基于多尺度分析的圆度误差在线检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用多尺度分析方法对影响圆度误差在线检测精度的关键技术问题进行了深入地研究,并对适合圆度误差在线检测条件的误差分离技术进行了探讨。针对复杂的圆度误差在线检测信号的消噪滤波问题,提出了时域、频域相结合的多尺度消噪滤波算法;针对圆度误差评定问题,提出了多尺度遗传免疫优化算法,建立了圆度误差优化评定数学模型,并实现了圆度误差的统一评定;提出了基于改进反向法的误差分离方法用于分离圆度误差在线检测系统的主轴回转误差。
     本文的研究结果提高了圆度误差在线检测精度,保证了在线检测结果的有效性。所提算法具有普遍应用价值,可推广到其它形位误差检测领域。
Roundness is one of the most important form errors and the foundation of measuring such form and position errors as cylindricity, coaxality and axis straightness, etc. It indicates the machining precision of rotating parts. Roundness on-machine measurement is a main direction of roundness measurement techniques, which can enhance the measuring efficiency, realize total quality control, and is especially suited to the measurement of large scale parts.
     Besides the roundness error signals, the roundness on-machine measurement signals include many other undesired signals, such as the noise in workshop, high frequency signals and spindle error signals. To improve the measurement precision and make sure the on-machine measurement validity, effective denoising methods and error separation techniques should be employed to eliminate the noise and separate the spindle error, and then, an accurate method should be taken to evaluate the roundness.
     There are obvious multiscale characters in roundness on-machine measurement signals and the process of roundness evaluating. Multiscale analysis methods can describe the problems with multiscale characters from various scales accurately. In this paper, multiscale analysis methods are employed to solve the key technique problems of improving the roundness on-machine measurement precision. After studying the error separation techniques both at home and abroad, a new error separation method based on IRM (improved reverse method) is proposed in this paper, which is suitable for roundness on-machine measurement. The main work can be summarized as follows:
     1. Developing a roundness on-machine measurement system based on laser trigonometry principle.
     Laser technique plays an important role in measurement fields for the advantages of non-contact, high speed and with strong anti-interference ability. On the base of common lathe, we set up a roundness on-machine measurement system. In the system, the spindle of the lathe is used to take the part to be measured to rotate; two CCD laser displacement sensors are employed for collecting data and error separation; a PC is used for data processing, results displaying, man-machine conversation, and so on; controller in charge of connecting different parts of the system.
     The system is simple. The sensor size is small and with high sampling frequency, the measuring accuracy meets the precision demand. All these are suitable for roundness on-machine measurement conditions.
     2. Building a denoising and filtering algorithm based on multiscale analysis
     The roundness on-machine measurement signals are very complicated. The true roundness signals are being drowned in the noise. In this case, median filtering and Karman pre-filtering are employed for denoising in time domain, the former is used to wipe off the gross error, and the latter is used to pick up the roundness error from the noisy signals preliminary.
     Many studies have shown that signals and noises have different multiscale features on different scales. Based on this feature, multiscale analysis method is introduced to the denoising procession in frequency domain. That is to decompose the signals to different frequency bands by wavelet package transform first, then to eliminate noise from multi-scales. During the multiscale denoising and filtering, the best wavelet function and the best layer of decomposition are studied. At last, the proposed method is compared with the exisiting method by examples.
     The results show that the denoising and filtering algorithm based on multiscale analysis can recover the true roundness signals from the complicated on-machine measurement signals faster (about improve 60%) and more accurate (about improve 1.5%) than the multilevel roundness error separation algorithm, which sets a foundation for evaluating roundness well and truly.
     3. Presenting an error separation method based on IRM (improved reverse method) for roundness on-machine measurement
     The lathe spindle is used for roundness on-machine measurement, its rotationary accuracy can not satisfy the demand of measuring, and so, the error separation is necessary. After analyzing various roundness error separation techniques, we propose an error separation method based on IRM which is suited for roundness on-machine measurement conditions. This method can measurement and separate the roundness error from the spindle error with two sensors and one measurement.
     The experiment results show that the measurement precision of the roundness on-machine measurement after error separation closes to the off-machine measurement precision of Coordinate Measurement Machine: the maximum absolute error less than 1μm,and the maximum relative error less than 2.4%。
     4. Study on roundness uniform evaluation method based on multiscale analysis
     There is an obvious multiscale analysis feature in the process of roundness optimization evaluating. On the basis of artificial immune optimization algorithm, a multiscale genetic and immune optimization algorithm (MSGIA) is built and the detailed flow of the algorithm is introduced. The mathematical model of the roundness optimization evaluation is established and the uniform evaluation of roundness is realized by MSGIA.
     The affinity function, the region and the accuracy of search, the probability of crossover and mutation can be set with different scale automatically with the optimization deep going, which makes the roundness evaluating process fitted to the optimization mechanism. The results show that MSGIA is of global optimization and has many benefits compared with artificial immune optimization algorithm, the evaluating precision improves about 6%, and the convergence speed improves about 80%. These prove the practicability and the reliability of MSGIA.
     5. Study on minimum zone evaluation of axis straightness
     The mathematical model of axis straightness optimization evaluation is set up and the minimum zone evaluation is carried out by MSGIA proposed in this paper. The example shows that the algorithm has improved the precision about 11% and 8% respectively compared to least square method and artificial immune optimization algorithm. The test results confirm the robustness of the multiscale genetic and immune optimization algorithm.
     All the above discussion indicates that the denoising algorithms and the roundness evaluation method based on multiscale analysis and the error separation technique based on the improved reverse method improve the roundness on-machine measurement precision, ensure the validity of on-machine measurement results, and prove the multiscale analysis method has a bright future in error measurement field.
引文
[1]汪恺,唐保宁.形位公差原理和应用[M].北京:机械工业出版社. 1991.
    [2]魏芳,常江.关于形位误差产生原因的探讨[J].辽宁师专学报, 2004, 6(2): 84-85.
    [3]王瑞.形位误差评定理论的发展状况[J].辽宁师专学报, 2005, 7(2): 13-15.
    [4]刘岩.大型圆柱工件非接触形位误差在线检测技术研究[D].长春:吉林大学, 2007.
    [5]胡健闻.多尺度估计理论在工程表面评价中的应用研究[D].武汉:武汉理工大学, 2003.
    [6] GB/T1958—2004,产品几何量技术规范(GPS)形状和位置公差检测规定.中华人民共和国国家质量监督检验检疫总局. 2004.
    [7] GB/T 7235-2004,产品几何量技术规范(GPS)评定圆度误差的方法、半径变化量测量.中华人民共和国国家质量监督检验检疫总局. 2004.
    [8]司尧华,刘鹏.机械设计图样中回转体类零件基准的选择[J].机床与液压, 2004, (8): 159-160.
    [9]曹麟祥,王丙甲.圆度检测技术[M].北京:国防工业出版社. 1998.
    [10] Wasawat Nakkiew, Lin Chiwei, Tu Jay F. A new method to quantify radial error of a motorized end-milling cutter/spindle system at very high speed rotations[J]. Machine tools & manufacture, 2006, 46: 877–889.
    [11] Wei Gao, Jun Yokoyama, Hidetoshi Kojima, et al. Precision measurement of cylinder straightness using a scanning multi-probe system[J]. Precision Engineering, 2002, 26: 279–288.
    [12] Jooho Hwanga, Parka ChunHong, Wei Gao, et al. A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guide ways[J]. Precision Engineering, 2002, 26: 279–288.
    [13] Chan F.M.M., King T.G., Stout K.J. The influence of sampling strategy on a circular feature in coordinate measurements[J]. Measurement, 1996, 19(2): 73-81
    [14]中国仪器仪表学会. 2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C].湘潭:《仪器仪表学报》杂志社, 2008.
    [15]中国仪器仪表学会微型计算机应用学会.计算机技术与应用进展——全国第17届计算机科学与技术应用(CACIS)学术会议论文集(下册)[C].太原: [出版者不祥], 2006.
    [16] Mao Jian, Cao Yanlong, Yang Jiangxin. An implementation uncertaintyevaluation of cylindricity errors based on geometrical product specification (GPS)[J]. Measurement, 2009, 42: 742–747.
    [17] Zhao W., Tan J., Xue Z. SEST: A new error separation technique for ultra-high precision roundness measurement[J]. Measurement Science and Technology, 2005, 16(3): 833-841.
    [18]闵莉,吴玉厚,富大伟.圆度误差检测的现状与展望[J].沈阳建筑工程学院学报, 1999, 15(3): 273-277.
    [19]郑育军,黄富贵.国内外形位误差研究进展[J].工具技术, 2006, 40(1): 10-13.
    [20] E. Gleason, H. Schwenket. A spindleless instrument for the roundness measurement of precision spheres[J]. Precision Engineering, 1998, 22: 37–42.
    [21]翟玉霞,莫文健,刘群.利用V形块测棱圆度[J].上海计量技术, 2001, 31: 39.
    [22]付景顺. V形块法测量圆度误差原理及应用[J].沈阳工业大学学报, 1995, 17(3): 58-63.
    [23] Eric Marsh, Jeremiah Couey, Vallance Ryan. Roundness measurement of spherical artifacts at arbitrary latitude[J]. Precision Engineering, 2006, 30: 353-356.
    [24]管炳良. TALYROND73型圆度仪数字化改造[D].合肥:合肥工业大学, 2006.
    [25]骆建华.用虚拟仪器改造YD200A型圆度仪[D].天津:天津大学, 2004.
    [26]马润梅,李副来,高奋武. TAYLOR HOBSON73型圆度仪改造问题分析[J].轴承, 2004, 4: 35-36.
    [27]王天煜.回转类零件形位误差的非接触精密测量系统研究[D].沈阳:辽宁工程技术大学, 2005.
    [28]宋甲午,张国玉,安志勇,等.圆度误差的激光扫描非接触测量方法[J].兵工学报, 2000, 2: 61-63.
    [29] Wei Gao, Satoshi Kiyono, Tadatoshi Nomura. A new multiprobe method of roundness measurements[J]. Precision Engineering, 1996, 19: 37-45.
    [30]刘岩,左春柽,栗利刚,等.一种基于小波多频分析的圆柱度在线检测方法[J].中北大学学报, 2007, 28(1): 23-27.
    [31] H.F.F. Castro. A method for evaluating spindle rotation errors of machine tools using a laser interferometer[J]. Measurement, 2008, 41: 526–537.
    [32] Ganesha Udupa, NgoiForm B.K.A. Error characterization by an optical profiler[J]. Advanced Manufacturing Technology, 2001, 17: 114-124.
    [33] Kengo Fujimaki, Kimiyuki Mitsui. Radial motion measuring device based onauto-collimation for miniature ultra-high-speed spindles[J]. Machine Tools & Manufacture, 2007, 47: 1677–1685.
    [34]车佳斯. CCD在圆轴类零件圆度的在线检测中的应用[D].长春:吉林大学, 2007.
    [35]熊海林,陈香萍.圆度误差一种微机图像测量法[J].计算机技术及应用, 1998, 4: 25-28.
    [36] Samuel G.L., M.S. Shunmugam. Evaluation of circularity and sphericity from coordinate measurement[J]. Materials Processing Technology, 2003, 139: 90-95.
    [37] Zhang Y.F., Nee A.Y.C., Fuh J.Y.H. A neural network approach to determining optimal inspection sampling size for CMM[J]. Computer Integrated Manufacturing Systems, 1996, 9(3): 161-169.
    [38]吴燕,过大江.三坐标测量机测量圆度同轴度误差初探[J].工程设计, 2000, 4: 81-82.
    [39]李刚.用坐标机测量圆度[J].工具技术, 2006, 40(4): 81-83.
    [40]刘庆民.基于计算机视觉的小尺寸零件精密测量技术研究[D].长春:吉林大学, 2006.
    [41] Mu Chenchen. Roundness measurements for discontinuous perimeters via machine visions[J]. Computers in Industry, 2002, 47: 185-197.
    [42]陈向伟,王龙山,刘庆民,等.基于CCD图像的圆度误差测量的研究[J].半导体光电, 2004, 25(4): 313-317.
    [43]付师伟.圆度误差测量的一种新方法[J].计测技术, 2004, 9: 7-9.
    [44]杨敏,叶邦彦,牟丽,等. CCD在圆轴类零件圆度的在线检测中的应用[J].机械工程师, 2003, 4: 38-40.
    [45] Wei Gao, Satoshi Kiyono. On-machine roundness measurement of cylindrical workpieces by the combined three-point method[J]. Measurement, 1997, 21(4): 147-156.
    [46] Wei Gao, Peisen S. Huang, Tomohiko Yamada, et al. Measurement of multi-degree-of freedom error motions of a precision linear air-bearing stage[J]. Precision Engineering, 2002, 26(4): 96-103.
    [47] Wei Gao, Satoshi Kiyono. High accuracy profile measurement of a machined surface by the combined method[J]. Measurement, 1996, 9(1): 55-64.
    [48]吴钢华,李海,何永义,等.基于USB的实时圆度检测系统的研究及开发[J].仪器仪表学报, 2006, 27(6): 266-269.
    [49]王春海,陈明,石望远.圆度误差在线检测系统[J].电子测量技术, 2005, 2: 86-87.
    [50]高瑞春.圆度误差的动态测量[J].测量技术, 1997, 1: 40-42.
    [51]张珂,郑朝方,吴玉,等. PMAC - PC下零件圆度误差的在线测量[J].沈阳建筑大学学报, 2005, 21(5): 597-600.
    [52]陈立杰,张玉,张镭.虚拟圆度误差测量仪的研制[J].东北大学学报, 2002, 23(11): 1056-1058.
    [53]孙宝寿,查凡,张镭. Labview与圆度误差虚拟测量仪[J].安徽工业大学学报, 2005, 22(3): 259-261.
    [54]张伟,洪迈生,李自军,等.一种基于误差分离的虚拟几何量仪的试作[J].测控技术, 2003, 22(8): 8-10.
    [55]张镭,张宇楠,杨秀敏.圆柱度误差虚拟测量仪的设计及OpenGL应用[J].东北大学学报, 2005, 26(5): 478-480.
    [56]夏瑞雪,程真英,陈晓怀.基于LABVIEW8的实验虚拟圆度仪系统[J].黑龙江科技学院学报, 2006, 16(3): 193-196.
    [57]甘永立.形状和位置误差检测[M].北京:国防工业出版社. 1995.
    [58]刘伟.圆度仪与V形法测量轴圆度的比较[J].光学精密工程, 1999, 7(5): 135-140.
    [59]顾启泰,刘学斌,叶京生,等.计算机辅助纳米级圆度测量技术[J].仪器仪表学报, 1991, 12(4): 392-398.
    [60]刘祚时,倪潇娟.三坐标测量机(CMM)的现状和发展趋势[J].机械制造, 2004, 42(8): 32-34.
    [61] Chang H., Lin T.W. Evaluation of circularity tolerances using Monte Carlo simulation for coordinate measuring machine[J]. International Journal of Production Research, 1993, 31(9): 2079–2086.
    [62] Samuel G.L., Shunmugam M.S. Evaluation of circularity from coordinate and form data using computational geometric techniques[J]. Precision Engineering, 2000, 24: 251–263.
    [63] Hocken R.J., Raja J., Babu U. Sampling issues in coordinate metrology[J]. Manufacturing Review, 1993, 6(4): 282–294.
    [64]王鸿伟.可在线测量圆度的新型主动测量仪[J].工具技术, 2004, 38(10): 76-77.
    [65]魏元雷,洪迈生,苏恒,等.平行三点法圆度误差分离技术的精度分析[J].机械科学与技术, 2003, 22(1): 51-54.
    [66]洪迈生,邓宗煌,陈健强,等.精确的时域三点法圆度误差分离技术[J].上海交通大学学报, 2000, 34(10): 1317-1319.
    [67] Luo Daisheng, Peter Smart, James E. S. Macleod. Circular hough transform forroundness measurement of objects[J]. Pattern recognition, 1995, 28(11): 1745-1749.
    [68] Chen chiebein, Wei chiuchi. Efficient sampling for computer vision roundness inspection[J]. Computer Integrated Manufacturing Systems, 1997, 10(5): 346-359.
    [69]刘越.基于误差分离技术的圆度误差检测方法[J].计测技术, 2004, 1: 6-7.
    [70] Horikawa O., Maruyama N., Shimada M. A low cost, high accuracy roundness measuring system[J]. Precision Engineering, 2001, 25(3): 200-205.
    [71] Eric R Marsha, David A Arneson, Donald L. Martin. A comparison of reversal and multiprobe error separation[J]. Precision Engineering, 2009:
    [72]曹麟祥,谢会崇,胡签,等.反向法误差分离技术的测量精确度[J].计量学报, 1985, 6(4): 269-273.
    [73] Wei Gao, Satoshi Kiyono, Takamitu Sugawara. High-accuracy roundness measurement by a new error separation method[J]. Precision Engineering, 1997, 21: 123-133.
    [74] Muralikrishnan B., Venkatachalam S., Rajaa J., et al. A note on the three-point method for roundness measurement[J]. Precision Engineering, 2005, 29: 257-260.
    [75] Zhao W.Q., Xue Z., Tan J.B., et al. SSEST: A new approach to higher accuracy cylindricity measuring instrument [J]. Machine Tools & Manufacture, 2006, 46: 1869–1878.
    [76] Eric marsh, Jeremiah couey, Ryan vallance. Nanometer-level comparison of three spindle error motion separation techniques[J]. Manufacturing Science and Engineering, 2006, 128(1): 180-187.
    [77]雷贤卿,李言,李济顺,等.多步法圆度误差分离的演化形式及谐波抑制分析[J].工业仪表与自动化装置, 2006, 1: 45-46.
    [78]赵维谦,谭久彬,杨文国,等.基于两步法超精密圆度仪误差分离系统[J].中国机械工程, 2000, 11(11): 120-126.
    [79] Tong Sun. Two-step method without harmonics suppression in error separation[J]. Measurement Science Technology, 1996, 7: 1563-1568.
    [80]洪迈生,蔡萍.多位法误差分离技术的统一方程及可操作性[J].纳米技术与精密工程, 2004, 2(1): 59-64.
    [81]张宇华,王晓琳,张国雄,等.多点法圆度及轴系误差分离方法的若干问题[J].北京理工大学学报, 1996, 19(3): 309-313.
    [82]叶京生,顾启泰,章燕申.论多步法误差分离技术的测量精度[J].计量学报,1990, 11(2): 119-123
    [83] Stanislaw Adamczak, Tadeusz Orzechowski, Tomasz L. Stan'czyk. The infrared measurement of form deviations of machine parts in motion[J]. Measurement, 2007, 40: 28-35.
    [84] Marcin B. Bauza, Shane C. Woody, Stuart T. Smith, et al. Development of a rapid profilometer with an application to roundness gauging[J]. Precision Engineering, 2006, 30: 406 - 413.
    [85] Kato h., Sone r. y., Nomura y. In-situ measuring system of circularity using an industrial robot and a piezoactuator[J]. International Journal of the Japan Society for Precision Engineering, 1991, 25(2): 130-135.
    [86] Jay F. Tu, Bernd Bossmanns, Spring C.C. Hung. Modeling and error analysis for assessing spindle radial error motions[J]. Precision Engineering, 1997, 21: 90-101.
    [87] R.R. Donaldson. A simple method for separating spindle error from test ball roundness error[J]. Ann. CIRP., 1972, 21(1): 125–126.
    [88] Evans C.J., Hocken R.J., Estler W.T. Self calibration: reversal, redundancy, error separation and“absolute testing”[J]. Ann. CIRP., 1996, 45(2): 617–634.
    [89]洪迈生,蔡萍.多步法误差分离技术的比较分析[J].上海交通大学学报, 2004, 38(6): 877-881.
    [90]陈永当,李少康.圆度测量误差分离方法[J].西安工业学院学报, 2000, 20(4): 327-333.
    [91]张玉金.实现主轴回转误差完全分离的理论和技术[J].现代计量测试, 2002, 10(3): 25-27.
    [92] JB/T 5996-1992,圆度测量三测点法及其仪器的精度评定.中华人民共和国机械电子工业部. 1992.
    [93]洪迈生,魏元雷,苏恒,等.三平行传感器式频域法误差分离技术——在线测量圆度误差的新方法[J].仪器仪表学报, 2003, 24(2): 152-156.
    [94]张宇华,王晓琳,张国雄,等.测头读数及定位误差对三点法圆度测量精度的影响[J].中国机械工程, l999, 10(5): 534~537.
    [95] Estler W. Tyler, Evans Chris J., Shao L.Z. Uncertainty estimation for multiposition form error metrology[J]. Precision Engineering, 1997, 21(21): 72-82.
    [96]张邦成,杨晓红,吴狄,等.两点法在曲轴圆度误差测量中的应用[J].现代制造工程, 2005, 6: 75-77.
    [97]黄长征,李圣怡,朱昱.超精密车床主轴回转精度动态测试机构的研制[J].航空精密制造技术, 2002, 38(2): 8-10.
    [98] Zhang G.X., Wang R.K. Four-point method of roundness and spindle error measurements[J]. Manufacturing Technology, 1993, 42(1): 593-596.
    [99] Zhang G.X., Zhang Y.H., Yang S.M., et al. A multipoint method for spindle error motion measurement[J]. CIRP Annals - Manufacturing Technology, 1997, 46(1): 441-445.
    [100]Cao Linxiang, Wang Hong, Li Xiongua, et al. Full harmonic error separation technique[J]. Measurement Science and Technology, 1992, 3(12): 1129—1132.
    [101]方沁林.圆度误差评定的算法研究与软件设计[D].武汉:华中科技大学, 2007.
    [102]Kim N. H., Kim S. W. Geometrical tolerances: improved linear approximation of least squares evaluation of circularity by minimum variance[J]. International Journal of Machine Tools and Manufacture, 1996, 36(3): 355-366.
    [103]Drezner Z., Steiner S., Wesolowsky G.O. On the circle closest to a set of points[J]. Computers and Operations Research, 2002, 29(6): 637-650.
    [104]栗利刚.大型轧机油膜轴承形位误差测量技术研究[D].长春:吉林大学, 2007.
    [105]王秀梅,曹秋霞.最小二乘圆法评定圆度误差的优化算法[J].工具技术, 2008, 42(7): 44-47.
    [106]黄富贵,郑育军.基于区域搜索的圆度误差评定方法[J].计量学报, 2008, 29(2): 117-119.
    [107]刘永超,陈明.形位误差的进化算法[J].计量学报, 2001, 22(1): 18-21.
    [108]GB/T 1182-1996,形状和位置公差通则、定义、符号和图样表示法.国家技术监督局. 1996.
    [109]蒋文兵,郑鹏,侯伯杰.单纯形算法在圆度误差评定中的应用[J].中原工学院学报, 2003, 14(1): 37-40.
    [110]田社平.基于遗传算法的圆度误差评价[J].计量技术, 2004, 4(3-5):
    [111]安立邦,郭丽莎,安立成.用鞍点规划法评定直线度、平面度、圆度[J].计量技术, 1996, 4: 12-14.
    [112]钱名海,吴宏基,安立邦,等.鞍点规划与形位误差评定理论的研究[J].大连理工大学学报, 1993, 33(1): 33-38.
    [113]粟时平,李圣怡,王贵林.基于鞍点规划法的形位误差计算机评定[J].计量学报, 2003, 24(1): 25-27.
    [114]Olivio Novaski, Andre Luis, Chautard Barczak. Utilization of voronoi diagrams for circularity algorithms [J]. Precision Engineering, 1997, 20(3): 1 88-195.
    [115]Roy U.R., Zhang X. Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error[J]. Computer-Aided Design, 1992, 24: 161-168.
    [116]Roy U.R., Zhang X. Development and application of Voronoi diagrams in the assessment of roundness error in an industrial environment[J]. Computer Industry Engineering, 1994, 26(1): 11-26.
    [117]Zhu Limin, Ding Han, Xiong Youlun. A steepest descent algorithm for circularity evaluation[J]. Computer-aided Design, 2003, 35: 255-265.
    [118]Kurt Swanson, D.T. Lee, Vanban L. Wu. An optimal algorithm for roundness determination on convex polygons[J]. Computational Geometry, 1995, 5: 225-235.
    [119]Cui Changcai, Che Rensheng. Circularity error evaluation using genetic algorithm[J]. Precision Engineering, 2001, 9(6): 499-505.
    [120]Sharma R., Rajagopal K., Anand S. A genetic algorithm based approach for robust evaluation of form tolerances[J]. Journal of Manufacturing Systems, 2000, 19(1): 46-57.
    [121]Zhu L. M., Ding H., Xiong Y. L. A steepest descent algorithm for circularity evaluation[J]. Computer-Aided Design, 2003, 35(3): 255-265.
    [122]田社平.再论基于遗传算法的圆度误差评价[J].计量技术, 2005, 7: 3-5.
    [123]袁慧梅.具有自适应交换率和变异率的遗传算法[J].首都师范大学学报, 2000, 21(3): 14-20.
    [124]Wen Xiulan, Xia Qingguan, Zhao Yibing. An effective genetic algorithm for circularity error unified evaluation[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1770-1777
    [125]廖平.基于遗传算法的形状误差研究计算研究[D].长沙:中南大学, 2002.
    [126]刘岩,左春柽,张玉梅,等.大型圆柱工件形位误差检测方法[J].辽宁工程技术大学, 2007, 26(3): 428-431.
    [127]Te-Hsiu Sun. Applying particle swarm optimization algorithm to roundness measurement[J]. Expert Systems with Applications, 2009, 36: 3428–3438.
    [128]崔长彩,黄富贵,张认成,等.粒子群优化算法及其在圆度误差评定中的应用[J].计量学报, 2006, 27(4): 317-320.
    [129]Mu-Chen Chen, Du-Ming Tsai, Hsien-Yu Tseng. A stochastic optimization approach for roundness measurements[J]. Pattern Recognition Letters, 1999, 20: 707–719.
    [130]范淑果,郝宏伟.最大内接圆法评定圆度误差的快速精确实现方法[J].工具技术, 2005, 39(2): 71-73.
    [131]岳武陵,吴勇.按最大内接圆法评定圆度误差的仿增量算法[J].计量学报, 2008, 29(1): 26-29.
    [132]李秀明.最小外接圆和最大内接圆判别准则的研究[J].仪器仪表学报, 2008, 29(4): 213-216.
    [133]张勇,陈强.一种基于计算几何方法的最小包容圆求解算法[J].工程图学学报, 2007, 28(3): 97-101.
    [134]Saul I. Gass, Christoph Witzgall. On an approximate minimax circle closest to a set of points[J]. Computers & Operations Research, 2004, 31: 637-643.
    [135]Li Xiuming, Shi Zhaoyao. The relationship between the minimum zone circle and the maximum inscribed circle and the minimum circumscribed circle[J]. Precision Engineering, 2009, 33: 284–290.
    [136]Quattrochi D.A., M.F. Goodchild. Scale in remote sensing and GIS ration[M]. New York: Lewis Publishers. 1997.
    [137]尚晓清.多尺度分析在图像处理中的应用研究[D].西安:西安电子科技大学, 2004.
    [138]谢海峰.圆度误差测量中的多尺度算法研究[D].长春:吉林大学, 2009.
    [139]杨丹,张小洪.基于小波多尺度积的边缘检测算法[J].计算机科学, 2004, 31(1): 133-135.
    [140]李春峰.基于小波多尺度分析的奇性指数:一种新地震属性[J].地球物理学报, 2005, 48(4): 882-888.
    [141]Zhang H., Thurber C., Rowe C. Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings[J]. Bulletin of the Seismological Society of America, 2003, 93(5): 1904-1912.
    [142]吴剑锋,王文,陈子辰.激光三角法测量误差分析与精度提高研究[J].机电工程, 2003, 20(5): 89-91.
    [143]朱冰莲,潘哲明,李单单.一种中值滤波的快速算法[J].信号处理, 2008, 24(4): 684-686.
    [144]顾启泰.卡尔曼滤波方法在圆度误差评定中的应用[J].计量学报, 1990, 11(2): 124-129.
    [145]许国辉,张新长.卡尔曼滤波模型粗差的探测及其在施工变形测量中的应用[J].中山大学学报, 2003, 42(3): 89-91.
    [146]周永军,邓海英.平移不变小波包去噪方法[J].中南林业科技大学学报, 2007, 27(3): 148-151.
    [147]罗裴,姜德生,郭丹.小波包多尺度分析在智能复合材料板损伤检测中的应用[J].中国测试技术, 2006, 32(3): 48-50.
    [148]刘毅,张彩明,赵玉华,等.基于多尺度小波包分析的肺音特征提取与分类[J].计算机学报, 2006, 29(5): 769-774.
    [149]Zou J., Chen J., Geng Z. M. Application of wavelet packets algorithm to diesel engines' vibroacoustic signature extraction[J]. Journal of Automobile Engineering, 2001, 215(9): 987-993.
    [150]彭玉华.小波变换与工程应用[M].北京:科学出版社. 2007.
    [151]杨霁.基于小波多尺度变换的局部放电去噪与识别方法研究[D].重庆:重庆大学, 2004.
    [152]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社. 2003.
    [153]孙延奎.小波分析及其应用[M].北京:机械工业出版社. 2005.
    [154]江铭炎,袁东风.基于小波多尺度阈值的维纳滤波新方法[J].山东大学学报, 2005, 40(2): 88-91.
    [155]徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社. 2004.
    [156]D.L. Donoho. Denoising by soft thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
    [157]苏恒,洪迈生,魏元雷,等.角位移和线位移圆度误差分离技术的比对分析[J].上海交通大学学报, 2002, 36(8): 1060-1063.
    [158]蒋庄德,赵卓贤.形状误差、波度和表面粗糙度划分的谱分析法[J].计量学报, 1989, 10(3): 170-175.
    [159]李月琴,栗苹,闫晓鹏,等.无线电引信信号去噪的最优小波基选择[J].北京理工大学学报, 2008, 28(8): 723-726.
    [160]张新华.机床主轴精度的一种简明评价方法[J].机床与液压, 1998, (3): 43-44.
    [161]李涛.计算机免疫学[M].北京:电子工业出版社. 2004.
    [162]Utpal Garain, Mangal P. Chakraborty, Dipankar Dasgupta. Artificial Immune Systems[M]. Berlin: Springer Berlin. 2006.
    [163]Joanne H. Walker, Simon M.Garrett. Artificial Immune Systems. 2003, Springer Berlin Berlin.
    [164]Cho Ming-Yuan, lee Tsair-Fwu, Gau Shih-Wei. Power transformer fault diagnosis using Support Vector Machines and artificial neural network with clonal selection algorithms optimization[J]. Knowledge-Based Intelligent Information and Engineering Systems, 2006, 4251: 179-186.
    [165]许义海,李晓东.一种快速寻优的新型改进遗传算法[J].中山大学学报, 2006, 45(2): 36-40.
    [166]Leung Yee, Gao Yong, Xu Zongben. Degree of population diversity—a perspective on premature convergence in genetic algorithms and its markov chain analysis[J]. IEEE Transactions on Neural Net Works, 1997, 8(5): 1165-1176.
    [167]Freisleben B., Merz P. New genetic local search operators for the traveling salesman problem[J]. Lecture Notes in Computer Science, 1996, 1141: 890-899.
    [168]刘守生,于盛林.一种变焦遗传算法[J].控制与决策, 2002, 17(B11): 731-734.
    [169]刘福才,潘江华,路平立,等.一种改进的变焦遗传算法[J].信息与控制, 2004, 33(1): 82-84.
    [170]孙艳丰,王众托.自然数编码遗传算法的最优群体规模[J].信息与控制, 1996, 25(5): 317-320.
    [171]Goldberg D.E. Optimal initial population size for binary-coded genetic algorithms[J]. Tcga report, 1985:
    [172]D.K. Chaturvedi. Soft Computing[M]. Berlin: Springer-Verlag Berlin Heidelberg. 2008.
    [173]Potts J.C., Giddens T.D., Yadav S.B. The Development and Evaluation of an Improved Genetic Algorithm Based on migration and Artificial selection[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(1): 73-86.
    [174]Marco A. R., Ferreira, Herbert k.h.lee. Multiscale Modeling[M]. New York: Springer New York. 2007.
    [175]Srinivas M, Painaik L. M. Adaptive probabilities of crossover and mutation in genetic algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(4): 656-667.
    [176]Zvi Drezner, Stefan Steiner, George O. Wesolowsky. On the circle closest to a set of points[J]. Computers & Operations Research, 2002, 29: 637-650.
    [177]Saul I. Gass, Christoph Witzgall. On an approximate minimax circle closest to a set of points[J]. Computers & Operations Research, 2004, 31: 637-643.
    [178]Changcai C., Rensheng C., Qingcheng H. Genetic algorithm-based evaluation of spatial straightness error[J]. Journal of Harbin Institute of Technology, 2003, 10(4): 418-421.
    [179]茅健,曹衍龙.基于粒子群算法的空间直线度误差评定[J].工程设计学报, 2006, 13(5): 291-294.
    [180]陈立杰,田文元,张镭.轴线直线度误差虚拟测量仪的研制[J].东北大学学报:自然科学版, 2007, 28(2): 250-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700