定向灌注椎弓根螺钉的设计和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     自从1959年,Boucher采用长螺钉经椎板、椎弓根达椎体固定腰骶关节取得成功以来,经过不断发展完善,椎弓根螺钉内固定系统因其贯穿三柱、固定坚强而成为当今临床使用最为广泛的脊柱后路内固定器械。应用于治疗脊柱退行性病变,脊柱骨折,脊柱畸形及骨转移瘤等病症,这也是生物力学理论在脊柱内固定实践方面的体现。
     椎弓根螺钉固定的可靠性取决于骨-螺钉界面把持力的维持,在临床上,螺钉的把持力不够或术后承载过大时,均会造成椎弓根螺钉的松动或拔出,尤其是在骨质疏松的患者中更为常见。此外,在术中植入椎弓根螺钉的过程中,常出现首次植钉失败,需要再次拧入螺钉,这也导致螺钉植入后把持力下降,螺钉松动、脱出。随着椎弓根内固定术的广泛应用,导致手术失败的螺钉松动、脱出、假关节形成等屡有报道,针对这些失败病例的翻修手术也越来越多。如何提高椎弓根螺钉的稳定性已成为当今脊柱外科研究的焦点之一。
     通常的翻修手术有增加椎弓根螺钉直径、长度,在钉道内充填其他材料等。但实践证明,增加椎弓根螺钉直径可增加椎弓根处骨折,损伤神经根的危险,且对多数病人并不适合;增加螺钉长度则可增加椎体前缘骨质穿破,损伤椎体前方重要血管和脏器的危险;而在钉道内充填固定材料也存在着一些弊端。因此,如何在椎体的解剖限制范围内有效提高骨-螺钉界面的把持力,确保固定的可靠性及稳定性,成为经椎弓根内固定器械的研究热点。目前聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)强化是使用最多的椎弓根螺钉翻修术式。研究证实,PMMA能显著增加椎弓根螺钉的拔出力,随着PMMA强化方式的不同,椎弓根螺钉的固定强度可增加49%-183%。然而PMMA强化有潜在的危险性,一旦泄露,急性反应可出现骨水泥的热效应损伤神经、血管、脊髓等,而远期更有椎管内异物存留导致压迫等危险。骨水泥注射过程中粘合剂过稠则难以均匀分布,过稀则有椎体外渗漏危及邻近营养血管和神经根之虞。
     有鉴于此,本课题希望设计一种可定向灌注椎弓根螺钉,使得骨水泥灌注方向可控,减少骨水泥渗漏的发生率,更减少骨水泥渗漏入椎管和椎间孔引起脊髓压迫和神经根变性的发生率,并为椎弓根螺钉翻修术提供新的选择。
     2.目的
     2.1使用计算机辅助设计技术建立一种新型的、具有定向灌注能力的椎弓根螺钉模型。
     2.2比较实心椎弓根螺钉与空心的定向灌注椎弓根螺钉的材料力学性质,完善模型设计并制造出螺钉。
     2.3比较实心椎弓根螺钉和空心的定向灌注椎弓根螺钉的生物力学特性,为椎弓根螺钉翻修提供新选择。
     2.4计算机流体力学模拟定向灌注,实验验证。
     3.方法
     3.1定向灌注椎弓根螺钉的设计和建模
     使用计算机辅助设计软件Pro/ENGINEER建模,设计空心、带有导向侧孔和定位标志的椎弓根螺钉及配套的定向灌注钉芯,具体步骤为:螺钉草绘、赋值、建立半截面、旋转成胚、螺旋扫描螺纹,切割中轴孔、导向侧孔、定位标志以及定位槽,建模完成后进行虚拟装配和仿真运动,观察定向是否成功以及组建是否存在相互干扰,根据结果进一步修正与完善建模。
     3.2定向灌注椎弓根螺钉的结构分析、制作以及材料力学研究
     3.2.1计算机辅助结构分析
     建模完毕后,模型导入机构/运动/结构/热力分析模块Pro/MECHANISM中,将模型简化为悬臂梁,定义材料、约束、负荷,划分有限元,进行结构分析,找出应力过分集中或运动干涉等不合理部分,调整建模,直至满意,同时比较中空和实心椎弓根螺钉的应力、应变分布。
     3.2.2螺钉制作
     使用医用钛合金TC4制作螺钉,由佛山施泰宝外科植入物有限公司制造,中空和侧孔部分由广东工业大学机电系DMU 60T数控高速加工中心加工。
     3.2.3材料力学实验
     3.2.3.1三点折弯实验
     10个定向灌注椎弓根螺钉(空心)和10个外形相同的实心螺钉使用858 MiniBionix MTS材料试验机进行三点折弯试验,快速垂直加载至4000N,载荷信号由计算机采集系统记录,TeststarⅡ测试分析软件计算。
     3.2.3.2剪切实验
     10个定向灌注椎弓根螺钉(空心)和10个外形相同的实心螺钉使用858 MiniBionix MTS材料试验机上进行,30N/s,快速垂直加载至4000N,载荷信号由计算机采集系统记录,TeststarⅡ测试分析软件计算。数据采用SPSS13.0统计软件包,两独立样本t检验。
     3.3定向灌注椎弓根螺钉的生物力学研究
     3.3.1标本选择
     6具新鲜成人尸体胸腰段椎体标本(男5具,女1具,年龄28~57岁)去除软组织、自椎间盘处离断,制成T_(12)~L_5共36个椎体,随机选取30个椎体进行试验。
     3.3.2分组及螺钉置入
     随机表法将30个椎体平均分成对照组(模拟普通椎弓根植入)、修复固定组(模拟椎弓根翻修术)、强化固定组(模拟椎弓根强化)共3组,按“人字嵴”进钉法两端分别植入空心和实心螺钉。
     3.3.3标本包埋固定和最大轴向拔出力试验
     使用自凝义齿基脱粉包埋已植入椎弓根螺钉的椎体,在材料试验机上进行最大轴向拔出力实验,记录最大拔出力和发生最大拔出力时的线性位移。进行广义线性模型之随机单位组设计资料方差分析。
     3.4定向灌注的模拟和实验研究
     Gambit建模,划分并优化网格,导入Fluent中求解。使用材料试验机制作压缩骨折模型后经定向灌注椎弓根螺钉注入PMMA并拍X线片
     4.结果
     4.1定向灌注椎弓根螺钉的设计和建模
     建模并调整、完善后在Pro/ENGINEER虚拟装配,对组合模型使用Pro/MECHANISM模块检验运动,在规定的自由度内零件和活动中没有出现平面相互干扰现象,特别是钉芯侧孔和螺钉的目标侧孔完全吻合,保证了单一通道的通畅性,仿真结果显示建模达到设计目的。
     4.2定向灌注椎弓根螺钉的结构分析、制作以及材料力学研究
     4.2.1计算机辅助结构分析
     最初设计的模型导入Pro/ENGINEER的结构分析模块Pro/Mechanism分析后发现椎弓根螺钉模型根部应力高度集中,存在结构上的薄弱点,检验模型,进行模型修正与优化后应力集中改善;比较中空和实心螺钉的应力分布、应变、应变能量、位移曲线基本一致,
     4.2.2材料力学实验
     4.2.2.1三点折弯实验
     快速垂直加载至4000N,空、实心螺钉均未出现折断,两种钉应变相同,均为0.17,实验过程中恒定未变,应力-应变曲线接近,0-4000N加压过程中均未出现下降波。
     4.2.2.2剪切实验
     以30N/s加速度加压,在位移6mm左右、应力达到约4000N时空、实心螺钉均断裂,二者应力-应变曲线几乎重合。空心螺钉和实心螺钉承受的平均最大应力分别为(3983.17±10.28)N和(3992.48±9.68)N,两独立样本t检验结果,两样本均数统计学上没有显著差异(t=2.085,P=0.052)。
     4.3定向灌注椎弓根螺钉的生物力学研究
     4.3.1最大轴向拔出力实验
     空心侧孔椎弓根螺钉对照组拔出力为(798.24±139.86)N,修复组为(1476.21±223.09)N,强化组为(1741.33±317.79)N;实心螺钉对照组拔出力为(904.37±212.03)N,修复组为(1828.42±239.68)N,强化组为(1783.37±250.49)N。对照组拔出力显著低于其他两组(P值均等于0.000),强化固定组和修复固定组间差异无显著性意义(P=0.330)
     4.3.2线性位移比较
     空心侧孔椎弓根螺钉对照组拔出力为(1.68±0.24)mm,修复组为(3.16±0.70)mm,强化组为(3.13±0.62)mm;实心螺钉对照组拔出力为(1.85±0.37)mm,修复组为(3.43±0.98)mm,强化组为(3.36±0.98)mm。对照组发生最大拔出力时的线性位移LVDT显著小于其他两组(P值均等于0.000),强化固定组和修复固定组间差异无显著性意义(P=0.971)。
     4.3.3
     在强化组和修复组,植入空心椎弓根螺钉侧的椎弓根表面无骨水泥渗漏,而实心钉植入侧,骨水泥渗漏较为多见。
     4.4定向灌注的计算机模拟和实验研究
     计算机流体力学模拟实现了定向灌注并获得静态压力、速度分布;实验中定向灌注成功并获得X线照片验证。
     5.结论
     5.1应用Pro/ENGINEER进行参数化建模,再应用其匹配的Pro/MECHANISM和Pro/MECHANICA模块对模型进行动态仿真和结构分析,从设计思路、模型构建、动态仿真、计算机流体流体力学上都直观而且精确地保证了设计思想中定向灌注主要特性的实现,同时,也得到了实验验证。
     5.2使用CAE软件可以对所建模型进行方便、直观的结构分析,并随时修正和完善模型,经理论推导、计算机模拟、材料力学实验以及统计学推断均证明,本研究中设计的空心螺钉与实心螺钉的强度无显著差异。
     5.3使用定向灌注椎弓根螺钉灌注PMMA能显著增强螺钉的稳定性,并能减少PMMA向椎弓根外或椎管内溢出,可以作为翻修手术较为安全的新选择。
1.Background
     Since the introduction of the transpedicular screw system by Boucher,because of the strong fixation through three columns,the applications of this system in the treatment of degenerative disorders,unstable fractures,deformities and tumors of the spine have become very popular in the last two decades.It is also the characterization of biomechanical theory in the practice of spinal internal fixation.
     The advantages of pedicle screw fixation are dependent on their ability to retain bony purchase until the fusion mass is stable.The bone-screw interface is a major determinant in the stability of spinal instruction systems.Loosening and failure of the screws are among the most common complications reported,especially for osteoporosis.Besides that,during the operations,because surgeons can not successfully insert screws into proper position at the first time,the turning back of the screws will be necessary.It also reduces the holding strength.Revision is often necessary.More and more loosening,prolapse and pseudoarthrosis are being reported along with the popularized employment of transpedicular fixations.It has been one of the focal points within spinal surgery how to improve the stability of pediele screws.
     Increasing the diameter and/or length of the pedicle screws appears to provide the best solution.However,increasing screw diameter may not always be possible because of anatomical constraints.There is an increased risk of pedicle fracture with possible neural injury if larger screws are used.The use of longer screws increases the risk of anterior body penetration with possible vascular or visceral injury.Besides that, to enhance fixation of salvage screws in case of severe bone loss,some surgeons have chosen to fill the void with a variety of materials,including corticocancellous bone grafts,polymethyl methacrylate(PMMA),and so on.But there are always somewhat defects in the revisions with filling materials.So it has been a highlight on how to increase the bone-screw interface strength.Filling and strengthening with PMMA is the most popular revision methods at present.It has been confirmed that pull-out force can be enhanced by 49%-183%according to different strengthening mode. However,PMMA is not frequently used in spine surgery because of the potential danger to adjacent nutrient vessel and nerve roots if leakage into the spinal were to occur.Immediate risks resulting from leakage into the spinal canal are the result of the exothermic reaction present in the curing process of PMMA,whereas long-term risks are secondary to a non-degradable foreign body in the spinal canal.
     In view of this,our goal in current study was to design a new type of pedicle screws with the capability of directional injection and evaluate the mechanical properties of it.With the characteristic of oriented injection,the incidence of bone cement leakage can be reduced,which lead to spinal compression and nerve root's denaturation.We hope this kind of screw can afford new options for revisions and augmentations.
     2.Objectives
     2.1 To design a model of the pedicle screw with capability of directional injection.
     2.2 To compare if there are some differences of the property and mechanics of materials between solid screws and hollow ones,then amend the model and get it into realization.
     2.3 To evaluate if there are some differences of biomechanics property and determine whether new options can be offered to revisions and augmentations of transpedicular operations or not..
     2.4 To simulate the directional injection with Fluent and then vertificate in experiments.
     3.Materials and methods
     3.1 Designing and modeling of the pedicle screws with capability of directional injection.
     A new type of hollow pedicle screw with lateral holes was designed with Pro/ENGINEER,a CAD(computer aided design) software.Then a model was established(Concrete steps included sketch,valuation,assignment,finishing semi-section,revolving to create billet,cutting screw threads,extruding and drilling holes,directional marks and etc).Then virtual assembling and moving were performed to find out if the function of directional injection can run and whether there was any mutual interference.
     3.2 Structural and materials analysis of directional-injection pedicle screws.
     3.2.1 Computer aided structural analysis
     Finished model was imported into the module of Pro/MECHANISM and simplified as a projecting beam.Then the model was defined with materials, constrains and loads before divided into meshes and performed with structural analysis.Where stress concentrated or motion contradicted was find out to amend.At the same time,stress and strain distribution of solid and hollow screws has been examined.
     3.2.2 Manufacturing of the screws
     The screws were made of Titanium Alloys TC4 by STB Surgical implants,LTD. In Foshan.The axial and lateral holes were drilled by DMU 60T high-speed DECKEL MAHO in Guangdong University of Technology.
     3.2.3 Material mechanics tests
     3.2.3.1 Three points bending test
     10 hollow and 10 solid screws were investigated by material testing machine with three point bending test under the quick loading to 4000N.
     3.2.3.2 Shear test
     10 hollow and 10 solid screws were investigated by material testing machine with shear test under the quick loading to 4000N(30N/s).The information was captured and analyzed.Then two sample t-test was performed.
     3.3 Biomechanical analysis
     3.3.1 Specimens
     Six fresh thoracolumbar spine specimens(5 males,1 femals) were divided into 36 vertebraes and 30were employed.
     3.3.2 Grouping and implanting
     According to random num table,30 vertebraes were divided into three groups: Control Group(Group C),Augmentation Group(Group A) and Restoration Groups (Group R).Entry point of screws was at the“人”shape crest.
     3.3.3 Vertebrae embedding and F-max test
     Vertebraes implanted with screws were embedded into rackets with dental base acrylic resin powder before F-max test.Then the peak pull-out forces and Linear Displacements(LD) were recorded.And analysis of variance(ANOVA) test of a randomized block were employed.
     3.4 CFD simulation and experimental verification for directional injection
     A model of directional injection was established with Gambit,and then solved in Fluent.Compression fracture model was employed with MTS.PMMA was injected into the fractured vertebrae via directional screws and then get X-ray photo captured.
     4.Results
     4.1 Designing and modeling of the pedicle screws with capability of directional injection.
     After virtual assembling and moving were performed,there was no mutual interference found out in the defined degree of freedom.The function of directional injection ran precisely.
     4.2 Structural and materials analysis of directional-injection pedicle screws.
     4.2.1 Computer aided structural analysis
     Stress concentrated of the model was find out and amended at the end.The curves of stress,strain,strain energy and displacement of solid and hollow screws has been compared but little differences were find out.
     4.2.2 Material mechanics tests
     4.2.2.1 Three points bending test
     No broken screw was found.The strains of two kinds of screws were just identical(0.17),and no decent curve was recorded in the course of quick loading to 4000N.
     4.2.2.2 Shear test
     All screws broke when the quick loading added up to 4000N(30N/s). Coincidence stress-strain curves of solid and hollow screws were reported by the data. The max shear forces of the hollow and solid screws were(3983.17±10.28)N and (3992.48±9.68)N.There was no significant difference was found between them (t=2.085,P=0.052).
     4.3 Biomechanical analysis
     4.3.1 F-max test
     For hollow screws,peak pullout forces were(798.24±139.86) N in Group C, (1476.21±223.09) N in Group R,(1741.33±317.79)N in Group A;For solid screws, peak pullout forces were(904.37±212.03)N in Group C,(1828.42±239.68)N in Group R and(1783.37±250.49)N in Group A.The peak pull-out force of Group C was significantly lower than the other two groups(P=0.000),but there was no significant differences between Group R and Group A(P=0.330).
     For hollow screws,LD were(1.68±0.24)mm in Group C,(3.16±0.70) mm in Group R,(3.13±0.62)mm in Group A;For solid screws,the LD were (1.85±0.37)mm in Group C,(3.43±0.98)mm in Group R and(3.36±0.98)mm in Group A.The LD of Group C was significantly lower than the other two groups (P=0.000),but there was no significant differences between Group R and Group A (P=0.971).
     4.3.2 About bone cement leakage
     No PMMA was found in the vertebral canal or on the surface of pedicle of vertebral arch when PMMA was infused through the hollow screws,while PMMA was easily found in the vertebral canal or on the surface of the pedicle when using solid screws.
     4.4 CFD simulation and experimental study of directional injection
     Directional injection was simulated by CFD,static pressure and velocity distribution obtained,realized in experiment,vertifieated by X-ray photography.
     5.Conclusions
     1.Parametric modeling and real time dynamic simulations with Pro/ENGINEER afforded a precise and Intuitive way to realize the design thinking,directional injection.
     2.With computer aided engineering(CAE),convenient structural analysis and model revision had been performed.It has been confirmed by theoretical derivation, computer simulation,material mechanics testing,and statistical inference that the strength of hollow screw has no significant difference with the solid ones'.
     3.PMMA can significantly increase the stabilization of vertebral arch when it is infused in with directional injection screws,which offer a new and safe option for revision.
引文
[1] Boucher HH. A method of spinal fusion[J]. J Bone Joint Surg Br, 1959,41-B(2): 248-259.
    [2] Brown CA, Eismont FJ. Complications in spinal fusion[J]. Orthop Clin North Am, 1998,29(4): 679-699.
    [3] Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members[J]. Spine, 1993,18(15): 2231-2238; discussion 2238-2239.
    [4] Hakalo J, Wronski J. [Complications of a transpedicular stabilization of thoraco-lumbar burst fractures][J]. Neurol Neurochir Pol, 2006, 40(2):134-139.
    [5] Kast E, Mohr K, Richter HP, et al. Complications of transpedicular screw fixation in the cervical spine[J]. Eur Spine J, 2006,15(3): 327-334.
    [6] Potter BK, Kuklo TR, Lenke LG Radiographic outcomes of anterior spinal fusion versus posterior spinal fusion with thoracic pedicle screws for treatment of Lenke Type I adolescent idiopathic scoliosis curves[J]. Spine,2005, 30(16): 1859-1866.
    [7] Shem KL. Late complications of displaced thoracolumbar fusion instrumentation presenting as new pain in individuals with spinal cord injury[J]. J Spinal Cord Med, 2005,28(4): 326-329.
    [8] Lee SH, Kang BU, Jeon SH, et al. Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation[J]. J Neurosurg Spine, 2006, 5(3): 228-233.
    [9] Klein SA, Glassman SD, Dimar JR, 2nd, et al. Evaluation of the fixation and strength of a "rescue" revision pedicle screw[J]. J Spinal Disord Tech, 2002,15(2): 100-104.
    [10] Seichi A, Takeshita K, Nakajima S, et al. Revision cervical spine surgery using transarticular or pedicle screws under a computer-assisted image-guidance system[J]. J Orthop Sci, 2005,10(4): 385-390.
    [11]Yerby SA,Toh E,McLain RE Revision of failed pedicle screws using hydroxyapatite cement.A biomechanical analysis[J].Spine,1998,23(15):1657-1661.
    [12]Polly DW,Jr.,Orchowski JR,Ellenbogen RCt Revision pedicle screws.Bigger,longer shims—what is best?[J].Spine,1998,23(12):1374-1379.
    [13]Jarvik JG,Kallmes DF,Mirza SK.Vertebroplasty:learning more,but not enough[J].Spine,2003,28(14):1487-1489.
    [14]Kado DM,Browner WS,Palermo L.Vertebral fractures and mortality in older women:a prospective study[J].Arch Intem Med,1999,159(5):487-492.
    [15]Cooper CA,Kinson EJ,Fallon WM,et al.Incidence of clinically diagnosed vertebral fractures:a population - based study in Rochester,Minnesota,1985-1989[J].J Bone Miner Res,1992,7(3):221-227.
    [16]Galibert P,Deramond H,Rosat P,et al.[Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty][J].Neurochirurgie,1987,33(2):166-168.
    [17]Galibert P,Deramond H.[Percutaneous acrylic vertebroplasty as a treatment of vertebral angioma as well as painful and debilitating diseases][J].Chirurgie,1990,116(3):326-334;discussion 335.
    [18]Cardon T,Hachulla E,Flipo RM,et al.Percutaneous vertebroplasty with acrylic cement in the treatment of a Langerhans cell vertebral histiocytosis[J].Clin Rheumatol,1994,13(3):518-521.
    [19]Gangi A,Kastler BA,Dietemann JL.Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy[J].AJNR Am J Neuroradiol,1994,15(1):83-86.
    [20]Cotten A,Dewatre F,Cortet B,et al.Percutaneous vertebroplasty for osteolytic metastases and myeloma:effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up[J].Radiology,1996,200(2):525-530.
    [21]Cotten A,Duquesnoy B.Vertebroplasty:current data and future potential[J].Rev Rhum Engl Ed,1997,64(11):645-649.
    [22] Nussbaum DA, Gailloud P, Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site[J]. J Vasc Interv Radiol, 2004,15(11): 1185-1192.
    [23] Wilcox RK. The biomechanics of vertebroplasty: a review[J]. Proc Inst Mech Eng[H], 2004,218(1): 1-10.
    [24] Verlaan JJ, van de Kraats EB, Oner FC, et al. Bone displacement and the role of longitudinal ligaments during balloon vertebroplasty in traumatic thoracolumbar fractures[J]. Spine, 2005, 30(16): 1832-1839.
    [25] Yoon ST, Qureshi AA, Heller JG, et al. Kyphoplasty for salvage of a failed vertebroplasty in osteoporotic vertebral compression fractures: case report and surgical technique[J]. J Spinal Disord Tech, 2005,18 SupplS129-134.
    [26] Bartolozzi B, Nozzoli C, Pandolfo C, et al. Percutaneous vertebroplasty and kyphoplasty in patients with multiple myeloma[J]. Eur J Haematol, 2006,76(2): 180-181.
    [27] Hochmuth K, Proschek D, Schwarz W, et al. Percutaneous vertebroplasty in the therapy of osteoporotic vertebral compression fractures: a critical review[J]. Eur Radiol, 20061-7.
    [28] Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture[J]. Spine, 2001,26(2): 151-156.
    [29] Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures[J]. Spine, 2001,26(14): 1511-1515.
    [30] Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures[J]. Spine, 2001,26(14): 1631-1638.
    [31] Garfin SR, Reilley MA. Minimally invasive treatment of osteoporotic vertebral body compression fractures[J]. Spine J, 2002,2(1): 76-80.
    [32] Dublin AB, Hartman J, Latchaw RE, et al. The vertebral body fracture in osteoporosis: restoration of height using percutaneous vertebroplasty[J].AJNR Am J Neuroradiol, 2005,26(3): 489-492.
    [33] Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures[J].Eur Spine J, 2000,9(5): 445-450.
    [34] Soshi S, Shiba R, Kondo H, et al. An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine[J]. Spine, 1991,16(11): 1335-1341.
    [35] Zindrick MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine[J], Clin Orthop Relat Res, 1986(203): 99-112.
    [36] Debusscher F, Troussel S. Direct repair of defects in lumbar spondylolysis with a new pedicle screw hook fixation: clinical, functional and Ct-assessed study[J]. Eur Spine J, 2007,16(10): 1650-1658.
    [37] Pfeifer BA, Krag MH, Johnson C. Repair of failed transpedicle screw fixation.A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction[J]. Spine, 1994,19(3): 350-353.
    [38] Wittenberg RH, Lee KS, Shea M, et al. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength[J]. Clin Orthop Relat Res, 1993(296): 278-287.
    [39] Barber JW, Boden SD, Ganey T, et al. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength?[J]. J Spinal Disord,1998,11(3): 215-220.
    [40] Skinner R, Maybee J, Transfeldt E, et al. Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study[J]. Spine, 1990,15(3): 195-201.
    [41] McKinley TO, McLain RF, Yerby SA, et al. Characteristics of pedicle screw loading. Effect of surgical technique on intravertebral and intrapedicular bending moments[J]. Spine, 1999,24(1): 18-24, discussion 25.
    [42]Chiba M,McLain RF,Yerby SA,et al.Short-segment pedicle instrumentation.Biomechanical analysis of supplemental hook fixation[J].Spine,1996,21(3):288-294.
    [43]Halvorson TL,Kelley LA,Thomas KA,et al.Effects of bone mineral density on pedicle screw fixation[J].Spine,1994,19(21):2415-2420.
    [44]Hasegawa K,Takahashi HE,Uchiyama S,et al.An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine[J].Spine,1997,22(9):958-962;discussion 963.
    [45]McLain RF,Fry MF,Moseley TA,et al.Lumbar pedicle screw salvage:pullout testing of three different pedicle screw designs[J].J Spinal Disord,1995,8(1):62-68.
    [46]翁习生,邱贵兴,赵卫东,等.椎弓根螺钉不同翻修方法的生物力学研究[J].中华骨科杂志,2003,23(10):622-626.
    [47]Okuyama K,Sato K,Abe E,et al.Stability of transpedicle screwing for the osteoporotic spine.An in vitro study of the mechanical stability[J].Spine,1993,18(15):2240-2245.
    [1]二代龙震工作室.Pro/Mechanism/MECHANICA Wildfire 2.0机构/运动/结构/热力分析[M].第1版,北京:电子工业出版社,2006.1-2.
    [2]邱贵兴.经椎弓根脊柱内固定术,见:邱贵兴主编.骨科手术学[M].第3版.北京:人民卫生出版社,1413.
    [3]边卫国,党晓谦,汤少杰,等.计算机辅助下腰椎ct图像自动化测量及其临床价值[J].中国脊柱脊髓杂志,2007,17(10):749-752,I0001.
    [4]程宗燕.计算机导航辅助椎弓根内固定术的手术配合[J].临床护理杂志,2007,6(4):54-55.
    [5]冯格,宋锦磷,陈梦苇,等.计算机辅助Delaire头影测量分析法的等效性和可重复性研究[J].重庆医学,2007,36(23):2401-2403.
    [6]李岩峰,胡敏,张立海,等.用于计算机辅助设计的镍钛记忆合金牵引器有限元模型的建立[J].北京口腔医学,2005,13(1):20-22,25.
    [7]田伟,刘亚军,刘波,等.计算机导航在脊柱外科手术应用实验和临床研究[J].中华骨科杂志,2006,26(10):671-675.
    [8]朱成良.三维重建技术在胸腰椎爆裂骨折中的应用[J].实用医技杂志,2007,14(3):270-272.
    [9]朱庆华,王红斌,孙红燕.计算机辅助技术个性化塑形钛网用于颅骨修补[J].中国组织工程研究与临床康复,2007,11(44):8951-8953.
    [10]顾应江,刘亮,李吴,等.计算机辅助设计颅骨缺损成型技术在修复治疗中的应用[J].中国组织工程研究与临床康复,2007,11(35):6983-6986.
    [11]王满宜,王军强.计算机辅助骨科手术在创伤骨科中的应用[J].中华骨科杂志,2006,26(10):703-706.
    [12]薛文东,王东风,俞超,等.骨科计算机辅助术前规划系统[J].北京生物医学工程,2007,26(3):322-323,296.
    [13]龙胜春,刘盛,陈张健.颅颌面外科术前虚拟技术[J].中华整形外科杂志,2007,23(1):69-72.
    [14]马攀,李德华,彭勤建,等.Pro/E的自适应功能在建立螺纹型牙种植体骨块仿真数据库的应用[J].中华医学美学美容杂志,2006,12(1):28-30.
    [15]马攀,李德华,宋应亮,等.Pro/E的自适应功能在建立螺纹型牙种植体骨块三维有限元模型中的应用[J].口腔医学研究,2005,21(6):622-624.
    [16]于力牛,常伟.基于Pro/E的牙列快速原型制造[J].机械与电子,2001(4):30-32.
    [17]张少锋,孙滢滢,周冰,等.利用Matlab和Pro/E软件辅助建立桩核冠的三维有限元模型[J].口腔医学研究,2006,22(3):267-269.
    [18]周冰,张少锋,毛勇,等.下颌第二前磨牙桩冠三维有限元模型的构建——CT技术与Matlab及Pro/E软件的应用[J].中国临床康复,2005,9(18):86-87,i004.
    [19]McLain RF,Ferrara L,Kabins M.Pedicle morphometry in the upper thoracic spine:limits to safe screw placement in older patients[J].Spine,2002,27(22):2467-2471.
    [20]McLain RF,Fry MF,Moseley TA,et al.Lumbar pedicle screw salvage:pullout testing of three different pedicle screw designs[J].J Spinal Disord,1995,8(1):62-68.
    [21]Brantley AG,Mayfield JK,Koeneman JB,et al.The effects of pediele screw fit.An in vitro study[J].Spine,1994,19(15):1752-1758.
    [22]翁习生,邱贵兴,赵卫东,等.椎弓根螺钉不同翻修方法的生物力学研究[J].中华骨科杂志,2003,23(10):622-626.
    [23]Polly DW,Jr.,Orchowski JR,Ellenbogen RG,Revision pediele screws.Bigger,longer shims—what is best?[J].Spine,1998,23(12):1374-1379.
    [24]Hee HT,Khan MS,Goh JC,et al.Insertion torque profile during pedicle screw insertion of the thoracic spine with and without violation of the pediele wall:comparison between cylindrical and conical designs[J].Spine,2006,31(22):E840-846.
    [25]Ono A,Brown MD,Latta LL,et al.Triangulated pedicle screw construct technique and pull-out strength of conical and cylindrical screws[J].J Spinal Disord,2001,14(4):323-329.
    [26]李超,阮狄克,丁宇,等.锥形与柱形椎弓根螺钉的生物力学研究[J].脊柱外科杂志,2004,2(4):220-223.
    [27]潘显明,谭映军.椎弓根螺钉的螺纹形状与拔钉生物力学[J].第四军医大学学报,2002,23(5):447-450.
    [28]李书纲,邱贵兴,翁习生,等.通用型脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究[J].中华骨科杂志,2002,22(11):648-652.
    [29]Wilier K,Hearn TC,Cuncins AV.Biomechanical testing of a new design for Schanz pedicle screws[J].J Orthop Trauma,1993,7(4):375-380.
    [30]杨述华,胡勇,陈中海,等.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究[J].中华创伤杂志,2002,18(1):17-32.
    [31]雷伟,吴子祥,李明全,等.膨胀式脊柱椎弓根螺钉固定的生物力学研究[J].中国脊柱脊髓杂志,2004,14(11):669-672.
    [32]吴子祥,雷伟,孙明林,等.膨胀式椎弓根螺钉脊柱后路内固定的生物力学测试[J].医用生物力学,2004,19(2):98-102.
    [33]王祥善,鲍朝辉,赵卫东,等.膨胀式脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究[J].中国脊柱脊髓杂志,2005,15(7):436-439.
    [34]郭卫春,彭吴,陶海鹰,等.强化膨胀式椎弓根螺钉翻修作用的生物力学评价[J].临床外科杂志,2006,14(8):508-509.
    [1]张宝峰.内置式胫骨延伸器的研制开发[M].西安:西安交通大学出版社,2003:54-56.
    [2]冯颖芳.钛及钛合金人工关节植入材料[J].稀有金属快报,2002(6):15-19.
    [3]杨述华,胡勇,陈中海,等.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究[J].中华创伤杂志,2002,18(1):17-32.
    [4]Cook SD,Salkeld SL,Stanley T,et al.Biomechanical study of pedicle screw fixation in severely osteoporotic bone[J].Spine J,2004,4(4):402-408.
    [5]Diedrich O,Kraft CN,Luring C,et al.[Residual stability of different interbody fusion techniques after pedicle screw loosening][J].Z Orthop Ihre Grenzgeb,2005,143(2):179-185.
    [6]Erickson MA,Oliver T,Baldini T,et al.Biomechanical assessment of conventional unit rod fixation versus a unit rod pedicle screw construct:a human cadaver study[J].Spine,2004,29(12):1314-1319.
    [7]Matsuno H,Yokoyama A,Watari F,et al.Biocompatibility and osteogenesis of refractory metal implants,titanium,hafnium,niobium,tantalum and rhenium[J].Biomaterials,2001,22(11):1253-1262.
    [8]Chang MC,Ko CC,Liu CC,et al.Elasticity of alveolar bone near dental implant-bone interfaces after one month's healing[J].J Biomech,2003,36(8):1209-1214.
    [9]邓安华.钛合金的马氏体相变[J].上海有色金属,1999,20(4):193-199.
    [10]毛彭龄.两相钛合金的相变特征和热处理规范[J].上海钢研,1995(3):50-58.
    [11]刘鸿文.材料力学(上册)[M].北京:高等教育出版社,1993:172.
    [12]Fuchs HO,Stephens RI.Metal Fatigue in Engineering[M].New York:John Wiley & Sons,Inc.,,1980:67-76.
    [1]West JL,3rd,Ogilvie JW,Bradford DS.Complications of the variable screw plate pedicle screw fixation[J].Spine,1991,16(5):576-579.
    [2]Deyo RA,Ciol M_A,Cherkin DC,et al.Lumbar spinal fusion.A cohort study of complications,reoperations,and resource use in the Medicare population[J].Spine,1993,18(11):1463-1470.
    [3]Abumi K,Shono Y,Ito M,et al.Complications of pedicle screw fixation in reconstructive surgery of the cervical spine[J].Spine,2000,25(8):962-969.
    [4]Ha.kale J,Wronski J.[Complications of a transpedicular stabilization of thoraco-lumbar burst fractures][J].Neurol Neurochir Pol,2006,40(2): 134-139.
    [5]Klein SA,Glassman SD,Dimar JR,2nd,et al.Evaluation of the fixation and strength of a “rescue” revision pedicle screw[J].J Spinal Disord Tech,2002,15(2):100-104.
    [6]Lee SH,Kang BU,Jeon SH,et al.Revision surgery of the lumbar spine:anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation[J].J Neurosurg Spine,2006,5(3):228-233.
    [7]邱贵兴,戴尅戎.骨科手术学[M],第三版edn.北京:人民卫生出版社,2005:1415-1416.
    [8]Stanescu S,Ebraheim NA,Yeasting R,et al.Morphometric evaluation of the cervico-thoracic junction.Practical considerations for posterior fixation of the spine[J].Spine,1994,19(18):2082-2088.
    [9]Coe JD,Warden KE,Herzig MA,et al.Influence of bone mineral density on the fixation of thoracolumbar implants.A comparative study of transpedicular screws,laminar hooks,and spinous process wires[J].Spine,1990,15(9):902-907.
    [10]Polly DW,Jr.,Orchowski JR,Ellenbogen RG.Revision pedicle screws.Bigger,longer shims--what is best?[J].Spine,1998,23(12):1374-1379.
    [11]Kamimura M,Ebara S,Itoh H,et al.Cervical pedicle screw insertion:assessment of safety and accuracy with computer-assisted image guidance[J].J Spinal Disord,2000,13(3):218-224.
    [12]Lysack JT,Yen D,Dumas GA.In vitro flexibility of an experimental pedicle screw and plate instrumentation system on the porcine lumbar spine[J].Med Eng Phys,2000,22(7):461-468.
    [13]McLain RF,McKinley TO,Yerby SA,et al.The effect of bone quality on pedicle screw loading in axial instability.A synthetic model[J].Spine,1997,22(13):1454-1460.
    [14]Skinner R,Maybee J,Transfeldt E,et al.Experimental pullout testing and comparison of variables in transpedicular screw fixation.A biomechanical study[J].Spine,1990,15(3):195-201.
    [15]Chiba M,McLain RF,Yerby SA,et al.Short-segment pedicle instrumentation.Biomechanical analysis of supplemental hook fixation[J].Spine,1996,21(3):288-294.
    [16]Halvorson TL,Kelley LA,Thomas KA,et al.Effects of bone mineral density on pedicle screw fixation[J].Spine,1994,19(21):2415-2420.
    [17]Hasegawa K,Takahashi HE,Uchiyama S,et al.An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine[J].Spine,1997,22(9):958-962;discussion 963.
    [18]McLain RF,Fry MF,Moseley TA,et al.Lumbar pedicle screw salvage:pullout testing of three different pedicle screw designs[J].J Spinal Disord,1995,8(1):62-68.
    [19]翁习生,邱贵兴,赵卫东,等.椎弓根螺钉不同翻修方法的生物力学研究[J].中华骨科杂志,2003,23(10):622-626.
    [20]Hirano T,Hasegawa K,Takahashi HE,et al.Structural characteristics of the pedicle and its role in screw stability[J].Spine,1997,22(21):2504-2509;discussion 2510.
    [21]Lee TC.Complications of transpedicular reduction and stabilization of the thoracolumbar spine[J].J Formos Med Assoc,1995,94(12):738-741.
    [22]Lonstein JE,Denis F,Perra JH,et al.Complications associated with pedicle screws[J].J Bone Joint Surg Am,1999,81(11):1519-1528.
    [23]Ohlin A,Karlsson M,Duppe H,et al.Complications after transpedicular stabilization of the spine.A survivorship analysis of 163 cases[J].Spine,1994,19(24):2774-2779.
    [24]Okuyama K,Sato K,Abe E,et al.Stability of transpedicle screwing for the osteoporotic spine.An in vitro study of the mechanical stability[J].Spine,1993,18(15):2240-2245.
    [25]Pfeifer BA,Krag MH,Johnson C.Repair of failed transpedicle screw fixation.A biomechanical study comparing polymethylmethacrylate,milled bone,and matchstick bone reconstruction[J].Spine,1994,19(3):350-353.
    [26]Galibert P,Deramond H,Rosat P,et al.[Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty][J].Neurochirurgie,1987,33(2):166-168.
    [27]Heini PF,Walchli B,Berlemann U.Percutaneous transpedicular vertebroplasty with PMMA:operative technique and early results.A prospective study for the treatment of osteoporotic compression fractures[J].Eur Spine J,2000,9(5):445-450.
    [28]Soshi S,Shiba R,Kondo H,et al.An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine[J].Spine,1991,16(11):1335-1341.
    [29]Zindriek MR,Wiltse LL,Widell EH,et al.A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine[J].Clin Orthop Relat Res,1986(203):99-112.
    [30]Debusscher F,Troussel S.Direct repair of defects in lumbar spondylolysis with a new pedicle screw hook fixation:clinical,functional and Ct-assessed study[J].Eur Spine J,2007,16(10):1650-1658.
    [31]Wittenberg RH,Lee KS,Shea M,et al.Effect of screw diameter,insertion technique,and bone cement augmentation of pedicular screw fixation strength[J].Clin Orthop Relat Res,1993(296):278-287.
    [32]Wilkes RA,Mackinnon JG,Thomas WG.Neurological deterioration after cement injection into a vertebral body[J].J Bone Joint Surg Br,1994,76(1):155.
    [33]Quinn J,Joyner C,Triffitt JT,et al.Polymethylmethacrylate-induced inflammatory macrophages resorb bone[J].J Bone Joint Surg Br,1992,74(5):652-658.
    [34]Lotz JC,Hu SS,Chiu DF,et al.Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine[J].Spine,1997,22(23):2716-2723.
    [35]傅德皓,杨述华.磷酸钙骨水泥强化和修复椎弓根螺钉的生物力学研究[J].医学临床研究,2002,19(5):325-330.
    [36]黎逢峰,张庆宏,黄野,等.磷酸钙骨水泥强化椎弓根螺钉固定的生物力学特性[J].中国临床康复,2006,10(25):187-190.
    [37]Roca J,Iborra M,Cavanilles-Walker JM,et al.Direct repair of spondylolysis using a new pedicle screw hook fixation:clinical and CT-assessed study:an analysis of 19 patients[J].J Spinal Disord Tech,2005,18 SupplS82-89.
    [38]朱青安,李鉴轶,赵卫东,等.聚甲基丙烯酸甲酯强化和修复椎弓根螺钉的生物力学研究[J].中华骨科杂志,2000(05):283-285.
    [39]MeLain RF,Ferrara L,Kabins M.Pedicle morphometry in the upper thoracic spine:limits to safe screw placement in older patients[J].Spine,2002,27(22):2467-2471.
    [40]Brantley AG,Mayfield JK,Koeneman JB,et al.The effects of pedicle screw fit.An in vitro study[J].Spine,1994,19(15):1752-1758.
    [1] Jarvik JG, Kallmes DF, Mirza SK. Vertebroplasty: learning more, but not enough[J]. Spine, 2003,28(14): 1487-1489.
    [2] Galibert P, Deramond H, Rosat P, et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty][J]. Neurochirurgie,1987,33(2): 166-168.
    [3] Cardon T, Hachulla E, Flipo RM, et al. Percutaneous vertebroplasty with acrylic cement in the treatment of a Langerhans cell vertebral histiocytosis[J].Clin Rheumatol, 1994,13(3): 518-521.
    [4] Gangi A, Kastler BA, Dietemann JL. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy[J]. AJNR Am J Neuroradiol, 1994,15(1):83-86.
    [5] Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up[J]. Radiology,1996,200(2): 525-530.
    [6] Dousset V, Mousselard H, de Monck d'User L, et al. Asymptomatic cervical haemangioma treated by percutaneous vertebroplasty[J]. Neuroradiology,1996, 38(4): 392-394.
    [7] Cotten A, Duquesnoy B. Vertebroplasty: current data and future potential[J].Rev Rhum Engl Ed, 1997,64(11): 645-649.
    [8] Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty[J]. Bone, 1999, 25(2 Suppl):17S-21S.
    [9] Harrington KD. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate : a case report[J]. J Bone Joint Surg Am, 2001, 83-A(7): 1070-1073.
    [10] McAllister A, Spencer RP, Yannopoulos AD. Bone densitometry study in a patient with prior kyphoplasty variant of vertebroplasty[J]. Clin Nucl Med, 2002,27(5): 365-366.
    [11] Hiwatashi A, Moritani T, Numaguchi Y, et al. Increase in vertebral body height after vertebroplasty[J]. AJNR Am J Neuroradiol, 2003,24(2): 185-189.
    [12] Nussbaum DA, Gailloud P, Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site[J]. J Vasc Interv Radiol, 2004,15(11): 1185-1192.
    [13] Wilcox RK. The biomechanics of vertebroplasty: a review[J]. Proc Inst Mech Eng[H],2004,218(1): 1-10.
    [14] Verlaan JJ, van de Kraats EB, Oner FC, et al. Bone displacement and the role of longitudinal ligaments during balloon vertebroplasty in traumatic thoracolumbar fractures[J]. Spine, 2005, 30(16): 1832-1839.
    [15] Yoon ST, Qureshi AA, Heller JG, et al. Kyphoplasty for salvage of a failed vertebroplasty in osteoporotic vertebral compression fractures: case report and surgical technique[J]. J Spinal Disord Tech, 2005,18 SupplS129-134.
    [16] Bartolozzi B, Nozzoli C, Pandolfo C, et al. Percutaneous vertebroplasty and kyphoplasty in patients with multiple myeloma[J]. Eur J Haematol, 2006,76(2): 180-181.
    [17] Hochmuth K, Proschek D, Schwarz W, et al. Percutaneous vertebroplasty in the therapy of osteoporotic vertebral compression fractures: a critical review[J]. Eur Radiol, 20061-7.
    [18] Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture[J]. Spine, 2001,26(2): 151-156.
    [19] Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures[J]. Spine, 2001,26(14): 1511-1515.
    [20] Lewiecki EM. Vertebroplasty and kyphoplasty in 2001[J]. J Clin Densitom,2001,4(3): 185-187.
    [21] Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures[J].Spine,2001,26(14):1631-1638.
    [22]Dudeney S,Lieberman IH,Reinhardt MK,et al.Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma[J].J Clin Oncol,2002,20(9):2382-2387.
    [23]Garfin SR,Reilley MA.Minimally invasive treatment of osteoporotic vertebral body compression fractures[J].Spine J,2002,2(1):76-80.
    [24]Deen HG,Fox TP.Balloon kyphoplasty for vertebral compression fractures secondary to polyostotic fibrous dysplasia.Case report[J].J Neurosurg Spine,2005,3(3):234-237.
    [25]Dublin AB,Hartman J,Latchaw RE,et al.The vertebral body fracture in osteoporosis:restoration of height using percutaneous vertebroplasty[J].AJNR Am J Neuroradiol,2005,26(3):489-492.
    [26]邱贵兴,戴魁戎.骨科手术学[M],第三版.北京:人民卫生出版社,2005:1415-1416.
    [27]Kado DM,Browner WS,Palermo L.Vertebral fractures and mortality in older women:a prospective study[J].Arch Intern Med,1999,159(5):487-492.
    [28]Cooper CA,Kinson EJ,Fallon WM,et al.Incidence of clinically diagnosed vertebral fractures:a population-based study in Rochester,Minnesota,1985-1989[J].J Bone Miner Res,1992,7(3):221-227.
    [29]Klein SA,Glassman SD,Dimar JR,2nd,et al.Evaluation of the fixation and strength of a "rescue" revision pedicle screw[J].J Spinal Disord Tech,2002,15(2):100-104.
    [30]Lee SH,Kang BU,Jeon SH,et al.Revision surgery of the lumbar spine:anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation[J].J Neurosurg Spine,2006,5(3):228-233.
    [31]Pfeifer BA,Krag MH,Johnson C.Repair of failed transpedicle screw fixation.A biomechanical study comparing polymethylmethacrylate,milled bone,and matchstick bone reconstruction[J].Spine,1994,19(3):350-353.
    [32]Roca J,Iborra M,Cavanilles-Walker JM,et al.Direct repair of spondylolysis using a new pedicle screw hook fixation:clinical and CT-assessed study:an analysis of 19 patients[J].J Spinal Disord Tech,2005,18 SupplS82-89.
    [33]朱青安,李鉴轶,赵卫东,等.聚甲基丙烯酸甲酯强化和修复椎弓根螺钉的生物力学研究[J].中华骨科杂志,2000(05):283-285.
    [1]Boucher HH.A method of spinal fusion[J].J Bone Joint Surg Br,1959, 41-B(2):248-259.
    [2]Gaines RW,Jr.The use of pedicle-screw internal fixation for the operative treatment of spinal disorders[J].J Bone Joint Surg Am,2000,82-A(10):1458-1476.
    [3]Potter BK,Kuklo TR,Lenke LG.Radiographic outcomes of anterior spinal fusion versus posterior spinal fusion with thoracic pedicle screws for treatment of Lenke Type Ⅰ adolescent idiopathic scoliosis curves[J].Spine,2005,30(16):1859-1866.
    [4]Toyone T,Tanaka T,Kate D,et al.The treatment of acute thoracolumbar burst fractures with transpedicular intracorporeal hydroxyapatite grafting following indirect reduction and pedicle screw fixation:a prospective study[J].Spine,2006,31(7):E208-214.
    [5]Whitaker C,Burton DC,Asher M.Treatment of selected neuromuscular patients with posterior instrumentation and arthrodesis ending with lumbar pedicle screw anchorage[J].Spine,2000,25(18):2312-2318.
    [6]Dong J,Wang J,Hu Y,et al.[Treatment of spondylolisthesis with pedicle screw instrumentation and anterior or posterior lumbar interbody fusion][J].Zhonghua Wai Ke Za Zhi,2000,38(8):604-606.
    [7]Bastian L,Knop C,Lange U,et al.[Transpedicular implantation of screws in the thoracolumbar spine.Results of a survey of methods,frequency and complications][J].Orthopade,1999,28(8):693-702.
    [8]Blumenthal S,Gill K.Complications of the Wiltse Pedicle Screw Fixation System[J].Spine,1993,18(13):1867-1871.
    [9]Brown CA,Eismont FJ.Complications in spinal fusion[J].Orthop Clin North Am,1998,29(4):679-699.
    [10]Coe JD,Arlet V,Donaldson W,et al.Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium.A report of the Scoliosis Research Society Morbidity and Mortality Committee[J].Spine,2006,31(3):345-349.
    [11]Colak A,Kutlay M,Demircan N,et al.MR imaging for early complications of transpedicular screw fixation[J].Eur Spine J,1999,8(2):151-155.
    [12]Davne SH,Myers DL.Complications of lumbar spinal fusion with transpedicular instrumentation[J].Spine,1992,17(6 Suppl):S 184-189.
    [13]France JC,Yaszemski MJ,Lauerman WC,et al.A randomized prospective study of posterolateral lumbar fusion.Outcomes with and without pedicle screw instrumentation[J].Spine,1999,24(6):553-560.
    [14]Fujita T,Kostuik JP,Huckell CB,et al.Complications of spinal fusion in adult patients more than 60 years of age[J].Orthop Clin North Am,1998,29(4):669-678.
    [15]Hakalo J,Wronski J.[Complications of a transpedicular stabilization of thoraco-lumbar burst fractures][J].Neurol Neurochir Pol,2006,40(2):134-139.
    [16]Kast E,Mohr K,Richter HP,et al.Complications of transpedicular screw fixation in the cervical spine[J].Eur Spine J,2006,15(3):327-334.
    [17]Lang G.[Complications folloing the surgical management of cervical spinal injuries using ventral fusion][J].Zentralbl Chir,1972,97(11):321-326.
    [18]Lee TC.Complications of transpedicular reduction and stabilization of the thoracolumbar spine[J].J Formos Med Assoc,1995,94(12):738-741.
    [19]Pihlajamaki H,Myllynen P,Bostman O.Complications of transpedicular lumbosacral fixation for non-traumatic disorders[J].J Bone Joint Surg Br,1997,79(2):183-189.
    [20]Okuyama K,Abe E,Suzuki T,et al.Posterior lumbar interbody fusion:a retrospective study of complications after facet joint excision and pedicle screw fixation in 148 cases[J].Acta Orthop Stand,1999,70(4):329-334.
    [21]Burval DJ,McLain RF,Milks R,et al.Primary pedicle screw augmentation in osteoporotic lumbar vertebrae:biomechanical analysis of pedicle fixation strength[J].Spine,2007,32(10):1077-1083.
    [22]Cook SD,Salkeld SL,Stanley T,et al.Biomechanical study of pedicle screw fixation in severely osteoporotic bone[J].Spine J,2004,4(4):402-408.
    [23]Fan S,Liu S,Deng Y.[An in vitro biomechanical evaluation of effect of augmentation pedicle screw fixation with polymethylmethacrylate on osteoporotic spine stability][J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2004,18(3):168-170.
    [24]Hasegawa K,Takahashi HE,Uchiyama S,et al.An experimental study of a combination method using a pedicle screw and laminar hook for the osteoporotic spine[J].Spine,1997,22(9):958-962;discussion 963.
    [25]Hasegawa T,Inufusa A,Imai Y,et al.Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the ostcoporotic canine lumbar spine model:a pilot study[J].Spine J,2005,5(3):239-243.
    [26]Hirano T,Hasegawa K,Washio T,et al.Fracture risk during pedicle screw insertion in osteoporotic spine[J].J Spinal Disord,1998,11(6):493-497.
    [27]Okuyama K,Sate K,Abe E,et al.Stability of transpedicle screwing for the osteoporotic spine.An in vitro study of the mechanical stability[J].Spine,1993,18(15):2240-2245.
    [28]Taniwaki Y,Takemasa R,Tani T,et al.Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae:in vivo biomechanical study[J].J Orthop Sci,2003,8(3):408-414.
    [29]Halvorson TL,Kelley LA,Thomas KA,et al.Effects of bone mineral density on pedicle screw fixation[J].Spine,1994,19(21):2415-2420.
    [30]王正,王以进.椎弓根螺钉内固定稳定性的生物力学测试[J].医用生物力学,2002,17(2):80-84.
    [31]Barber JW,Boden SD,Ganey T,et al.Biomechanical study of lumbar pedicle screws:does convergence affect axial pullout strength?[J].J Spinal Disord,1998,11(3):215-220.
    [32]Skinner R,Maybee J,Transfeldt E,et al.Experimental pullout testing and comparison of variables in transpcdicular screw fixation.A biomechanical study[J].Spine,1990,15(3):195-201.
    [33]杨惠林,唐天驷.钉杆角弓根内固定系统治疗胸腰椎骨折的研究[J].中华骨科杂志,1995,15(9):570-572.
    [34]McKinley TO,McLain RF,Yerby SA,et al.Characteristics of pedicle screw loading.Effect of surgical technique on intravertebral and intrapedicular bending moments[J].Spine,1999,24(1):18-24,discussion 25.
    [35]Carter DR,Hayes WC.The compressive behavior of bone as a two-phase porous structure[J].J Bone Joint Surg Am,1977,59(7):954-962.
    [36]Panjabi MM,Abumi K,Duranceau J,et al.Biomechanical evaluation of spinal fixation devices:Ⅱ.Stability provided by eight internal fixation devices[J].Spine,1988,13(10):1135-1140.
    [37]Yamagata M,Kitahara H,Minami S,et al.Mechanical stability of the pedicle screw fixation systems for the lumbar spine[J].Spine,1992,17(3 Suppl):S51-54.
    [38]Pfeifer BA,Krag MH,Johnson C.Repair of failed transpedicle screw fixation.A biomechanical study comparing polymethylmethacrylate,milled bone,and matchstick bone reconstruction[J].Spine,1994,19(3):350-353.
    [39]李增春,张志玉,王以进.骨密度对椎弓根螺钉系统固定的影响之生物力学研究[J].中华骨科杂志,1998,18(5):293-297.
    [40]Wittenberg RH,Lee KS,Shea M,et al.Effect of screw diameter,insertion technique,and bone cement augmentation of pedicular screw fixation strength[J].Clin Orthop Relat Res,1993(296):278-287.
    [41]Krag MH,Beynnon BD,Pope MH,et al.An internal fixator for posterior application to short segments of the thoracic,lumbar,or lumbosacral spine.Design and testing[J].Clin Orthop Relat Res,1986(203):75-98.
    [42]Brantley AG,Mayfield JK,Koeneman JB,et al.The effects of pedicle screw fit.An in vitro study[J].Spine,1994,19(15):1752-1758.
    [43]Steffee AD,Biscup RS,Sitkowski DJ.Segmental spine plates with pedicle screw fixation.A new internal fixation device for disorders of the lumbar and thoracolumbar spine[J].Clin Orthop Relat Res,1986(203):45-53.
    [44]Hirano T,Hasegawa K,Takahashi HE,et al.Structural characteristics of the pedicle and its role in screw stability[J].Spine,1997,22(21):2504-2509;discussion 2510.
    [45]Lonstein JE,Denis F,Perra JH,et al.Complications associated with pedicle screws[J].J Bone Joint Surg Am,1999,81(11):1519-1528.
    [46]Sjostrom L,Jacobsson O,Karlstrom G,et al.CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures[J].J Spinal Disord,1993,6(3):225-231.
    [47]Weinstein JN,Spratt KF,Spengler D,et al.Spinal pedicle fixation:reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement[J].Spine,1988,13(9):1012-1018.
    [48]Whitecloud TS,Skalley TC,Cook SD,et al.Roentgenographic measurement of pedicle screw penetration[J].Clin Orthop Relat Res,1989(245):57-68.
    [49]Roy-Camille R,Saillant G,Mazel C.Internal fixation of the lumbar spine with pedicle screw plating[J].Clin Orthop Relat Res,1986(203):7-17.
    [50]谭映军,潘显明.内锥及外锥形椎弓根螺钉的生物力学研究[J].骨与关节损伤杂志,2001,16(6):441-443.
    [51]Herbert TJ,Fisher WE.Management of the fractured scaphoid using a new bone screw[J].J Bone Joint Surg Br,1984,66(1):114-123.
    [52]Aota Y,Kumano K,Hirabayashi S,et al.Reduction of lumbar spondylolisthesis using a CDI pedicle screw system[J].Arch Orthop Trauma Surg,1995,114(4):188-193.
    [53]Mummaneni PV,Haddock SM,Liebschner MA,et al.Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae[J].J Spinal Disord Tech,2002,15(1):64-68.
    [54]Christensen FB,Dalstra M,Sejling F,et al.Titanium-alloy enhances bone-pedicle screw fixation:mechanical and histomorphometdcal results of titanium-alloy versus stainless steel[J].Eur Spine J,2000,9(2):97-103.
    [55]Albrektsson T,Hansson HA.An ultrastructural characterization of the interface between bone and sputtered titanium or stainless steel surfaces[J].Biomaterials,1986,7(3):201-205.
    [56]俞杭平,王以进.生物活性玻璃涂层改善椎弓根螺钉稳定性的生物力学研究[J].中华创伤杂志,2002,18(12):722-726.
    [57]Pienkowski D,Stephens GC,Doers TM,et al.Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants[J].Spine,1998,23(7):782-788.
    [58]Pfeiffer M,Gilbertson LG,God VK,et al.Effect of specimen fixation method on pullout tests of pedicle screws[J].Spine,1996,21(9):1037-1044.
    [59]Han CH,Johansson CB,Wennerberg A,et al.Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants[J].Clin Oral Implants Res,1998,9(1):1-10.
    [60]God VK,Gilbertson LG.Basic science of spinal instrumentation[J].Clin Orthop Relat Res,1997(335):10-31.
    [61]Gurr KR,McAfee PC,Shih CM.Biomechanical analysis of anterior and posterior instrumentation systems alter corpectomy.A calf-spine model[J].J Bone Joint Surg Am,1988,70(8):1182-1191.
    [62]Zindrick MR,Wiltse LL,Widell EH,et al.A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine[J].Clin Orthop Relat Res,1986(203):99-112.
    [63]杨述华,胡勇,陈中海,等.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究[J].中华创伤杂志,2002,18(1):17-32.
    [64]Homsy CA,Tullos HS,Anderson MS,et al.Some physiological aspects of prosthesis stabilization with acrylic polymer[J].Clin Orthop Relat Res,1972,83317-328.
    [65]Quinn J,Joyner C,Triffitt JT,et al.Polymethylmethacrylate-induced inflammatory macrophages resorb bone[J].J Bone Joint Surg Br,1992,74(5):652-658.
    [66]Hamblen DL,Paul JP.Special issue on joint replacement[J].Proc Inst Mech Eng[H],2007,221(1):ⅰ-ⅲ.
    [67]Hamblen DL,Carter RL.Sarcoma and joint replacement[J].J Bone Joint Surg Br,1984,66(5):625-627.
    [68]Ortega S,Ortega JP,Pascual A,et al.[Heart arrest in cemented hip arthroplasty][J].Rev Esp Anestesiol Reanim,2000,47(1):31-35.
    [69]Parvizi J,Holiday AD,Ereth MH,et al.The Frank Stinchfield Award.Sudden death during primary hip arthroplasty[J].Clin Orthop Relat Res,1999(369):39-48.
    [70]Wilkes RA,Mackinnon JG,Thomas WG.Neurological deterioration after cement injection into a vertebral body[J].J Bone Joint Surg Br,1994,76(1):155.
    [71]Yerby SA,Toh E,McLain RF.Revision of failed pedicle screws using hydroxyapatite cement.A biomechanical analysis[J].Spine,1998,23(15):1657-1661.
    [72]Moore DC,Maitra RS,Farjo LA,et al.Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement[J].Spine,1997,22(15):1696-1705.
    [73]Lotz JC,Hu SS,Chiu DF,et al.Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine[J].Spine,1997,22(23):2716-2723.
    [74]Knaack D,Goad ME,Aiolova M,et al.Resorbable calcium phosphate bone substitute[J].J Biomed Mater Res,1998,43(4):399-409.
    [75]邵景范,杨小进,李贵林.体积骨密度与椎弓根螺钉稳定性的相关性及磷酸钙陶瓷的强化效应[J].中国骨质疏松杂志,2005,11(3):321-324.
    [76]樊仕才,周燕莉.聚甲基丙烯酸甲酯强化对骨质疏松椎弓根螺钉固定的生物力学作用[J].中华骨科杂志,2001,21(2):93-96.
    [77]杨惠林,唐天驷.胸腰椎骨折经椎弓根内固定治疗中的失误和并发症的分析[J].中华骨科杂志,1996,16(6):356-359.
    [78]Rohlmann A,Graichen F,Bergmann G.Loads on an internal spinal fixation device during physical therapy[J].Phys Ther,2002,82(1):44-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700