulu. Comparative analysis of different approaches to target differentiation and localization with sonar. Pattern Recognition, 2003, 36(5): 1213-1231.
    [45] J.R. Boston. A signal detection system based on Dempster-Shafer theory and comparison to fuzzy detection. IEEE Transactions on Systems Man and Cybernetics, Part C: Applications and Reviews, 2000, 30(1): 45-51.
    [46] J. Velagic, B. Lacevic, B. Perunicic. A 3-level autonomous mobile robot navigation system designed by using reasoning/search approaches. Robotics and Autonomous Systems, 2006, 54(12): 989-1004.
    [47] B.S. Yang, K.J. Kim. Application of Dempster-Shafer theory in fault diagnosis of inductionmotors using vibration and current signals. Mechanical Systems and Signal Processing, 2006, 20(2): 403-420.
    [48] P. Smets, R. Kennes. The transferable belief model. Artificial Intelligence, 1994, 66(2): 191-234.
    [49] S.K.M. Wong, Y.Y. Yao, P. Bollmann, H.C. Burger. Axiomatization of qualitative belief structure. IEEE transaction on systems, man, and cybernetics, 1991, 21(4): 726-734.
    [50] S.K.M. Wong, P. Lingras. Representation of qualitative user preference by quantitative belief functions. IEEE Transactions on Knowledge and Data Engineering, 1994, 6(1): 72-78.
    [51] S. Parsons. Some qualitative approaches to applying the Dempster-Shafer theory. Information and Decision Technologies, 1994, 19: 321-337.
    [52] N. Bryson, A. Mobolurin. A process for generating quantitative belief functions. European Journal of Operational Research, 1999, 115(3): 624-633.
    [53] A.B. Yaghlane, T. Denoeux, K. Mellouli. Constructing belief functions from qualitative expert opinions, in: Information and Communication Technologies, ICTTA’06, 2006, 1: 1363-1368.
    [54] T. Denoeux. Reasoning with imprecise belief structures. International Journal of Approximate Reasoning, 1999, 20: 79-111.
    [55] J. Yen. Generalizing the Dempster-Shafer theory to fuzzy sets. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20(3): 559-569.
    [56] R.R. Yager, D.P. Filev. Including probabilistic uncertainty in fuzzy logic controller modeling using Dempster-Shafer theory. IEEE Transactions on Sysmtes, Man and Cybernetics, 1995, 25(8): 1221-1230.
    [57] R.R Yager. Generalized probabilities of fuzzy events from fuzzy belief structures. Information Sciences, 1982, 28: 45-62.
    [58] P. Smets. The degree of belief in fuzzy event. Information Sciences, 1981, 25: 1-19.
    [59] M. Ishizuka, K.S. Fu. Inference procedures under uncertainty for the problem-reduction method. Information Sciences, 1982, 28: 179-206.
    [60] T. Denoeux. Allowing imprecision in belief representation using fuzzy-valued belief structures, in: Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU’98), 1998, 1: 48-55.
    [61] T. Denoeux. Modeling vague beliefs using fuzzy-valued belief structures. Fuzzy Sets and Systems, 2000, 116(32): 167-199.
    [62] L. Zadeh. Review of books: a mathematical theory of evidence. AI Magazine, 1984, 5(3): 81-83.
    [63] P. Smets. The combination of evidence in the transferable belief model. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(5): 447-458.
    [64] R.R. Yager. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93-137.
    [65] D. Dubois, H. Prade. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intellligence, 1998, 4: 244-264.
    [66] E. Lefevre, O. Colot, P. Vannoorenberghe. Belief function combination and conflict management. Information Fusion, 2002, 3: 149-162.
    [67]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式.电子学报, 2000, 28(8): 1-3.
    [68]肖明珠,陈光禑.一种改进的证据合成公式.电子学报, 2005, 33(9): 1714-1716.
    [69]向阳,史习智.证据理论合成规则的一点修正.上海交通大学学报, 1999, 33(3): 357-360.
    [70] R. Haenni. Are alternatives to Dempster’s rule of combination real alternatives? Comments on“About the belief function combination and the conflict management problem”. Information Fusion, 2002, 3(4): 237-239.
    [71] C.K. Murphy. Combining belief functions when evidence conflicts. Decision Support Systems, 2000, 29(1): 1-9.
    [72] Y. Deng, W. Shi, Z. Zhu, Q. Liu. Combining belief functions based on distance of evidence. Decision Support Systems, 2004, 38(3): 489-493.
    [73]邓勇,施文康.一种改进的证据推理组合规则.上海交通大学学报, 2003, 37(8): 1275-1278.
    [74]林志贵,徐立中,周金陵.基于修改模型的冲突证据组合方法.上海交通大学学报, 2006, 40(11): 1964-1970.
    [75]林作铨,牟克典,韩庆.基于未知扰动的冲突证据合成方法.软件学报, 2004, 18(8): 1150-1156.
    [76] Y.G. Wu, J.Y. Yang, K. Liu. On the evidence inference theory. Information Sciences, 1996, 89: 245-260.
    [77]杨善林,朱卫东,任明伦.基于可变参数优化的相关证据合成方法研究.管理科学学报, 2003, 5: 11-16.
    [78] T. Denoeux. Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence. Artificial Intelligence, 2008, 172: 234-264.
    [79] E.S. Lee, Q. Zhu. An interval Dempster-Shafer approach. Computers and Mathematics with Applications, 1992, 24(7): 89-95.
    [80] R.R Yager. Dempster-Shafer belief structures with interval valued focal weights. InternationalJournal of Intelligent Systems, 2001, 16: 497-512.
    [81] Y.M. Wang, J.B. Yang, D.L. Xu, K.S. Chin. On the combination and normalization of interval-valued belief structures. Information Sciences, 2007, 177: 1230-1247.
    [82] D. Dubois, H. Prade. A note on measures of specificity for fuzzy sets. International Journal of General Systems, 1985, 10(4): 279-283.
    [83] T. George, N. Pal. Quantification of conflict in Dempster-Shafer framework: a new approach. International Journal of General Systems, 1996, 24(4): 407-423.
    [84] G. Klir, A. Ramer. Uncertainty in the Dempster-Shafer theory: A critical re-examination. International Journal of General Systems, 1990, 18(2): 155-166.
    [85] P. Smets. Information content of an evidence. International Journal of Man-Machine Studies, 1983, 19(1): 33-43.
    [86] R.R Yager. Entropy and specificity in a mathematical theory of evidence. International Journal of General Systems, 1983, 9(4): 249-260.
    [87] P. Smets. Analyzing the combination of conflicting belief functions. Tenical Report, IRIDIA, Universite Libra de Bruxelles, 2004.
    [88] W. Liu. Analyzing the degree of conflict among belief functions. Artificial Intelligence, 2006, 170: 909-924.
    [89] M. Beynon, D. Cosker, D. Marshall. An expert system for multi-criteria decision making using Dempster-Shafer theory. Expert and Systems with Applications, 2001, 20: 357-367.
    [90] G. Biswas, M. Oliff, A. Sen. An expert decision support system for procudtion control. Decision Support Systems, 1988, 4: 235-248.
    [91] P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence, 1996, 83: 1-58.
    [92] S. Benferhat, A. Saffiotti, P. Smets. Belief functions and default reasoning. 2000, 122: 1-69.
    [93] L.H. Chen. An extended rule-based inference for general decision-making problems. Information Sciences, 1997, 102: 111-131.
    [94] E. Hullermeier. Similarity-based inference as evidential reasoning. International Journal of Approximate Reasoning, 2001, 26: 67-100.
    [95] R.W. Jones, A. Lowe, M.J. Harrison. A framework for intelligent medical diagnosis using the theory of evidence. Knowledge-Based Systems, 2002, 12: 77-84.
    [96] Z. Pei, G. Resconi, A.J. Van Der Wal, K. Qin, Y. Xu. Interpreting and extracting fuzay decision rules from fuzzy information systems and their inference. Information Sciences, 2006, 176(13): 1869-1897.
    [97] A. Rakar, D. Juricic, P. Balle. Diagnostic reasoning under conflicting data: the application ofthe transferable belief model. Journal of Process Control, 2002, 12(1): 55-67.
    [98] E. Straszecka. Combining uncertainty and imprecision in models of medical diagnosis. Information Sciences, 2006, 176(20): 3026-3059.
    [99] E. Binaghi, I. Gallo, P. Madella. A neural model for fuzzy Dempster-Shafer classifiers. International Journal of Approximate Reasoning, 2000, 25(2): 89-121.
    [100] T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2000, 30(2): 131-150.
    [101] T. Denoeux, L.M. Zouhal. Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets and Systems, 2001, 122(3): 409-424.
    [102]陈丹,李京华,黄根全,许家栋.基于证据理论的战场被动声多目标识别研究.系统仿真学报, 2007, 19(6): 1323-1325.
    [103]李炯,雷虎民,刘兴堂.一种D-S证据理论的改进方法及其在目标识别中的应用.探测与控制学报, 2007, 29(1): 76-79.
    [104] A .Telmoudi, S. Chakhar. Data fusion application from evidential databases as a support for decision making. Information and Software Technology, 2004, 46(8): 547-555.
    [105] W.Z. Wu, M. Zhang, H.Z. Li, J.S. Mi. Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences, 2005, 174(3-4): 143-164.
    [106] R.P. Srivastava, H. Lu. Structural analysis of audit evidence using belief functions. Fuzzy Sets and Systems, 2002, 131: 107-120.
    [107] R.P. Srivastava, H. Lu. Applications of belief functions in business decision: a review. Information Systems Frontier, 2003, 5(4): 359-378.
    [108] P.R. Gillett. Monetary unit sampling: a belief-function implementation for audit and accounting applications. International Journal of Approximate Reasoning, 2000, 25: 43-70.
    [109] P.R. Gillett, R.P. Srivastava. Attribute sampling: a belief-function approach to statistical audit evidence. Auditing: A Journal of Practice and Theory, 2000, 19(1): 146-155.
    [110]鞠彦兵,王爱华.基于证据理论的风险收益评价模型及其应用.数学的实践与认识, 2006, 36(12): 19-28.
    [111]丁松滨,石荣.空中交通管制人员风险评价的证据理论模型.系统仿真学报, 2007, 19(15): 3368-3371.
    [112] M. Beynon. DS/AHP method: a mathematical analysis, including an understanding of uncertainty. European Journal of Operational Research, 2002, 140: 148-164.
    [113] M. Beynon. An investigation of the role of scale valued in the DS/AHP method of multi-criteria decision making. Journal of MultiCriteria Decision Analysis, 2002, 11: 327-343.
    [114] D.L. Xu, J.B. Yang, Y.M. Wang. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. European Journal of Operational Research, 2006, 174: 1914-1943.
    [115] Y.M. Wang, J.B. Yang, D.L. Xu, K.S. Chin. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees. European Journal of Operational Research, 2006, 175: 35-66.
    [116]林志贵,徐立中,严锡君,黄凤辰,刘英平.基于距离测度的D-S证据融合决策方法.计算机研究与发展, 2006, 43(1): 169-175.
    [117]何波,任鸣鸣,王坚强.一种基于证据推理的信息不完全的多准则决策方法.数学的实践与认识, 2006, 36(3): 58-62.
    [118]杨明顺,林志航,李言,李鹏阳,袁启龙.产品总体方案评价与优选的证据推理决策.工程图学学报, 2006, 2: 32-38.
    [119] Y.M. Wang, J.B. Yang, D.L. Xu. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3): 1885-1913.
    [120] M. Sonmez, J.B. Yang, G.D. Holt. Addressing the contractor selection problem using an evidential reasoning approach. Engineering, Construction and Architectural Management, 2001, 8(3): 198-210.
    [121] M. Sonmez, G. Graham, J.B. Yang, G.D. Holt. Applying the evidential reasoning approach to pre-qualifying construction contractors. Journal of Management in Engineering, 2002, 18(3): 111-119.
    [122] J.B. Yang, B.G. Date, C.H.R. Siow. Self-assessment of excellence: an application of the evidential reasoning approach. International Journal of Production Research, 2001, 39(16): 3789-3812.
    [123] J. Liu, J.B. Yang, J. Wang, H.S. Sii, Y.M. Wang. Fuzzy rule-based evidential reasoning approach for safety analysis. International Journal of General Systems, 2004, 33(2-3): 183-204.
    [124] J. Wang, J.B. Yang. A subjective safety based decision making approach for evaluation of safety requirements specification in software development. International Journal of Reliability, Quality and Safety Engineering, 2001, 8(1): 35-57.
    [125]赖海光,许峰,黄皓,谢俊元.基于Dempster-Shafer证据理论的端口扫描检测方法.电子学报, 2006, 34(11): 1946-1950.
    [126]朱庆,徐胜华,韩李涛.基于D-S证据理论的彩色航空影像阴影提取方法.自动化学报, 2007, 33(6): 588-595.
    [127]杨善林,刘业政,李亚飞.基于Rough Sets理论的证据获取与合成方法.管理科学学报, 2005, 8(5): 69-75.
    [128]杨善林,朱卫东,任明仑.基于学习的证券市场专家预测意见合成研究.系统工程学报, 2004, 19(l): 94-98.
    [129]朱卫东,杨善林,任明仑.基于学习与证据理论的专家群体预测系统研究.预测, 2003, 22(l): 61-63.
    [130] Y.M. Wang, T.M.S. Elhag. Evidential reasoning approach for bridge condition assessment. Expert Systems with Application, 2008, 34: 689-699.
    [131] J.B. Yang. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 2001, 131: 31-61.
    [132] J.B. Yang, P. Sen. A general multi-level evaluation process for hybrid MADA with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (10): 1458-1473.
    [133] J.B. Yang, P. Sen. Multiple attribute design evaluation of large engineering products using the evidential reasoning approach. Journal of Engineering Design, 1997, 8 (3): 211-230.
    [134] J.B. Yang, M.G. Singh. An evidential reasoning approach for multiple attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24 (1): 1-18.
    [135] J.B. Yang, Y.M. Wang, D.L. Xu, K.S. Chin. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 2006, 171: 309-343.
    [136] J.B. Yang, D.L. Xu. On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2002, 32 (2): 289-304.
    [137] J.B. Yang, D.L. Xu. Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2002, 32 (3): 376-393.
    [138] P. Smets. Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning, 2004, 38: 133-147.
    [139] D. Dubios, H. Prade. A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. International Journal of General Systems, 1986, 12(3): 193-226.
    [140] P. Smets. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning, 1993, 9: 1-35.
    [141] A. Josang. The consensus operator for combining beliefs. Artificial Intellilgence, 2002, 141(1-2): 157-170.
    [142] A. Ayoun, P. Smets. Data associationin multi-target detection using the transferable belief model. International Journal of Intelligent Systems, 2001, 16(10): 1167-1182.
    [143] H.A. Simon. A behavioral model for rational choice. Quarterly Journal of Economics, 1955, 69: 99-118.
    [144] H.A. Simon. Administrative behavior. New York: Macmillan, 1947.
    [145] H.A. Simon. Models of bounded rationality. Cambridge, MA: MIT Press, 1982.
    [146] J. Conlisk. Why bounded rationality?. Journal of Economic Literature, 1996, 34: 669-700.
    [147] J.M. March. Bounded rationality, ambiguity, and the engineering of choice. The Bell Journal of Economics, 1978, 9: 587-608.
    [148] H.A. Simon. Rational choice, and the structural of the environment. Psychological Review, 1956, 63: 129-138.
    [149] H.A. Simon. Motivational and emotional controls of cognition. Psychological Review, 1967, 74: 29-39.
    [150] H.A. Simon. A mechanism for social selection and successful altruism. Science, 1990, 250: 1665-1668.
    [151] Y. Hanoch.“Neither an angel nor an ant”: Emotion as an aid to bounded rationality. Journal of Economic Psychology, 2002, 23: 1-25.
    [152] H. Tanaka, K. Sugihara, Y. Maeda. Non-additive measures by interval probability functions. Information Sciences, 2004, 164(1-4): 209-227.
    [153] B. Ayrulu, B. Barshan. Reliability measure assignment to sonar for robust target differentiation. Pattern Recognition, 2002, 35(6): 1403-1419.
    [154] G. Oriolo, G. Ulivi, M. Vendittelli. Real-time map building and navigation for autonomous robots in unknown environments. IEEE Transactions on System, Man and Cybernetics, 1998, 28(3): 316-333.
    [155] B.S Yang, K.J. Kim, Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals, Mechanical Systems and Signal Processing, 2006, 20 (2): 403-420.
    [156] Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
    [157] Y. Wang, Y.Y. Guan, Y. Zhang, K.Q. Shi. Rough Cauchy Sequences in Rough Function Model and Their Properties. Advances in Systems Science and Applications, 2006, 6(3): 381-387.
    [158] H.K. Wang, X.H. Li, K.Q. Shi. Information Measure in Rough Communication. Advances in Systems Science and Applications, 2005, 5(4): 638-643.
    [159] H.K. Wang, B.C. Liu, Y.Y. Guan. One Direction Expansion Rough Communication of Dynamic Concept Based onα-generation of Assistant Sets. Advances in Systems Science and Applications, 2007, 7(1): 93-96.
    [160] Z. Che, G.J. Zhang, D.Y. Yu, P.G. Li. Manufacturing Cost Analysis of Cold Extrusion Part using Rough Sets Theory. Advances in Systems Science and Applications, 2006, 6(3): 369-380.
    [161] X.Y. Lu, J.L. Zhang. An Evaluation of Risk Factors in IT Project Management Based on Rough. Advances in Systems Science and Applications, 2005, 5(4): 618-625.
    [162] C.J. Zhu, Y.Q. Rao, X.Y. Shao. Computation of Reducts for Dominance-based Rough Set Approach. Advances in Systems Science and Applications, 2006, 6(2): 326-333.
    [163] M. Zeleny. A concept of compromise solutions and the method of the displaced ideal. Computers and Operations Research, 1974, 1(3-4): 479-496.
    [164] T.L. Saaty. The analytic hierarchy process, edition 2. RWS publication, Pittsburgh, PA, 1990.
    [165] C.L. Hwang, K. Yoon. Multiple attribute decision making. Berlin: Springer-Verlag, 1981.
    [166] G.R. Jahanshahloo, F.H. Lotfi, M. Izadikhah. Extension of the TOPSIS method for decision-making problems with fuzzy data. Applied Mathematics and Computation, 2006, 181(2): 1544-1551.
    [167] G.R. Jahanshahloo, F.H. Lotfi, M. Izadikhah. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 2006, 175(2): 1375-1384.
    [168] A. Shanian, O. Savadogo. TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell. Journal of Power Sources, 2006, 159(2): 1095-1104.
    [169] T.C. Wang, T.H. Chang. Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Expert Systems with Applications, 2007, 33(4): 870-880.
    [170] H. Deng, C.H. Yeh, R. J. Willis. Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 2000, 27(10): 963-973.
    [171] H.S. Shih, H.J. Shyur, E.S. Lee. An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 2007, 45: 801-813.
    [172] C.L. Hwang, M.J. Lin. Group decision making under multiple criteria. Berlin: Springer-Verlag, 1987.
    [173] W. Winston. Operations research applications and algorithms. Duxburg Press, California, 1994.
    [174] L. Zadeh. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Magazine, 1986, 7: 85-90.
    [175] R.L. Keeney, H. Raiffa. Decision with multiple objective: preference and value tradeoffs, Wiley, New York, 1976.
    [176] N. Bryson. Group decision-making and the analytic hierarchy process: exploring the consensus-relevant information content. Computers and Operational Research, 1996, 23: 27-35.
    [177] H.A. Linstone. M. Turoff (Eds.), The Delphi Method; Techniques and Applications, Addison Wesley, 1975.
    [178] M. Tavana, D. T. Kennedy, P. Joglekar. A group decision support framework for consensus ranking of technical manager. Omega, 1996, 24 (5): 523-538.
    [179] A.K. Choudhury, R.Shankar, M.K. Tiwari. Consensus-based intelligent group decision-making model for the selection of advanced technology. Decision Support Systems, 2006, 42: 1776-1799.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700