高寒草甸植物群落演替过程物种多样性和化学计量学动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群落演替是一个动态的过程,随着演替的进行一些个体被另一些个体所取代,一个植物群落取代另一个群落。关于群落演替的研究已经持续了一个多世纪,对于群落演替的形成;演替过程中植物群落的变化;演替过程中植物与环境因子间的相互作用以及演替系列的顶极提出了许多理论与机制。但是迄今为止还没有一个关于演替的统一的理论能适用于所有的生态系统、生境甚至同一个演替的不同阶段。生态化学计量学和生态代谢理论都是最近两年新兴的理论。生态化学计量学是研究植物与环境间元素平衡的一门学科,因此它能够为群落演替的研究提供一个关于元素间的平衡系统,为研究演替过程中植被与环境因子间的相互关系提供理论基础。生态代谢理论是以个体代谢速率与有机体个体大小以及环境温度间的相互关系为基础,将有机体的生长以及繁殖速率与有机体的代谢速率相统一,从而使得从有机体个体到生物圈的各个水平的生态学过程都统一到单个有机体的个体代谢过程。它提供了从个体大小角度出发研究演替过程中群落的变化规律的方法。因此本文以一个位于青藏高原的高寒草甸演替系列为例,分析了这个演替系列的物种多样性和植物氮磷含量及其比值的变化规律,并以生态化学计量学以及代谢理论为方法,试图总结出演替过程植物氮磷含量及其比值的变化与土壤养分变化间的关系、沿演替梯度植物个体大小的变化规律以及物种多样性与植物个体大小产的关系等。以下是本文的主要研究结果:
     1.来自不同科属的植物种数及其在群落中的作用随着演替的进行而变化。菊科植物在演替的早期其重要值为演替三个时期中最大的。在演替早期菊科植物主要是细叶亚菊(Ajania tenuifolium(Tacquem)Tzvel,);演替中期的菊科植物以火绒草(Leontopodium leontopodiaoides(Willd)Beauv.)为主;演替后期则以甘青蒿(Artemisia tangutica Pamp)为主。沿着演替梯度,生活型组成趋于多样化,一年生草本植物的重要值逐渐下降,而多年生草本植物和半灌木的重要值逐渐上升。
     2.从整个演替系列来看,多样性指数与土壤中全氮、全磷和有机质的相关性显著;而优势度和均匀度均只与土壤全磷显著相关;而地上生物量与土壤中这几个参数的相关性都达到了显著。由于演替中期的优势种为披针叶黄华(Thermopsis lanceolata R.Br.)并且由于土壤磷的可利用性可以控制微生物的固氮作用,从而使得演替中期多样性指数、优势度和均匀度与土壤中的全磷和有效磷显著相关。
     3.通过RDA分析,得出了土壤速效N和速效P含量与植物化学计量学问的关系。在演替初期土壤中速效P对植物化学计量学没有影响或者影响极其微弱。土壤速效N与植物化学计量学呈正相关,和植物化学计量学中与N元素有关的变量是正相关而与植物中P的含量则为负相关性。在演替的中期,土壤中的速效N和速效P对植物化学计量学都有一定的影响,而且土壤速效N对植物化学计量学的影响要大于土壤速效P对植物化学计量学的影响;演替后期中土壤速效N,速效P与植物化学计量学的影响中,土壤速效P对植物化学计量学影响较大。沿着演替梯度,所有典范轴特征值所解释变量的总和逐渐增大,土壤中速效N和速效P对植物化学计量学的影响沿着演替梯度逐渐增大。
     4.以代谢理论的基本结论和能量平衡规律为基础推导出了种群平均个体大小与演替时间的相互关系:ln((?)_t))=ln((?)_0)-4/3ln((ln(R_0))/t_B)t(其中(?)_t,(?)_0,R_0,t_B分别表示t时刻的种群平均个体大小,种群进入演替系列时的平均个体大小,该种群的世代净繁殖率,该种群的世代时间)。这一个方程表明随着演替的进行种群的平均个体大小逐渐减小。当种群平均个体大小降低到一个临界值时,个体将不能在繁殖,因此该种群将会被排除演替系列。
     5.由于有机体是一个四维的分形几何体,所以能够推导出叶面积与个体大小间的关系为A_i=ρ_i~(-3/4)m_i~(3/4),进一步可以推导出群落的表观叶面积指数为LAI=(sum from i=0 to J(m_i)~(3/4))ρ_0/A=ρ_0J/A〈M~(3/4)〉_J=ρ_0,这样对于冠层密集的群落来说表观叶面积指数为一个常数。由于演替过程中群落中能量流为一个常数值以及个体大小沿着演替时间梯度逐渐降低,可以推导出一定时间段内群落中物种丰富度和多度与时间的关系为:lnS_(t2)=lnS_(t1)+ln((ln R_0)/t_(Bm))t,lnJ_(t2)=lnJ_(t1)+ln((ln R_0)/t_(Rm))t。
Community succession is a dynamic procedure. Some species were replaced byothers, and one plant community took the place of another along communitysuccession. The sduties on dynamics of community succession went on more than onecentury. Some ecologists have posed a lot of theories and mechanisms concerningvariation of plant community, relationships between plant community and habitatfactor along the succession and climax community.But there have been a unifiedtheory which can be applicable to all ecosystems, habitat and even the different stagesin the same succession series. Ecological stoichiometry was knowledge about theelement balance between plant and the habitat. It could provide an equilibrium systemfor studies on succession, and the theoretical foundation for studies on therelationships between plant and their habitat factor. Metabolic theory predicts howmetabolic rate, by setting the rates of resource uptake fromg the environmet andresource allocation to survial, growth, and reproduction, controls ecological processesat all levels of organization from individuals to the biosphere. Therefore, it provid ameans to reveal the changes of community along succession series from body sizeviews.In this paper, we tried to summarize a model about variation of body size andbiodiversity by ecological stoichiometry and metabolic theory of ecology which couldbe applicable to all ecosystems, take a secondary succession series of alpinemeadow communities as an example. The conclusions were given as follows:
     1. The numbers of species in community and their effection could be changedalong successional gradients. For feverfew, Ajania tenuifolium Tzvel dominated inearly successional community, Leontopodium leontopodiaoides Beauv. dominated inmid-successional community, and Artemisia tangutica Pamp dominated in latesuccessional community. The results shown that Ajania tenuifolium Tzvel was used tothe harsh natural environment in early successional stage, and the important effect offeverfew on plant community successiom. Diversity of plant life-forms in communitywas increased along the successional series.Important value of annual herbs slowlydescenden, important value of perennial herbs and shrub slowly increased with the succession stages. It shown that stabilization of community structure and ecologicalfunction of community were strengthend.
     2. In all successional field, Shannon-Weiner indices was remarkably positivelyrelated to soil available N, available P, and organic matter.It explained that soilavailable N, P and organic matter observably promoted the restoration of speciesrichness along succession series. The Simpson indices were positively related to soilphysico-chemical properties. It shown that soil physico-chemical properties influncedstructure of community, reduced numbers of dominant species in community, reducedimportant value of dominat species, and weaken effection of dominat species oncommunity structure and ecological function.
     3. According to RDA, the relationships between soil available N and P and plantstoichiometry was revealed. Soil available P was not related to plant stoichiometryand soil available N was postively related to plant stoichiometry in early successionstages. Plant stoichiometry was influnced more heavly by soil available N than soilavailable P in mid-succession stages. But the complexion was reversed in latesuccession stages. The relationships between soil available P and N and plantstoichiometry were more and more significant along succession stages as a result ofmore variances explained by all canonical axis.
     4. Based on metabolic theory of ecology and energy equilibium rules, therelationships between body size and succession time were displayed asfollows: ln((?)_t)=ln((?)_0)-4/3(ln(R_0)/t_B)t. This equation explained that average bodysize of the population declined with the community succession. As average body sizeof the population reached the critical average body size, individual could notreproduce and the population would be removed from the community succession.
     5. For organisms were four-dimensional fractal geometry objects, therelationship between body size and leaf area was displayed asfollows: A_i∝m_i~(3/4) .Further, apparent leaf area index was derived based on last equation:LAI=σ_0(?)(m_i)~(3/4)/A=(ρ_0J)/A〈M~(3/4)〉_J=ρ_0ρ_0 was density, and a constantacross all species. To sum up the above arguments, we reached an equation about therelationships between species richness and aboundance and succession time:ln S_(t2)=ln S_(t1)+ln(ln R_0/t_(Bm))t,ln J_(t2)=ln J_(t1)-ln(ln R_0)/t_(Bm))t.
引文
Agren, G..I..1988.Ideal nutrient productivities and nutrient proportions in plant growth.Plant Cell and Environment, 11:613-620.
    Allen, A.P., J.H.Brown, and J.F.Gillooly.2002.Global biodiversity, biochemical kinetics and the energy equivalence rule.Science 297:1545-1548.
    Allen, A.P.,Gillooly, J.F.2006.Assessing latitudinal gradients in speciation rates and biodiversity at the globle scale.Ecology Letters.9:947-954.
    Allen,A.P.Gillooly, J.F.and Brown, J.H.2007.Recasting the Species-Energy Hypothesis: the Different Roles of Kinetic and Potential Energy.In Regulation Biodiversity.Scaling biodiversity (eds.Storch D.Marquert P.A.Brown J.H.).pp.283-299.Cambrige University Press.Cambridge.UK.
    Amthor, J.S.2000.The McCree-de Wit-Penning de Vries-Thornley Respiration Paradigrns:30 Years Later.Annals of Botany 86:1-20
    Amthor, J.S.1984.The role of maintenance respiration in plant-growth.Plant Cell and Environment.7:561-569.
    Andersen,Y.1997.Pelagic Nutrient Cycles: Herbivores as Sources and Sinks.Springer-Verlag, Berlin, Germany.
    Auclair, A.N.and Goff, F.G.1971.Diversity relations of up land forests in Western Great lakes area.American Naturalist.105: 499-528.
    Aweto, A..O.1981.Secondary succession and soil fertility restoration in south western Nigeria.Ⅱ.Soil fertility restoration.Journal of Ecology.69:609-614.7
    Bazza, F.A.1975.Plant species diversity in old-field successional ecosystems in southern Illinois.Ecology.56:485-488
    Belgrano, A., A.P.Allen, B.J.Enquist, and J.F.Gillooly.2002.Allometric scaling of maximum population density:a common rule for marine phytoplankton and terrestrial plants.Ecology Letters.5:611-613.
    Blueweiss, L., H.Fox, V.Kudzma, D.Nakashima, R.Peters,and S.Sams.1978.Relationships between body size and some life history parameters.Oecologia 37:257-272.
    Bonan, G.B. 1995. Land-amosphere interactions for climate system models:coupling biophysical, biogeochemical, and ecosystems.Remote Sens Environ.51:57-73
    Brown, J.H., Gillooly, J.F.,Allen, A.P.,Savage,V.M.,and West,G.B.2004.Toward a metabolic theory of ecology.Ecology. 85(7): 1771-1789
    Chapin, F.S., Bloom,C.B,Field, R. H,Waring. 1987. Plant responses to multiple environmental factors. BioScience37:49-57.
    Chapman, H. L.,.MendezM, Karlsson, P. S. 2004. Between-population variation in size-dependent reproduction and reproductive allocation in Pinguicula vulgaris L. (Lentibulariaceae) and its environmental correlates. Oikos 104:59-70.
    Charnov, E. L. 1993. Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, Oxford, UK.
    Chen, J.M.,and Black, T.A. 1992.Defining leaf area index for non-flat leaves. Plan Cell Environment. 15:421-429.
    Clarke, A.2006. Climate and diversity: the role of history. In Scaling Biodiversity, ed.D.Storch and P.A. Marquet.Cambridge University Press, New York
    Clements, F.E.I 939.Nature and structure of the climax. Journal of Ecology. 24:252-284
    Connell,J.H, and Slatyer,R.O. 1977.Mechanism of succession in natural communities and their role in community stability and organization.American Naturalist. 111:1119-1144
    Currie, D.J. 1991. Energy and largr-scale patterns of animal-and plant-species richness. American Naturalist 134:27-49.
    Currie, D.J.2006. Regional-to global patterns of biodiveristy, and what they have to say about mechanisms. In Scaling Biodiversity, eds.D.Storch and P.A.Marquet. Cambridge University Press. New York.
    Currie,D.J., Mittelbach, G.G.,Cornell,H.V., Field,R.,Guegan,J.F., Hawkins,B.A.,Kaufman, D.M., Kerr,J.T.,Oberdorff, T., O'brien, E. and Turner, J.R.G. 2004 .Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters. 7:1121-1134.
    Egler, R.E.1954. Vegetation scence concepts I:Initial floristic composition, a factor in old field vegetation development. Vegetation. 4:412-417
    Elser, J.J., Dobberfuhl,D., MacKay, N.A., Schampel, J.H.. 1996. Organism size, life history, and N:P stoichiometry:towards a unified view of cellular and ecosystem processes.BioScience 46(14)674-684.
    Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A.Interland, S., Kilham SS, E. McCauley, K.L., Schulz, E.H Siemann and R.W. Sterner. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature. 408(6812):578-580.
    Else,r J.J., Marzolf, E.R., Goldman,C. R. 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North American: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences. 47:1468-1477.
    Elser, J.J., Sterner, R.W., Elena, G. 2000. Biological stoichiometry from genes to ecosystes. Ecology Letters 3:540-550.
    Elser, J.J., Urable, J. 1999.The stoichiometry of consumer-driven nutrient cycling:theory, observations, and consequences. Ecology 80:735-751.
    Enquist, B. J., and K. J. Niklas. 2001. Invariant scaling relations across tree-dominated communities. Nature 410:655-660.
    Enquist, B. J., J. H. Brown, and G. B. West. 1998. Allometric scaling of plant energetics and population density. Nature 395:163-165.
    Enquist, B.J., and Niklas, K.J.2002. Global allocation rules for patterns of biomass partitioning in seed plant. Science. 295(22):1517-1520
    Garten, C.T. 1978. Multivariate perspectives on the ecology of plant mineral element composition. American Naturalist. 112:533-544.
    Gentry,A.H. 1986 Endemism in tropical versus temperate plant communities..In M.F.Soule(ed.).Conservation Biology:The Science of Scarcity and Diversity. Sinauer Press. Sunderland. pp 153-181
    Gillooly, J. F., E. L. Charnov, G. B. West, V. M. Savage, and J. H. Brown. 2001. Effects of size and temperature on developmental time. Nature 417:70-73.
    Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2002. Effects of size and temperature on metabolic rate. Science 293:2248-2251.
    Gillooly, J.F, Aleen, A.P., Savage, V.M., West, GB., and J.H.Brown.2005. Response to Clarke and Fraser:Effects of Temperature on Metabolic Rate. Functional Ecology.20:400-404.
    Goudriaan, J.A. 1986.A simple and fast numerical method for the computaton of daily totals of crop photosynthesis. Agricultural and Forest meteorology.38:249-254.
    Gresse, N, McColl, J.G.. 2003.Phosphorus mineralisation and organic matter decomposition: a critical review. In: Cadisch, G., Giller, K.E.Driven by nature: plant litter quality and decomposition. CAB International. Wallingford, UK pp.297-309.
    Griffin, K.L. 1994. Calorimetric estimates of construction cost and their use in ecological studies. Functional Ecology. 8:551-562.
    Grime J.P. 1979. Plant strategies and vegetation processes. Wile Press. Chechester. UK
    Grime,J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist.111:1169-1194.
    G(?)sewell, S., Koerselman, W. 2002.Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Ecological and Evolutional System 5:37-61.
    G(?)sewell, S., Koerselman, W., and Verhoevan, J.2003. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Journal of Application Ecology 13:284-372.
    G(?)sewell, S.2004. N:P ratiosin terrestrial plants: variation and fuctional significance. New Phytolist 164:243-266. Han,W.X.., Fang, I.Y., Guo, D.L., Zhang,Y. 2005. Leaf Nitrogen and Phosphorus stoichiometry Across753 Terrstrial Plant Species in China. New Photolist 168:377-385.
    Hawkins,B.A.,Field, R.,Cornell, H.V.,Currie,D.J.,Guegan, J.F., Kaufman, D.M.,Kerr, J.T., Mittelbach, G.G.,Oberdorff, T., O'Brien, E.M.,Porter, E.E. and Turner, J.R.G2003. Energy, water, and braod-scale geographic patterns of species richness. Ecology.84:3105-3117.
    Hedin, L.O. 2004. Global organization of terrestrial plant-nutrient interactions. Proceeding of National Academic Science USA101:10849-10850.
    Hobbie,S.E.,and Vitousek,P.M.2000.Nutrient limitation of decomposition in Haealian forests. Ecology.81(7): 1867-1877.
    Huxley, J. S. 1932. Problems of relative growth. Methuen,London, UK.
    Kalembasa, S.J., Jenkinson, D.S. .1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal Science Food and Agriculture. 24:1085-1090.
    Jackson, M.L.1958.Soil Chemical Analysis.Prentice-Hall: New Delhi
    Jonckheere, I.,Fleck, S., Nackaerts, K., Muys, B.,Coppin, P., and Weiss, M.2004.Review of methods for in situ leaf area index determinartion.Part Ⅰ.Theories, sensors and hemispherical photography.Agricultural and Fores Meteorology.121: 19-35.
    Kerkhoff, A.J., Enquist, B.J.2006.Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities.Ecology Letters.9:419-427.
    Kerkhoff, A.J., Enquist, B.J., Elser, J.J.,and Fagan, W.F.2005.Plant allometry, stoichiometry and the temperature-dependence of primary productivity.Global Ecology and Biogeograph.14:
    Kerkhoff, A.J., Enquist, B.J., Elser, J.J., Fagan, W.F.2005.,Plant allometry, Stoichiometry and the Temperature-dependence of Primary Productivity.Global Change Biolpgy.14:585-5981
    Kimmins,.J.P.1987.forest Ecology.Mecmillan.New York.
    Koerselman, W., Verhoeven, J.1995.Eutrophication of fen ecosystems: external and internal nutrient sources and restoration strategies.In: Wheeler BD, ShawSC, Fojt WJ, Allan Restoration of temperatewetlands.John Wiley & Sons.Chichester.UK.pp:91-112.
    Kozlowski, J., and J.Weiner.1997.Interspecific allometries are by-products of body size optimization.American Naturalist 147:101-114.
    Kvalseth, T.O.1991.Note on biological diversity, evenness,and homogeneity measures.Oikos.62: 123-127.
    Landgraf, D., Bohm, C., Makeschin, F., 2003.Dynamic of different C and N fractions in a Cambisol under five-year succession fallow in Saxony (Germany).Journal of Plant Nutrient and Soil Science.166:319-325.7
    Larche,r W.1995.Physiological plant ecology: ecophysiology and stress physiology of functional groups.Third edition.Springer-Verlag, Berlin, Germany.
    Litvak, M., Miller, S., Wofsy, S., Goulden, M.2003.Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest.Journal of Geophysical Research-Atmospheres108 (D3):Art.No.8225
    Lockaby, B.G., Conner, W.H.1999.N: P balance in wetland forests: productivity across a biogeochemical continuum.Botanic Review.65:171-185.
    Manly, B.F.1994.Multivariate statistical methods A primer.Chapman & Hall.New York.
    Margalef, R.1963 Succession of populations.Adv.Fronties of Plant Science.(Instit.Adv.Sci.& Culture, New Delhi, India),2:137-188.
    Margalef, R..1968. Perspectives in Ecological Theory. University of Chicago Press, Chicago.pp:112
    May,R.M. 1974. Stability and complexity in model ecosystems.2nd., Princeton University Press. Princeton,pp 175
    McCauley, E., Schulz, K.L., Siemann, E.H., Sterner, R.W.2000.Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578-580.
    McCree, K..J. 1970. An equation for the rat of respiration of white clover plants grown under controlled conditions. In:Setlik I, ed. Prediction and measurement of photosynthetic productivity.Wageninyen:Centr for Agriculture Publishing and Documentation,221 -229
    Mcintos, R P. The 1999. Background of Ecology. Cambridge Universtity press. Cambridg.
    M(?)ndez, M., Karlsson, P.S. 2005.Nutrient Stoichiometry in Pinguicula Vulgaris : Nutrient Availability, Plant Size, and Reproductives Status.Ecology 86:982-991.
    National Soil Survey Office of China. 1998. Soils of China. Chinese Agriculture Press. Beijing, China. pp:483-486.
    Niklas, K.J. & Enquist, B.J. 2002 On the vegetative biomass partitioning of seed plant leaves, stems, and roots. American Naturalist. 159: 482-497.
    Niklas, K.J.,and Enquist, B.J. 2003. An allometric model for seed plant reproduction.Evolutionary Ecology Research.5:79-88.
    Niklas,K.J. and Enquist, B.J.2002. Canonical Rules for Plant organ biomass partitioning and annual allocation. American Journal of Botany.89:812-819.
    Odum, E.P. 1969. The strategy of ecosystem development. Science.l64:262-270.
    Odum, H.T,. and Pinkerton, R.C. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monograph. 25:291-320
    Odum, E. P. 1960. Organic production and turnover in old field succession. Ecology.4l:34-49.
    Olde, V. H., Wassen, M.,Verkroost, A.W.M., Ruiter, P.C. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands.Ecology 84:2191-2199.
    Osawa, A.A., and Allen, R.B. 1993.Allometric theory explains self-thinning relationships of mountain beech and red pine. Ecology.74:1020-1032.
    Peters, R.H. 1983.The ecological implications of body size. Cambridge University Press. Cambridge.UK.
    Peterson, J., and J.S.Wroblewski.1984.Mortality rates of fishes in the pelagic ecosystem.Canadian Journal of Fisheries and Aquatic Sciences 41:1117-1120.
    Phoenix, G.K., Booth, R.E., Leake, J.R., Read, D.J., Grime, J.P., Lee, J.A.2003.Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland.New Phytolist 161:279-289
    Pickett, S.T.A., and White,P.S.1987.The ecology of natural disturbance and patch dynamics.Academic Press.New York.
    Pielou, E.C.1977.Ecological Diversity.Wiley Press.New York.
    Prince, S.D., and Goward,S.N.1995.Global primary production: a remote sensing approach.Journal of Biogeography.22:815-835.
    Reich, B.P., Oleksyn,J.2004.Globall Patterns of Plant Leaf N and P in Relation to Temperature and Latitude.Proceeding of National Academic and Science USA101:11001-11006.
    Reldfield, A.C.,1958.The biological control of chemical factors in the environment.American Naturalist.46:205-221.
    Sackville, N.R., Schmid, B.,and Harper, J.L.1987.Life-history concepts and the population bioloogy of clonal organisms.Procced Royial Socialty London B.232:35-57.
    Savage,V.M., Gillooly, J.F.,Brown,J.H.,West,G.B., and Charnov, E.L.2004.Effects of body size and temperature on population growth.American Naturalist.163(3):429-441.
    Schlesinger, W.H.1991.Biogeochemistry: an analysis of global change.Academic Press, San Diego, CA, USA.
    Slobodkin, L.B.1962.Growth and regulation of animal populations.Holt, Reinhart, and Winston, New York, New York, USA.
    Sterner, R.W., and Hessen, D.O.1994.Algal nutrient limitation and the nutrition of aquatic herbivore.Annual Review Ecological System.25:1-29.
    Sterner, RW, Elser JJ(2002)Ecological stoichiometry: the biology of elements from molecules to the biosphere.Princeton University Press, Princeton, NJ.
    Sterner, R.W.and Elser, J.J.2002.Ecological stoichiometry: the biology of elements from molecules to the biosphere.Princeton University Press, Princeton, NJ.
    Tansley, A.G.1954 Introduction to plant ecology.Allen & Unwin Press.
    ter Braak, C.J.F., Milauer, P.S.1998.CANOCO reference manual and user's guide to CANOCO for Windows: software for canonical community ordination.Version 4.Microcomputer Power, Ithaca, New York, USA.
    Tilman, D., 1982.,Resource competition and community structure.Princeton University Press, Princeton, New Jersey, USA.
    Tomassen, H.B.M, Smolders, A.J.P, Limpens, J., Lamers, L.P., Roelofs, J.G.M.,2004.Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? Journal of Application Ecology 41:139-150.
    Turchin, P.2001.Does population ecology have generallaws? Oikos 94:17-26.
    Vitousek, P.1982.Nutrient cycling and nutrient use efficiency.American Naturalist 119:553-572.
    Vitousek, P., and Reiners, W.A.1975.Ecosystem succession and nutrient retention: a hypothesis.Bioscience 25:376-381.
    Vitousek, P.M, and Hobbie, S.2000.Heterotrophic nitrogen fixation in decomposing litter: patterns and regulation.Ecology.81:2366-2376.
    Vitousek,P.M., Howarth, R.W.,1991.Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry13:87-115.
    Walker, L.R.,1999.Ecosystems of Disturbed Ground.Elsevier, Amsterdam
    Wardle, D.A., Walker, R.A, Bardgett, R.D.,2004.Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences.Nature., 305:509-513.
    Warnaffe, G., and Dufrene, M., 2004.To what extent can management variables explain species assemblages.A study of carabid beetles in forests.Ecography27: 701-714.
    Watson, D.J.1947.Comparative physiological studies in the growth of field crops.1.Variation in net assimilation rate and leaf area between species and varieties, and within and between years.Annales botanici Fennici.11:41-76.
    Weiner, J.1988.The influnce of competition on plant reproduction.In: Lovett, D.J.eds.Plant reproductive ecology: patterns and strategies.Oxford University Press..New York.pp228-245.
    West, G.B., J.H.Brown, and B.J.Enquist.1997.A general model for the origin of allometric scaling laws in biology.Science 276:122-126.
    West, G.B., J.H.Brown, and B.J.Enquist.1999b.The fourth dimension of life: fractal geometry and allometric scaling of organisms.Science 284:1677-1679.
    West, G.B., Brown,J.H., and Enquist, B.J.1999a.A general model for the origin of allometric scaling laws in biology.Nature.276:122-126.
    West, G.B., Brown,J.H., and Enquist, B.J.2000.A general model for the strictire and allometry of plant vascular systems.Nature.400:664-667.
    Westman, W.E.1981.Diversity relations and succession in Californian coastal sage scrub.Ecology.62:17-184
    White, T.C.R.,1993.The Inadequate Environment: Nitrogen and the Abundance of Animals.Springer-Verlage, Net York, NY.
    Whittaker, R.H.1979.Classifying species according to their demographic strategy.American Naturalist.113:185-200
    Wilson, E.O.1992.The Diversity of Life.W.W.Norton Press.New York.
    Woods, H.A., Makin, W., Cotner, J.B., Hobbie, S.E., Harison, J.F., Acharya, K., Elser, J.J.2003.,Temperature and the chemical composition of poikilothermic organisms.Funcational Ecology.17:237-245
    Wright, I.J., Reich, P.B., Westoby, M., Ackedy, D.D., Baruch, Z.,Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C.,Diemer, M.J.F., Gamier, E., Groom, P.K., Guilas, J., Hikosaka, K.,Lamont, B.B., Lee, T., Lee, W.G., Lusk, C.H., Midgley, J.J.,Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H.,Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C.,Tjoelker, M., Venektaas, E.J.& Villar, R.2004 The worldwide leaf economics spectrum.Nature 428:821-827.
    Wright,S.H.1983.Species-energy theory: an extension of species-area theory.Oikos.41:496-506.
    E.P.Odum 1981生态学基础.孙孺泳等译。人民教育出版社.北京.中国
    杜国祯,王刚.1991.亚高山草甸弃耕地演替群落的种多样性及种间相关分析.草业科学.8(4):53-57.
    韩文轩,方精云.2003.相关生长关系与生态学研究中的尺度转换.北京大学学报(自然科学版).39(4):583-593
    贺金生,陈伟烈.1997.陆地植物群落物种多样性的梯度变化特征.生态学报.17(1):91-99.
    郝文芳,梁宗锁,陈存根和唐龙.2005.黄土丘陵区弃耕地群落演替过程中的物种多样性研 究.草业科学.22(9):1-8
    贺金生,陈伟烈.1997.陆地植物群落物种多样性的梯度变化特征.生态学报.
    黄建辉,陈灵芝.1994.北京东灵山地区森林植被的生态多样性分析.植物学报.35:178-186
    黄建辉.1994.物种多样性的空间格局及其形成机制初探.生物多样性.2(2):103-107.
    焦峰,温仲明,焦菊英,赫晓慧.2006.黄土区退耕地植被与土壤水分养分的互动效应.草业学报。15(2)
    廖万金,张全国,张大勇.2003.不同海拔藜芦种群繁殖特征的初步研究.植物生态学报.27(2):240-248.
    马克平.1994.生物多样性的测度方法:Ⅰ α多样性的测度方法(上).生物多样性.3:
    江小雷,张卫国,杨振宇.2008.黑土滩恢复演替过程中植物功能群及牧草品质变化.草地学报.16(6)619-623.
    宋日,吴春胜.2002.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响.应用生态学报.13(3):
    王刚,张大勇,杜国祯.1991.亚高山草甸弃耕地植物群落演替的数量研究Ⅳ,组分种生态位分析.草地学报.1(1):93-99.
    王文颖,王启基,王刚.2006.高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响.生态环境.15(2):362-366.
    吴建国,张小全,徐德应.2004.土地利用变化对土壤有机碳储量的影响.应用生态学报.15(4):593-599.
    徐希孺, 范闻捷, 陶欣.2009.遥感反演连续植被叶面积指数的空间尺度效应.中国科学D辑:地球科学.39(1):79-87.
    张大勇,王刚,杜国祯.1988.亚高山草甸弃耕地植物群落演替的数量研究(Ⅰ)群落组成分析.植物生态学与地植物学学报.12(4):293-291.
    张宝琛 何素霞.1981.班唇马先蒿提取物生化作用的初步研究。生态学报.1(3):227-234
    张继义,赵哈林,张铜会和赵学勇2004.科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态.植物生态学报.28(1):86-92
    赵新全,2009.高寒草甸生态系统与全球变化.科学出版社.中国.北京.
    赵育明,牛树奎,王军帮,李海涛,李贵才.2007.植被光能利用率研究进展.生态学杂志.26(9):1471-1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700