三种Ⅲ型蛋白影响黄单胞菌—水稻互作与植物抗病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用24个已知抗病基因的近等基因系材料对我国285个水稻白叶枯菌株的毒性进行了研究。除了IRBB51以外,含有多个抗病基因的水稻品种几乎对所有菌株都表现了高度的抗性。因此,我们选出对白叶枯菌株抗感反应有明显差异的13个含有单个抗病基因的水稻品种用于进一步的实验。IR24和IRBB10抗性很弱,仅对少数菌株具有抗性;而IRBB5、IRBB7以及IRBB21则具有较高的抗性,对大多数菌株表现出高度的抗性。其它单基因品种如IRBB2、IRBB3、IRBB4、IRBB7、IRBB13等在菌株间的抗感反应有着显著的差异。因此,根据白叶枯病菌与近等基因系水稻之间的互作,我们筛选出6个单基因品种(IRBB5,IRBB13,IRBB3,IRBB14,IRBB2,IR24)作为鉴别品种,从而将我国的白叶枯病菌菌株划分为9个小种,其互作模式依次为:RRRRRR、RRRRRS、RRRRSS、RRRSSS、RRSSSS、RSRRRS、RSSRRS、RSSSSS、SSSSSS,对应小种频率分别为10.18%、10.53%、4.91%、10.18%、24.21%、5.96%、11.23%、22.46%、0.35%。我国白叶枯菌株的毒性呈现多样性,不同时期、不同地区菌株毒性差异明显。与菲律宾菌株的毒性进行比较,也存在较大的差异。
     通过构建Xanthomonas oryzae pv.oryzae PXO99的hrpA、hrpF基因突变菌株PXO99/PMD-A(AOS)、PXO99/PMD-F(FOS)及其功能互补菌株AOS/pUFR034∷hrpA(cAOS)、FOS/pUFR034∷hrpF(cFOS),并分别对之进行GFP荧光标记,产生PXO99/pHM1∷gfp(PXO99-GFP)、AOS/pHM1∷gfp(AOS-GFP)、FOS/pHM1∷gfp(FOS-GFP)、AOS/pHM1∷hrpA∷gfp(cAOS-GFP)、FOS/pHM1∷hrpF∷gfp(cFOS-GFP),对水稻-白叶枯病菌互作进行研究。用PXO99、AOS、FOS、cAOS、cFOS、PXO99-GFP、AOS-GFP、FOS-GFP、cAOS-GFP、cFOS-GFP分别处理水稻及烟草。GFP标记菌株与非GFP标记菌株对水稻的致病性及在烟草上形成HR的能力没有明显差别。突变体FOS对水稻的致病性减弱,AOS几乎完全丧失了对水稻的致病性,形成褐斑。FOS仍然具有诱导烟草形成HR的能力,而AOS同时丧失了在烟草上形成HR的能力。功能互补菌株cAOS、cFOS对水稻的致病性比突变体有所恢复,但达不到野生型的水平。cAOS不能恢复AOS在烟草上形成HR的能力,cFOS仍然可诱导烟草叶片形成HR。病原菌喷雾处理水稻叶片的荧光观察显示,野生型菌株、功能互补菌株、突变体FOS-GFP通过伤口及自然孔口形成侵染,而突变体AOS不能形成侵染。电镜观察结果表明,野生型菌株多数以聚集的方式吸附在自然孔口周围,而突变菌株AOS则多数以分散的形式吸附于水稻叶片表面。以上结果显示,hrpA的突变可能对菌株的识别及聚集能力产生了影响,从而影响了菌株的侵染。
     已有研究试图确定harpins在植物细胞中的作用部位。但对不同的harpins如来自Erwinia amylovora的HrpN_(Ea)、Pseudomonas syringae pv.phaseolicola的HrpN_(Psph)等研究结果都不尽相同。因此,harpins的识别部位、结合受体等一直不清楚,在本研究中,作者利用荧光蛋白标记构建融合蛋白,以便今后进一步研究HrpA、HrpF在水稻上的作用部位。HrpA_(Xoo)、HrpF_(Xoo)和HrpA_(Xooc)、HrpF_(Xooc)分别是由水稻白叶枯病菌和水稻细菌性条斑病菌的hrpA、hrpF基因编码产生的蛋白质。从水稻白叶枯病菌和水稻细菌性条斑病菌中分别克隆hrpA和hrpF基因,与gfp(green fluorescent protein)构建融合基因,连接pET30a(+)载体,获得了重组质粒pET30a(+)∷hrpA_(Xoo)∷gfp、pET30a(+)∷hrpA_(Xooc)∷gfp、pET30a(+)∷hrpF_(Xoo)∷gfp和pET30a(+)∷hrpF_(Xooc)∷gfp,转化宿主菌BL21(DE3)产生表达菌株pAGGE、pARGE、pFGGK和pFRGK。表达菌株经IPTG诱导培养,收集菌体,超声波破碎后分别取上清和沉淀进行SDS-PAGE电泳,分别产生94.6 kD、94.8 kD、116.3 kD、116.3 kD大小的组氨酸标记的目的蛋白质与GFP的融合蛋白条带。
     水稻细菌性条斑病菌HpaG_(Xooc)蛋白质作为harpin效应分子可促进植物生长、诱导过敏性细胞死亡、诱导植物对病原菌的抗病性。其编码基因hpaG_(Xooc)包含两个富含甘氨酸的结构域(glycine-rich motif,GRM)和一个半胱氨酸(cysteine)。GRM是harpin类蛋白的共同特征,而一般harpin类蛋白结构中则不含有半胱氨酸。我们对hpaG_(Xooc)的GRM进行了缺失突变得到突变体hpaG_(Xooc)MG(MG),对hpaG_(Xooc)的半胱氨酸位点进行定点突变,将其半胱氨酸突变成苏氨酸得到突变体hpaG_(Xooc)C47T(C47T)。hpaG_(Xooc)、MG、C47T经体外表达得到HpaG_(Xooc)、MG和C47T。用它们分别处理烟草,MG和C47T诱导烟草产生的死亡细胞数目分别是HpaG_(Xooc)的1.7和1.2倍;标记基因hin1、hsr203的表达结果与之一致。MG和C47T处理的植株的抗病性也明显增强。以HpaG_(Xooc)、MG、C47T处理的烟草再接种病斑TMV病毒,5天后调查,三种蛋白处理的植株叶片病斑分别减少了58%、92%、81%;以Pseudomonas syringae pv.tomato(DC3000)接种番茄,5天内对病原菌进行持续分离,统计其细胞数目。经HpaG_(Xooc)、MG、C47T处理的番茄上的病原菌的数目分别约为对照的1/160、1/15860、1/1260。防卫相关基因Chia5、NPR1、PR-1a的表达结果与之一致。HpaG_(Xooc)、MG和C47T还可促进番茄生长,地上部分的增长幅度分别为15%、46%、125%、;地下部分的增长幅度分别为53%、106%、77%。细胞延展与生长相关基因EXP2的表达情况与之一致。这些结果说明HpaG_(Xooc)中富含甘氨酸的区域以及半胱氨酸的存在抑制了蛋白本身对植物的效应。
     HpaG_(Xooc)、HrpF_(Xooc)、HrpA_(Xooc)作为水稻细菌性条斑病菌的Ⅲ型蛋白,与病原菌的致病性密切相关。HpaG_(Xooc)作为效应分子,HrpF_(Xooc)参与病原菌Ⅲ型泌出系统通过寄主植物的转运结构的形成。HrpA_(Xooc)可能参与病原菌Ⅲ型泌出系统的泌出结构的形成。三者之间是否存在某种关系呢?通过酵母双杂交系统探讨Ⅲ型蛋白HrpAXooc、HrpFXooc与HpaGXooc之间的关系。分别构建AD载体pGADT7∷hrpA_(Xooc)、pGADT7∷hrpF_(Xooc)和DNA-BD载体pGBKT7∷hpaG_(Xooc)、pGBKT7∷MG、pGBKT7∷C47T。AD载体与DNA-BD载体共转化酵母菌株Y190,β-Galactosidase Assays显色表明,HrpA_(Xooc)、HrpF_(Xooc)与HpaG_(Xooc)、MG、C47T之间不存在直接的互作。
     本研究的创新点:(1)通过突变体阐释Ⅲ型蛋白HrpA和HrpF在水稻-黄单胞菌互作中的功能;(2)通过对HpaG_(Xooc)的结构的改变,明确Ⅲ型效应子HpaG_(Xooc)的关键结构特征对其植物效应的影响;(3)通过酵母双杂交系统探讨Ⅲ型蛋白HrpA_(Xooc)、HrpF_(Xooc)与HpaG_(Xooc)之间的关系。
     本研究的缺点:有些地方文字描述不够准确,个别地方缺乏统计数据。
Xanthomonas oryzae pv.oryzae(Xoo) and pv.oryzicola(Xooc) cause leaf blight and leaf stripe,respectively,in rice.To provide a basis for studying mechanisms that underlie interactions between rice and the bacteria,virulence and race classification of Xoo isolates in China were determined.From more than 22 rice-growing provinces and districts in China,285 isolates of the pathogen were collected;these included 108 isolates collected during 1970-1992 and additional 177 in 2003-2004.To identify proper rice lines that can distinguish variations in virulence,24 near-isogenic rice lines,which contain 1-4 resistance genes,were determined for responses to inoculation with 91 of the 285 isolates.Most isolates were avirulent on the pyramided lines,except IRBB51,and hence,the pyramided lines can not be used as differentials for identifying Xoo races.The 13 rice lines with single gene were used further to test virulence of Xoo isolates.IR24 and IRBB 10 were susceptible to the isolates with several exceptions,whereas IRBB5,IRBB7,and IRBB21 were resistant. Based on these results,six single-gene rice cultivars(IRBB5,IRBB13,IRBB3,IRBB14, IRBB2,and IR24) were chosen as differentials,and the 285 tested isolates were classified into 9 races.The reaction patterns concerning responses of the rice lines to the 9 races sequentially were as follows:RRRRRR,RRRRRS,RRRRSS,RRRSSS,RRSSSS, RSRRRS,RSSRRS,RSSSSS,and SSSSSS,while "R" and "S" refer to resistant and susceptible,respectively.The race frequencies of the patterns were 10.18%,10.53%,4.91%, 10.18%,24.21%,5.96%,11.23%,22.46%,and 0.35%accordingly.So a system for identifying races of Xoo in China was established based on the results.The virulence of representative strains of 8 Philippine races on 6 differentials was determined and compared with the virulence of the Chinese races.The frequency distributions of Xoo races were described for different regions and different periods in China.
     HrpA_(Xoo) and HrpF_(Xoo) in Xoo,and HrpA_(Xooc) HrpF_(Xooc) in Xooc as well,are important type-Ⅲproteins.Mutagenesis in the hrpA and hrpF genes of the wild-type(WT) Xoo stain PXO99 was done by single recombinant,generating mutants PXO99/PMD-A(AOS) and PXO99/PMD-F(FOS),which both diminished pathogenicity on rice.Complementing AOS and FOS with the pUFR034 vector containing WT hrpA and hrpF,respectively,produced the conjugates AOS/pUFRO34::hrpA(cAOS) and FOS/pUFRO34::hrpF(cFOS),which partially restored pathogenicity of AOS and FOS on rice.The PXO99,AOS,FOS,cAOS, and cFOS were labeled by GFP,producing PXO99/pHM1::gfp(PXO99-GFP), AOS/pHMI::gfp(AOS-GFP),FOS/pHMI::gfp(FOS-GFP),AOS/pHM1::hrpA::gfp (cAOS-GFP),and FOS/pHM1::hrpF::gfp(cFOS-GFP).Inoculation tests showed that the virulence of strains with GFP and without GFP were similar in pathogenicity on rice.AOS was avirulent to IR24 and did not induce HR in tomato.Virulence of FOS to IR24 markedly decreased compared to WT,but the induction of HR was not affected evidently.The virulence and inducing HR of mutants AOS and FOS can not been restored entirely by pUFR034 with hrpA or hrpF gene.Fluorescence microscopy(FM) and Electron microscopy(EM) revealed that PXO99-GFP,FOS-GFP,cAOS-GFP,and cFOS-GFP multiplied and congregated on aquaporin and adjacent areas of IR24 but AOS-GFP cells dispersed over epidermal surfaces.This result indicates that hrpA plays an important role in localization of the bacterial colonies on flee.
     The hrpA and hrpF genes from Xoo and Xooc,which encode HrpA and HrpF proteins in both pathovars,were cloned in pET30a(+) containing an IPTG-inducible promoter and fused with gfp in the vector,generating recombinant plasmids pET30::hrpA_(Xoo)::gfp(pOAG), pET30::hrpA_(Xooc)::gfp(pRAG),pEY30::hrpF_(Xoo)::gfp(pOFG),and pET30::hrpF_(Xooc)::gfp (pRFG).They subsequently were transferred into Escherichia coli cells.After the bacterial cells were cultured under inducting by IPTG,suspected proteins were produced based on SDS-PAGE analysis.The molecular masses of the 4 proteins are 94.6 kD,94.8 kD,116.3 kD and 116.3 kD,in consistence with the prediction by a pertinent software program.This result is an essential basis for further studies on functions of the gene and proteins in plants.
     HpaG_(Xooc),produced by Xooc,is a member of harpin group of proteins that stimulate plant growth,hypersensitive cell death(HCD),and pathogen defense.The protein contains two copies of the glyeine-rieh motif(GRM),a characteristic of harpins,and a eysteine, which is absent in other harpins.Genetic modification generated the protein mutants HpaG_(Xooc)MG(MG) by deleting GRMs and HpaG_(Xooc)C47T(C47T) by replacing cysteine with threonine.When applied to tobacco plants,C47T and MG were 1.2-fold and 1.7-fold stronger,respectively,than HpaG_(Xooc) in inducing HCD,which occurred consistently with expression of the marker genes hinl and hsr203.The proteins markedly alleviated infection of tobacco by tobacco mosaic virus and tomato by Pseudomonas syringae.Treating tobacco plants with HpaG_(Xooc),C47T,and MG decreased the viral infection by 58%,81%, and 92%,respectively.In tomato plants treated with HpaG_(Xooc),C47T,or MG,P.syringae multiplication was inhibited;bacterial population multiplied in 5 d in these plants were ca. 160-fold,1,260-fold,or 15,860-fold smaller than that in control plants.So pathogen defense was induced in both plants.Defense-related genes Chia5,NPR1,and PR-1αwere expressed consistently with resistance.In response to HpaG_(Xooc),C47T,and MG,aerial parts and roots of tomato plants increased growth by 15%and 53%,25%and 77%,and 46%and 106%,relative to controls.The expansin gene,EXP2,involved in the cell expansion and plant growth was expressed coordinately with plant growth promotion. These results suggest that the presence of GRM and cysteine in HpaG_(Xooc) represses the effects of the protein in plants.
     To determine interactions between the bacterial type-Ⅲproteins,yeast two-hybrid screening was conducted.Multiple combinations were between pGADT7::hrpA_(Xooc) and pGADT7::hrpF_(Xooc) as AD vectors,and pGBKT7::hpaG_(Xooc),pGBKT7::MG and pGBKT7::C47T as DNA-BD vectors.An AD vector and a BD vector were cotransformed into the yeast strain Y190.Theβ-galactosidase assay was used to observe the relationships of pairs HrpA_(Xooc)-HpaG_(Xooc),HrpA_(Xooc)-MG,HrpA_(Xooc)-C,47T,HrpF_(Xooc)-HpaG_(Xooc),HrpF_(Xooc)-MG, and HrpF_(Xooc)-C47T by.Results indicated that there was no interaction between HrpA_(Xooc) and HpaG_(Xooc),and between HrpF_(Xooc) and HpaG_(Xooc).
     In conclusion,this study has characterized specificity in the popular interaction between Xoo races and near-isogenic rice lines with importance in evaluating virulence variations,studied function of the critical hrpA and hrpF genes as well as the effector protein HpaG_(Xooc) in rice and nonhost plants.The production of several constructs will facilitate further studies on functions of the genes and proteins in plants.
引文
1. Aldon D, Brito B, Boucher C, Genin S (2000). A bacterial'sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19: 2304-2314.
    2. Alfano JR, Alan C (1997). The type III secretion pathway of plant pathogenicity bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179: 5655-5662.
    3. Alfano JR, Collmer A. (1996). Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683-1698.
    4. Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki T, van Dijk K, Collmer A (2000). The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856-4861.
    5. Alfano JR, Collmer A (1996). Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683-1698.
    6. Alfano JR, Collmer A (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42: 385-414.
    7. Alvarez ME, Pennell RL, Meijer RJ, Ishikawa A, Dixon RA, Lamb C (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773-784.
    8. Arlat A, Gijsegem F, Vail JC, Huet JC, Pernollet JC, Boucher CA (1994). PopA1, a protein which induces a hypersensitivity-like response on specific petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.
    9. Badel JL, Nomura K, Bandyopadhyay S, Shimizu R, Collmer A, He SY (2003). Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol. Microbiol. 49: 1239-1251.
    10. Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoe P, Broughton WJ, Staehelin C (2004). NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol. 134: 871-879.
    11. Bauer DW, Bogdanove AH, Beer SV, Collmer A (1994). Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact. 7: 573-581.
    12. Bauer DW, Wei ZM, Beer SV, Collmer A (1995). Erwinia chrysanthemi harpin_(Ech): an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact. 8: 484-491.
    13. Bogdanove AJ, Wei Z, Zhao L, Beer SV (1996). Envinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J, Bacteriol. 178: 1720-1730.
    14. Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998). Homology and functional similarity of a hrp-linked pathogenicity locus, dspEF, of Envinia amylovora and the avirulence avrE of Pseudomonas syringae pathovar tomato. Proc. Natl. Acad. Sci. USA 95: 1325-1330.
    15. Bonas U (1994) hrp genes of phytopathogenic bacteria. Curr. Top. Microbiol. Immunol. 192: 79-98.
    16. Bonas U, Schulte R, Fenselau S, Minsavage GV, Staskawicz BJ, Stall RE (1991). Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4: 81-88.
    17. Boyd AP, Lambermont I, Cornelis GR (2000). Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182: 4811-4821.
    18. Brown IR, Mansfield JW, Taira S, Roine E, Romantschuk M (2001). Immunocytochemical localization of HrpA and HrpZ supports a role for the Hrp pilus in the transfer of effector proteins from Pseudomonas syringae pv. tomato across the host plant cell wall. Mol. Plant-Microbe Interact. 14:394-404.
    19. Burdman S, Shen Y, Lee SW, Xue Q, Ronald P (2004). RaxH/RaxR: A Two-Component Regulatory System in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol. Plant-Microbe Interact. 17: 602-612.
    20. Buttner D, Bonas U (2002). Port of entry — the type III secretion translocon. Trends Microbiol. 10: 186-192.
    21. Biittner D, Bonas U (2006a). Who comes first? How plant'pathogenic bacteria orchestrate type III secretion. Curr. Opin. Microbiol. 9: 1-8.
    22. Biittner D, Lorenz C, Weber E, Bonas U (2006b). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 59: 513-527.
    23. Buttner D, Nennstiel D, Klusener B, Bonas U (2002). Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 184: 2389-2398.
    24. Chang JH, Urbach JM, Law TF, Arnold LW, Hu A, Gombar S, Grant SR, Ausubel FM, Dangl JL (2005). A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA 102: 2549-2554.
    25. Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A (1998). The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211-5217.
    26. Charkowski AO, Huang HC, Collmer A (1997). Altered localization of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of gram-negative bacteria. J. Bacteriol. 179: 3866-3874.
    27. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Alfano JR (2000). Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Ntal. Acad. Sci. USA 97: 8770-8777.
    28. Dangl JL, Jones JDG (2001). Plant pathogens and integrated defense responses to infection. Nature 411:826-833.
    29. Daniels MJ, Barber CE, Turner PC (1984). Isolation of mutants of Xanthomonas campestris pV. campestris showing altered pathogenicity. J. Gen. Microbiol. 130: 2447-2455.
    30. Datta S, Muthukrishnan S (1999). Pathogenesis-Related Proteins in Plants. CRC Press, Boca Raton and London, UK; New York and Washington, D. C, USA.
    31. Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003). Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin_(Pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol. Biol. 51: 913-924.
    32. Delledonne M, Xia Y, Dixon RA, Lamb C (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585-588.
    33. Delledonne M, Zeier J, Marocco A, Lamb C (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 98: 13454-13459.
    34. Deng W, Li Y, Hardwidge PR, Frey EA, Pfuetzner RA, Lee S, Gruenheid S, Strynakda NC, Puente JL, Finlay BB (2005). Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect Immun. 73: 2135-2146.
    
    35. Desikan R, Reynolds A, Hancock JT, Neill SJ (1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cultures. Biochem. J. 330: 115-120.
    36. Dong H, Delaney TP, Bauer DE, Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant 120:207-215.
    37. Dong H-P, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G, Qu S, Dong H (2005). The ,ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221: 313-327.
    38. Dong H-P, Peng J, Bao Z, Meng X, Bonasera JM, Beer SV, Dong H (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol. 136: 3628-3638.
    39. Dong X (1998). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1(4): 316-323.
    40. Fouts DE, Badel JL, Ramos AR, Rapp RA, Collmer A (2003). A Pseudomonas syringae pv. tomato DC3000 Hrp (Type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato. Mol. Plant-Microbe Interact. 16: 43-52.
    41. Frederick RD, Ahmad M, Majerczak DR, Arroyo-Rodriguez AS, Manulis S, Coplin DL (2001). Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant-Microbe Interact. 14: 1213-1222.
    42. Galan JE, Collmer A (1999). Type III secretion machines: bacterial device for protein delivery into host cells. Science 284:1322-1328.
    43. Gaudriault S, Paulin JP, Barny MA (2002). The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient secretion of the DspA/E essential pathogenicity factor. Mol. Plant Pathol. 3: 313-320.
    44. Gaudriaut S, Malandrin L, Paulin JP, Barny MA (1997). DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a Dsp-depend way. Mol. Microbiol. 26: 1075-1069.
    45. Ghosh P (2004). Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68:771-795.
    46. Gijsegem V, Vasse FJ, Camus JC, Marenda M, Boucher C (2000). Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 36: 249-260.
    47. Gopalan SD, Bauer W, Alfano JR, Loniello AO, He SY, Collmer A (1996). Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8: 1095-1105.
    48. Guo M, Chancey ST, Tian F, Ge Z, Jamir Y, Alfano JR (2005). Pseudomonas syringae type III chaperones ShcO1, ShcS1, and ShcS2 facilitate translocation of their cognate effectors and can substitute for each other in the secretion of HopO1-1. J. Bacteriol. 187: 4257-4269.
    49. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089-1097.
    50. He SY (1998). Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36: 363-392.
    51. He SY, Huang HC, Collmer A (1993). Pseudomonas syringae pv. syringae harpin_(Pss): a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.
    52. He SY, Nomura K, Whittam TS (2004). Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694: 181-206.
    53. Hoyos AE, Stanley CM, He SY, Pike S, Pu XA, Novacky A (1996). The interaction of harpin_(pss) with plant cell walls. Mol. Plant-Microbe Interact. 9: 608-616.
    54. Hu W, Yuan J, Jin QL, Hart P, He SY (2001). Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe Interact. 14: 234-241.
    55. Huang HC, He SY, Bauer DW, Collmer A (1992). The Pseudomonas syringae pv. syringae 61 hrpH product, an envelope protein required for elicitation of the hypersensitive response in plants. J. Bacteriol. 174: 6878-6885.
    56. Jin Q, He SY (2001). Role of the Hrp Pilus in type III protein secretion in Pseudomonas syringae. Science 294: 2556-2558.
    57. Jin Q, Hu W, Brown I, McGhee G, Hart P, Jones AL, He SY (2001). Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139.
    58. Jin QL, Liu NZ, Qiu JL, Li DB, Wang J (1997). A truncated fragment of Harpin_(pss) induces systemic resistance to Xanthomonas campestris pv. oryzae in rice. Physiol. Mol. Plant Pathol. 51: 243-257.
    59. Kabisch U, Landgraf A, Krause J, Bonas U, Boch J (2005). Type III secretion chaperones ShcS1 and ShcO1 from Pseudomonas syringae pv. tomato DC3000 bind more than one effector. Microbiol. 151:269-280.
    60. Kamoun S, Kamdar HV, Tola E, Kado CI (1992). Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. Mol. Plant-Microbe Interact. 5: 22-33.
    61. Kim JF, Beer SV (2000). hrp genes and harpins of Erwinia amylovora: A decade of discovery, Pages 141-162 in: Fire Blight and Its Causative Agent, Erwinia amylovora. J. L. Vanneste, ed. CAB International, Wallingford, UK.
    62. Kim JF, Bauer DW, Bogdanove AJ, Dong H, Beer SV, Wei Z (1999). Secreted enigmatic proteins of Erwinia amylovora - for good and evil. Acta Hortic. 489: 38-42.
    63. Kim JF, Wei ZM, Beer SV (1997). The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol. 179: 1690-1697.
    64. Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003). Characterization of the Xanthomonas axonopodis pv. glycines HpaG pathogenicity island. J. Bacteriol. 185: 3155-3166.
    65. Kjemtrup S, Nimchuk Z, Dangl JL (2000). Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr. Opin. Microbioi. 3: 73-78.
    66. Krishnan HB (2002). NolX of Sinorhizobium Jredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J. Bacteriol. 184: 831-839.
    67. Kubori T, Galan JE (2002). Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J. Bacteriol. 184: 4699-4708.
    68. Lahaye T, Bonas U (2001). Molecular secrets of bacterial type III effector proteins. Trends Plant Sci. 6: 479-485.
    69. Lee J, Klessig DF, Nurnberger T (2001a). A harpin binding site in tobacco plasma membranes mediates activation of the extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093.
    70. Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Noller J, Weiler EW, Cornelis GR, Mansfield JW, Nurnberger T (2001b). HrpZ_(Psph) from the plant pathogen Pseudomonas syringae pv phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc. Natl. Acad. Sci. USA 98: 289-294.
    71. Lee YH, Kolade OO Nomura K, Arvidson, DN, He SY (2005). Use of dominant-negative HrpA mutants to dissect Hrp pilus assembly and type III secretion in Pseudomonas syringae pv. tomato. J. Biol. Chem. 280: 21409-21417.
    
    72. Li CM, Brown 1, Mansfield J, Stevens C, Boureau T, Romantschuk M, Taira S (2002). The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J. 21: 1909-1915.
    
    73. Li Y, Jones L, Queen-Mason S (2003). Expansins and cell growth. Curr. Opin. Plant Biol. 6: 603-610.
    
    74. Liang Y, Dong H, Liu A, Liu R (1995). Hydroxyproline-rich glycoproteins as related to disease resistance in plants. Pages 171-182 in: Induced resistance against pathogens in plants. H. Dong, ed. Sci. Press, Beijing, China.
    
    75. Lindgren PB (1997). The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35:129-152.
    
    76. Li P, Wang J (2004). Genetic diversity of harpin from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance. Sci. China (C) 4: 461-469.
    
    77. Liu Y, Jiang G, Cui Y, Mukherjee A, Ma WL, Chatterjee AK (1999). KdgR_(Ecc) negatively regulates genes for pectinases, cellulase, protease, harpin_(ecc), and a global RNA regulator in Erwinia carotovora subsp. carotovora. J. Bacteriol. 181: 2411-2421.
    
    78. Losada LC, Hutcheson SW (2005). Type III secretion chaperones of Pseudomonas syringae protect effectors from Lonassociated degradation. Mol. Microbiol. 55: 941-953.
    
    79. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A (2002). Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol. 184: 3433-3441.
    
    80. Marie C, Broughton WJ, Deakin WJ (2001). Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol. 4: 336-342.
    
    81. Mew TW (1987). Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol. 25: 359-382.
    
    82. Mudgett MB (2005). New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56: 509-531.
    
    83. Mukherjee A, Cui Y, Liu Y, Chatterjee AK (1997). Molecular characterization and expression of the Erwinia carotovora hrpN_(Ecc) gene, which encodes an elicitor of the hypersensitive reaction. Mol. Plant-Microbe Interact. 10(4): 462-471.
    
    84. Mukherjee A, Cui Y, Ma W, Liu Y, Ishihama A, Eisenstark A, Chatterjee AK (1998). RpoS (sigma-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. J. Bacteriol. 180(14): 3629-3634.
    85. Narvaez-Vasquez J, Pearce J, Ryan CR (2005). The plant cell wall matrix harbors a precursor of defense signaling peptides. Proc. Natl. Sci. Acad. USA 102: 12974-12977.
    86. Navarro L, Alto NM, Dixon JE (2005). Functions of the Yersinia effector proteins in inhibiting host immune responses. Curr. Opin. Microbiol. 8: 21-27.
    87. Nizan R, Barash I, Valinsky L, Lichter A, Manulis S (1997). The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Mol. Plant-Microbe Interact. 10: 677-682.
    88. Noel L, Thieme F, Nennstiel D, Bonas U (2002). Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the HpaG pathogenicity island. J. Bacteriol. 184: 1340-1348.
    89. Ombeline R, Guido VA, Ulla B (2000). HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 38(4): 828-838.
    90. Pallen MJ, Beatson SA, Bailey CM (2005). Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev. 29: 201-229.
    91. Parsot C, Hamiaux C, Page AL (2003). The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6: 7-14.
    92. Peng J, Bao Z, Li P, Chen G, Wang J, Dong H (2004). Harpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Bot. Sin. 46:1083-1090.
    93. Peng J, Bao Z, Ren H, Wang J, Dong H (2004). Expression of Harpin_(Xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathol. 94:1048-1055.
    94. Peng J, Dong H, Dong H-P, Delaney TP, Bonasera BM, Beer SV (2003). Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol. 62: 317-326.
    95. Petnicki-Ocwieja T, van Dijk K, Alfano JR (2005). The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J. Bacteriol. 187: 649-663.
    96. Preston G, Deng WL, Huang HC, Collmer A (1998). Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J. Bacteriol. 180: 4532-4537.
    97. Preston G, Huang HC, He SY, Collmer A. 1995, The HrpZ proteins of Pseudomonas syringae pv. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8(5): 717-732.
    98. Rahme LG, Mindrinos MN, Panopoulos NJ (1992). Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 173: 3499-3507.
    99. Rietsch A, Vallet-Gely I, Dove SL, Mekalanos JJ (2005). ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 102: 8006-8011.
    100. Rose JKC (2003). The Plant Cell Wall. CRC Press, Blackwell Pub. Ltd, Victoria, Australia.
    101. Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A (2004). Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J. Bacteriol. 186:543-555.
    102. Schesser K, Frithz-Lindsten E, Wolf-Watz H (1996). Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J. Bacteriol. 178: 7227-7233.
    103. Shan L, Oh HS, Chen J, Guo M, Zhou J, Alfano JR, Collmer A, Jia X, Tang X (2004). The HopPtoF locus of Pseudomonas syringae pv. tomato DC3000 encodes a type III chaperone and a cognate effector. Mol. Plant-Microbe Interact. 17: 447-455.
    104. Skorn M, Siritida R, Rojana S, Gary V (1998). Construction and physiological analysis of a Xanthomonas oryzae pv. oryzae recA mutant. FEMS Microbiol. Lett. 169: 269-275.
    105. Song X, Bednarski D, Fan H, Wei Z (2001). HrBP1, a harpin_(Ea) binding protein, mediates plant defense and growth signal transduction pathways. In Program & Abstracts, the 10th Intl. Cong. Mol. Plant-Microbe Interact. July 10 - July 14, 2001, University of Wisconsin, Madison, WI. #177.
    106. Strobel RN, Gopalan JS, Kuc JA, He SY (1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ_(Pss) protein. Plant J. 9: 431-439.
    107. Sugio A, Yang B, White FF (2005). Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact. 18: 546-554.
    108. Tampakaki AP, Panopoulos NJ (2000). Elicitation of hypersensitive cell death by extracellularly targeted HrpZ_(Psph) produced in planta. Mol. Plant-Microbe Interact. 13: 1366-1374.
    109. Takashi O, Koji T, Motohiro I, Yasuhiro I, Hirokazu O, Hisatoshi K, Seiji T, Kazunori T (2004). Structural conservation of the hrp gene cluster in Xanthomons oryzae pv. oryzae. J. Gen. Plant Pathol. 70: 159-167.
    110. Thomas NA, Deng W, Puente JL, Frey EA, Yip CK, Strynadka NC, Finlay BB (2005). CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 57: 1762-1779.
    111. Urbanowski ML, Lykken GL, Yahr TL (2005). A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc. Natl. Acad. Sci. USA 102: 9930-9935.
    112. Van Dijk K, Tam VC, Records AR, Petnicki-Ocwieja T, Alfano JR (2002). The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae. Mol. Microbiol. 44: 1469-1481.
    113. Van Gijsegem F, Vasse J, Camus JC, Marenda M, Boucher C (2000). Ralstonia solanacearum produces Hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 36: 249-260.
    114. Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998). Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381-1389.
    115. Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R (2005). The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J. Bacteriol. 187: 2458-2468.
    116. Wehling MD, Guo M, Fu ZQ, Alfano JR (2004). The Pseudomonas syringae HopPtoV protein is secreted in culture and translocated into plant cells via the type III protein secretion system in a manner dependent on the ShcV type III chaperone. J. Bacteriol. 186: 3621-3630.
    117. Wei CF, Deng WL, Huang HC (2005). A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type III secretion system. Mol. Microbiol. 57: 520-536.
    118. Wei W, Plovanich-Jones A, Deng WL, Jin QL, Collmer A, Huang HC, He SY (2000). The gene coding for the Hrp pilus structural protein is required for type III secretion of Hrp and Avr proteins in Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci. USA 97: 2247-2252.
    119. Wei ZM, Beer SV (1995). HrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177: 6201-6210.
    120. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:
    121.Wei ZM,Qiu D,Kropp MJ,Schading RL(1998).Harpin,an HR elicitor,activates both defense and growth systems in many commercially important crops.Phytopathol.88:S96.
    122.Wen W,Wang J(2001).Cloning and expressing a harpin gene from Xanthomonas oryzae pv.oryzae.Acta Phytopathol.Sin.31:296-300.
    123.Wengelnik K,Bonas U(1996).HrpXv,an AraC-type regulator,activates expression of five of the six loci in the hrp cluster of Xanthornonas carnpestris pv.vesicatoria.J.Bacteriol.178:3462-3469.
    124.Wengelnik K,Van den AG,Bonas U(1996).HrpG,a key Hrp regulatory protein of Xanthomonas campestris pv.vesicatoria is homologous to two-component response regulators.Mol.Plant-Microbe Interact.9:704-712.
    125.Wengelnik K,Marie C,Russel M,Bonas U(1996).Expression and localization of HrpAl,a protein of Xanthornonas carnpestris pv.vesicatoria essential for pathogenicity and induction of the hypersensitive reaction.J.Bacteriol.178:1061-1069.
    126.Wulff-Strobel CR,Williams AW,Straley SC(2002).LcrQ and SycH function together at the Ysc type Ⅲ secretion system in Yersiniapestis to impose a hierarchy of secretion.Mol.Microbiol.43:411-423.
    127.Xie Z,Chen Z(2000).Harpin induced hypersensitive cell death is associated with altered mitocondrial functions in tobacco cells.Mol.Plant-Microbe Interact.13:183-190.
    128.Yuan J,He SY(1996).The Pseudornonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins,J.Bacteriol.178:6399-6402.
    129.Zitter TA,Beer SV(1998).Harpin for insect control.Phytopathol.88:S104-105.
    130.Zhu WG,Magbanua MM,White FF(2000).Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv.oryzae.J.Bacteriol.182:1844-1853.
    131.陈功友(2000).水稻黄单胞菌(Xanthomonas oryzae)hrp基因克隆与特性研究.博士学位论文,南京农业大学.
    132.方中达(1998).植病研究方法.中国农业出版社。
    133.方中达,许志刚,过崇俭,殷尚智,伍尚忠,徐羡明,章琦(1990).中国水稻白叶枯病菌致病型的研究.植物病理学报20(2):81-87.
    134.李平(2002).水稻黄单胞菌无毒基因avrXa3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究.博士学位论文,南京农业大学.
    135.彭建令(2003).两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析.博士学位论文,南京农业大学.
    136.闻伟刚(2001).水稻黄单胞菌过敏性反应激发子的研究.博士学位论文,南京农业大学.
    137.许志刚,刘凤权,沈秀萍,粟寒(1998).水稻白叶枯病和条斑病的流行与预测(综述).西南农业大学学报20(5):567-572.
    138.余晓江(2002).Harpin_(Xoo)启动番茄Pto介导的蛋白质激酶级联抗病防卫反应.硕士学位论文,南京农业大学.
    139.邹华松(2002).水稻黄单胞菌(Xanthomonas oryzae)pig和hrp基因的克隆与鉴定.博士学位论文,南京农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700