难选铁闪锌矿多金属矿石的浮选试验与机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究课题得到了2008年度国家发改委重大产业技术开发专项“难选锌锡铜铟多金属硫化矿综合回收共伴生金属的选矿关键技术”项目的资助,目的是高效回收铜、锌以及共伴生的铟、银和镉等稀贵金属。
     我国含铁闪锌矿的复杂、难选多金属矿石资源十分丰富,仅云南文山都龙矿区就蕴藏金属:锌240万吨、铟3779吨、锡26万吨、铜7.8万吨,其中铟和锡储量分别居全国第一和第三位、锌储量居云南第三位,锌、铟、锡、铜金属的潜在经济价值超过1100亿元;矿石中的铜矿物、锌矿物、锡石和硫化铁等矿物嵌布粒度细,共生关系密切,而且锌矿物为高铁或者超高铁闪锌矿,铁含量达到20%左右,该多金属矿曾经一度被判为不能经济有效利用的“呆”矿。由于铜、锌、硫矿物嵌布紧密,导致铜-锌分离困难、铜精矿中金属互含严重;此外,锌矿物由于铁含量高,容易被氧化,导致其可浮性差,选别难度大。采用常规活化剂硫酸铜和高碱浮选工艺,锌精矿品位低、回收率不高,特别是共伴生在锌矿物中的稀贵金属铟、银和镉等回收率低,资源浪费严重。因此,对这类复杂难处理多金属矿石中有价金属的分离研究具有重要的理论研究意义和实际价值。
     目前,这类难处理多金属矿石的利用,主要存在以下技术问题:①铜锌矿物嵌布粒度细,铜-锌不能实现有效地分离,特别是铜精矿中锌含量高达10-18%,严重影响了铜精矿的质量,也造成了锌矿物的损失;②常规活化剂硫酸铜不能有效选择性活化高铁闪锌矿,导致锌精矿中硫化铁矿物含量高,锌品位低,仅有41%-45%;③高碱条件下锌-硫分离,不仅抑制硫化铁矿物,锌等主金属以及共伴生的稀贵金属也会受到一定的影响,导致回收率不高;此外,高碱条件也非常不利于后续酸性环境下的脱硫作业,影响硫-锡、铁-硫的高效分离,严重影响锡、铁的回收。
     本论文以文山都龙含铁闪锌矿多金属矿为研究对象,进行了原矿的工艺矿物学研究,进行了实际矿石的铜-锌和锌-硫分离的实验室试验和工业试验,考察了超高铁闪锌矿、高铁闪锌矿、低铁闪锌矿和磁黄铁矿纯矿物在不同药剂体系下的浮选行为,研究了X-41对铁闪锌矿纯矿物的选择性活化和对磁黄铁矿纯矿物的选择性抑制,验证了X-41对实际矿石中铁闪锌矿的活化,进行了高铁闪锌矿相关的吸附量和动电位测试,探讨了X-41选择性活化与抑制的机理,取得了以下主要成果:
     (1)铁闪锌矿纯矿物浮选结果表明,无论对于超高铁闪锌矿、高铁闪锌矿还是低铁闪锌矿,活化剂的活化效果顺序均为X-41>CuSO4>PbNO3>NH4Cl。
     (2)实际矿石试验结果表明,优化工艺-药剂制度的闭路试验指标明显优于原有的现场工艺-药剂制度的指标。铜精矿品位和回收率分别提高7.93和11.92个百分点,银品位和回收率分别提高118g/t和7.47个百分点;锌精矿品位和回收率分别提高4.56和3.26个百分点,铟的品位和回收率分别提高了74.9g/t和4.2个百分点。
     (3)工业试验结果表明,采用X-41的闭路试验指标明显优于硫酸铜的指标,低碱即pH=9左右的条件下,铜精矿品位和回收率分别提高2.12和10.29个百分点,银品位和回收率分别提高59.3g/t和8.32个百分点;锌精矿品位和回收率分别提高1.16和2.35个百分点,铟品位和回收率分别提高9.2g/t和2.6个百分点,银品位和回收率分别提高2.84g/t和4.69个百分点,镉品位和回收率分别提高50g/t和3.25个百分点,每年的综合经济效益为5205.25万元。
This research work was supported by the project of Key Technique for Comprehensive Utilization of Associated metals (In, Ag, Ca, et al.) from Refractory Zn-Sn-Cu-In Multi-metal Sulfide Ore, from the Major Industry Technology Develops Special of 2008 of the National Development and Reform Commission.
     There is an abundant refractory iron-bearing marmatite reserve in China. Wenshan Dulong ore of Yunnan, take is as example.possesses 2,400,000 tons of Zn,37,790,000 tons of In,260,000 tons of Sn and 78,000 tons of Cu, in which the reserves of In and Sn rank the first and the third in China, respectively; however, the iron grades in zinc minerals reaches as high as 20% Fe. The economic value of these valuable minerals, including Copper, Zinc, Indium, Tin and iron sulfide, et al., reaches as high as 110 billion RMB. These copper, zinc, tin and iron sulfide minerals embedded in such an orebody have ever been believed worthless, due to their fine and complex associations with each other. Such a dilemma results in the difficulty that the separation between Copper and Zinc is ineffective, and the zinc minerals can not be easily floated, as a result of its high iron content. With the conventional copper sulphate as activator and the high-alkali flotation process, the grade of zinc concentrate is very low with poor recovery and the recoveries of other associated minerals such as indium, silver and cadmium in zinc minerals are even much lower than that of zinc mineral, resulting in the huge waste of such a resource. Therefore, the research on effective separation of the valuable minerals from this refractory multi-metal sulfide ore has significant theoretical and practical values.
     There nowadays exit the following problems for the effective processing of this refractory multi-metal sulfide ore, they are:(1) copper can not be effectively separated from zinc minerals, because of their fine association with each other, leading to the high zinc content (10-18%) in copper concentrate and the loss of zinc minerals; (2) high iron-bearing sphalerite can not be effectively floated with the conventional copper sulphate as activator, and the zinc concentrate has only a 41-45% Zn grade with high impurity of iron sulfide; (3) iron sulfide minerals can not be effectively depressed under a high-alkali condition during the zinc-sulfide separation process, resulting in the low recoveries of zinc and other associated minerals. In addition, the high-alkali condition is also not favorable for the desulphurization process followed, and the separations for S-Sn and for Fe-S can not be effectively achieved, significantly deteriorating the recovery of Sn and Fe.
     The multi-metal sphalerite with high irons was used for the present work; its process mineralogy was analyzed, and the practical Cu-Zinc and Zinc-S separations are carried out at a pilot- and full- scales, respectively. The behaviors of sphalerites with super-high, high and low irons and of the pyrrhotite during their flotations with different reagent combinations are also investigated; the selective activation of pure sphalerite with iron and the depression of pure pyrrhotite were both tested with X-41, and its activation effect was further confirmed on a practical sphalerite. Moreover, the adsorption and potentiodynamic tests closely related with a high iron sphalerite were made; and the selective activation and depression mechanisms of X-41 were also discussed, with the main conclusions as follows:
     (1) The results of flotation results for pure iron sphalerite indicate that the activation ability follows the order X-41>CuSO4>PbNO3>NH4Cl, whether for high or low iron sphalerites;
     (2) The results of flotation results for practical iron sphalerite indicate that, while the process and reagents combination were optimum, the flotation results of the pilot-scale in laboratory obviously precedes that of the full-scale one on spot. Compared to the full-scale, the pilot-scale achieved a 7.93% Cu grade higher and 11.92% Cu recovery higher copper concentrate, with its Ag grade and recovery 118 g/t and 7.47% higher, respectively; and achieved a 4.56% Zn grade higher and 3.26% Zn recovery higher zinc concentrate, with its In grade and recovery 74.9 g/t and 4.20% higher respectively.
     (3) The results of industrial test indicates that the experimental performance of X-41 is significantly superior to that of copper sulphate; under a low-alkali condition, i.e., at a pH of 9, the X-41 obtained a copper concentrate assaying 2.12% Cu higher with 10.29% recovery higher, with its Ag grade and recovery 59.30 g/t and 8.32% higher respectively, in comparison with those of copper sulphate; and obtained a 1.16% Zn grade higher and 2.35% Zn recovery higher zinc concentrate, with its In grade 9.20 g/t higher and recovery 2.60% higher and its Ag grade 2.84% higher and recovery 4.69% higher and its Ca grade 50.0 g/t higher and recovery 3.25% higher, respectively. The use of X-41 produces an overall economic value reaching as high as 52.0525 million RMB per year.
引文
[1]童雄,周庆华,何剑等.铁闪锌矿的选矿研究概况[J],金属矿山,2006(6):8-12.
    [2]倪章元,杨敏.黄沙坪铅锌矿综合利用现状与改进方向[J],矿产保护与利用,2005(1):36~39.
    [3]苏咏梅.湖南郴县野鸡尾锡多金属矿床地质特征及成矿规律[J],地质学报,2008,28(1):18-23.
    [4]肖云,张永德.锡铁山铅锌矿浮选新工艺新药剂工业试验[J],有色金属,2006,58(4):70~75,80.
    [5]窦洪伟,魏盛甲.锡铁山铅锌矿选矿技术进展评述[J],金属矿山,2005(3):31-33,41.
    [6]黄敬忠.广西佛子冲铅锌矿河三选厂技改实践[J],金属矿山,2009(8):182-183.
    [7]王吉坤,李存兄,李勇.高铁闪锌矿高压酸浸过程中ZnS-FeS-H20系的电位-pH图[J],有色金属(冶炼部分),2006(2):2-5.
    [8]王力,孙丰月.内蒙拜仁达坝银铅锌多金属矿床地质特征[J],世界地质,2008,27(3):252-259.
    [9]黎维中.难处理铅锌银硫化矿物资源综合回收的研究与实践[D],长沙:中南大学,2007,1-3.
    [10]江鑫培.蒙自白牛厂银多金属矿矿床特征和成矿作用探讨[J],云南地质,1990,9(4):291-308.
    [11]王静纯,余大良,等.都龙矿物矿床伴生组分查定与综合利用报告[J],北京:北京矿产地质研究院,2003:104~105。
    [12]蒲家扬,刘明.闪锌矿的物理化学特性及其浮选行为的研究[J],国外金属矿选矿,1985(5):33-42.
    [13]刘铁庚,叶霖,周家喜,等.闪锌矿的Fe、Ge关系随其颜色变化而变化[J],中国地质,10(10),1458-1468.
    [14]韩发.大厂锡多金属矿床地质及成因[M].北京:北京地质出版社,1997.
    [15]龙汉生,蒋绍平,石增龙,等.云南澜沧老厂大型银铅锌多金属矿床地质地球化学特征[J].矿物学报,2007(12),360~365.
    [16]王濮等.系统矿物学(上册)[M],北京:地质出版社,1982.
    [17]黎全.大厂100(105)号锡石多金属矿选矿关键技术研究及应用[D],长沙:中南大学,2007.
    [18]戴晶平.凡口铅锌矿硫化矿物的浮选电化学与电位调控浮选研究[D],长沙:中南工业大学,2002.
    [19]徐晓军,周廷熙.有色金属矿产资源的开发及加工技术(选矿部分)(M),昆明:云南科技出版社,2000.5.
    [20]于宏东,孙传尧.不同成因类型黄铁矿的浮游特性[J].有色金属,2009,61(3):111-115.
    [21]Nelson Belzile,Yu-Wei Chen,Mei-Fang Cai, A review on pyrrhotite oxidation,Journal of Geochemical Exploration.2004 (84),65-76.
    [22]刘能云,邓海波,王虹.分离高硫磁铁矿中磁黄铁矿的研究进展[J],有色冶金,2009,25(5):17-20.
    [23]Arnold R. G. Range in composition and structure of 82 natural terrestrial pyrrhotites[J], Canadian Mineralogist,1967(9):31-50.
    [24]崔毅琦,童雄等.国内外磁黄铁矿浮选的研究概况[J],国外金属矿选矿,2005(5):24-27.
    [25]张起钻.广西大厂锡多金属矿田100号矿地质特征及成矿机理探讨[J],矿产与地质,1999(6):4-36.
    [26]王淀佐.浮选理论的新进展(M).北京:科学出版社,1992.
    [27]Buckley A N,Woods R.Chemisorption-the thermodynamically favored process in the interaction thio collectors with sulfide minerals.Int.J.Miner.Process.1997,51(1):15-26.
    [28]Woods R.Chemisorption of thios on metal and metal sulfides.In:Bockris J O M,Conway B E,White R E Eds.Modern Aspects of Electrochemistry.New York:Plenum Press,1997.
    [29]Hu Yuehua,Qiu Guanzhou,Sun Shuiyu,et al.Recent development in researches of electrochemistry of sulphide flotation at Central South University of Technology.Transactions of Nonferrous Metals Society of China,2000(10):1-7.
    [30]周廷熙.都龙矽卡岩型锌锡多金属硫化矿的选矿工艺研究[J].国外金属矿选矿,1998(5),25-26,21.
    [31]蓝桂密,冯忠伟,董明传,等.都龙难选锌矿物选矿工艺试验研究[J].有色金属(选矿部分),2006(3),10-13.
    [32]曾茂青,李玺,王世涛,等.云南某地锌铟多金属硫化矿的综合回收利用研究[J].有色金属:选矿部分,2010(2),9-12,44.
    [33]黄承波,魏宗武,陈晔,等.车河选矿厂矿泥系统铅锑锌浮选分离试验研究[J].中国矿业,11(3),82-85.
    [34]倪章元,肖丽.某难选锌铁硫矿选矿试验研究[J].矿冶工程,2011(2),33~35.
    [35]磨学诗,黄伟中,张雁生,等.提高多金属硫化铅锌矿浮选指标的研究[J],有色金属(选矿部分),2007(1):9~12.
    [36]赵明福,唐宝勤,徐祥彬.吉林省某铅锌矿石选矿工艺试验研究及应用[J],黄金,2007(12):39-43.
    [37]袁明华,普仓凤.多金属复杂铜矿铜锌硫分离浮选试验研究[J].有色金属:选矿部分,2008(1),1-3.
    [38]吴熙群,戴芳蓉.含锌铜硫矿石分选研究[J],矿冶,2003(3),26~29.
    [39]樊建云.铜锌分离浮选工艺试验研究[J],有色矿冶,2010(8),28-30.
    [40]杨国锋,孙敬锋,贾凤梅,等.某铜-锌矿石的浮选和分离工艺试验研究[J],矿产保护与利用,2009(8),33-35.
    [41]Marouf.B and Solecki.J, Copper ion activation of synthetic sphalerite with various ion contents, International Journal of Mineral Processing,1982(4):38-52.
    [42]Trahar W J, Senior G D, Heyes G W, et al. The activation of sphalerite by lead-a flotation perspective[J]. Inter J Miner Process,1997,49:121-148.
    [43]余润兰,等.乙黄药在铁闪锌矿表面的吸附机理[J],金属矿山,2004(12):29~31.
    [44]Girczys J, Laskowski J. Mechanism of flotation of unactivatedsphalerite with xanthate. Trans Inst Min Metall,1972,81:118-127.
    [45]王仁东,杨小峰,尤腾胜.西部某铁闪锌矿选矿工艺的试验研究[J].有色金属:选矿部分,2007.6, 7-9.
    [46]胡为柏.浮选(M),北京:冶金工业出版社,1982.
    [47]拉斯哥夫斯基Js,等.用阳离子捕收剂浮选硫化矿物[J],国外金属矿选矿,2003,(4):12-18.
    [48]魏盛甲.铁闪锌矿与黄铁矿的分离技术进展[J],有色金属,2001(1):1~4.
    [49]罗仙平,严群,聂光华.含铁闪锌矿的锌矿石选矿试验研究[J],四川有色金属,2002(3),37-40.
    [50]赵纯禄.铁闪锌矿浮选工艺过程的特性[J],有色金属:选矿部分,1995(5):4-7.
    [51]刘之能.黑药体系铅锌锑硫化矿的浮选电化学研究[D],长沙:中南大学,2009:90-96.
    [52]陈玉平,曾科,何名飞,覃文庆.使用MA捕收剂提高白牛厂铅锌矿浮选指标的研究[J],矿冶工程,2009,25(9):43~45.
    [53]刘文刚,魏德洲,周东琴.螯合捕收剂在浮选中的应用[J].国外金属矿选矿,2006(7):4-8.
    [54]蒋玉仁,曹育才,薛玉兰TCPO螯合捕收剂的结构与性能关系[J].矿产综合利用,2001,(3):18-22.
    [55]陈薇,童雄.浮选闪锌矿和铁闪锌矿的捕收剂研究现状及进展[J].国外金属矿选矿,2007(8):25-27.
    [56]杨久流.某铁锌多金属矿石选矿工艺研究[J].矿冶,2005(4):17-19.
    [57]纳塔拉扬R,等.浮选闪锌矿的新型捕收剂[J].国外金属矿选矿.2006,(10):21-24.
    [58]张芹,胡岳华,徐兢,等.铁闪锌矿无捕收剂浮选研究[J],有色金属(选矿部分),2005(5):19~21.
    [59]Finkelstein N P. The activation of sulphide minerals for flotation:a review. Inter J Miner Process, 1997,52:120-181.
    [60]Finkelstein N P. Addendum to the activation of sulphide minerals for flotation:a review. Inter J Miner Process,1999,55:283-286.
    [61]Shen W z. Fornasiero D. Ralaston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite [J]. International Journal of Mineral Processing,2001.63(1):17-28.
    [62]陈家模.多金属硫化矿浮选分离(M),贵阳:贵州科技出版社,2001.11.
    [63]《铅锌冶金学》编委会.铅锌冶金学(M),北京:科学出版社,2003.3.
    [64]童雄,何剑,饶峰等.云南都龙高铁闪锌矿的活化试验研究概况[J],矿业工程,2006(8),19-22.
    [65]Xiong Tong, Shaoxian Song, Jian He and Alejandro Lopez-Valdivieso. Flotation of indium-beard marmatite from multi-metallic ore. Rare Metals, Vol.27, No.2, Apr 2008, p.107-111.
    [66]Morey M S, Grano S R, Ralston J, et al. The electrochemistry of Pb2+ activated sphalerite in relation to flotation. Inter J Miner Process,2001,59:1009-1017.
    [67]Fereshteh R, Caroline S, James A F. Sphalerite activation and surface Pb ion concentration [J]. Inter J Miner Process,2002,67:43-58.
    [68]冷崇燕,张文彬,徐晓军,等.铵盐对铁闪锌矿浮选的活化效果[J],国外金属矿选矿,1998.8,20-21.
    [69]Keith Quast,GavinHobart.Marmatite depression in galena flotation. Minerals Engineering.2005(11), 860-869.
    [70]胡锦华.国外无氰浮选现状,国外金属矿选矿[J],1990(10):35-42.
    [71]王群、吴亨魁、胡熙庚.亚硫酸盐对铜活化的闪锌矿及铁闪锌矿抑制作用的研究[J].中南矿冶学院学报.1995,3;126-134.
    [72]冯其明,陈荩.硫化矿物浮选电化学[M],长沙:中南工业大学出版社,1992.
    [73]王群.亚硫酸盐对不同铁含量的铁闪锌矿可浮性的影响[J].江西矿冶学院学报,1982,2:28-33.
    [74]王群.亚硫酸盐对铁活化的闪锌矿抑制作用的研究[J].江西矿冶学院学报.1988,9:18~24.
    [75]Jan Leja.合理用药改善浮选指标[J].有色金属-选矿部分,1984,(2):43~46.
    [76]Poling G W, Beattie M J V Selective depression in complex sulphide flotation. In"Principle of flotation", The walk symposium, Jones M H, Woodcock J T eds:Proceedings of Austrian institute of mining and metallurgy, Parkville, Vic Australia,1984,137-146.
    [77]李正勤.铅锌硫化矿无氰浮选分离实践,有色金属(选矿部分)[J],1986(6):3-5.
    [78]T·N·赫麦列娃,陈云,李长根.亚硫酸氢钠对被铜离子活化的闪锌矿无捕收剂浮选的抑制机理[J],国外金属矿选矿,2005,11:21-25,12.
    [79]魏宗武,刘智林,叶雪均.多金属硫化矿石中低品位铅锌分离无氰工艺研究[J],甘肃冶金,2004,26(4):23~24,26.
    [80]蓝方钊,等.硫酸锌和氯化铵在铅锌分离中的应用[J],有色金属(选矿部分),1991(1):11~16.
    [81]哈兹米哈诺布尔.利用浮选新药剂YYYK制定多金属矿选矿无氰工艺[J],矿冶,1994(4):23~27.
    [82]林美群,魏宗武,陈建华,等.新型抑制剂DZ在铅锌分离中的试验研究[J],矿产综合利用,2008,(2):30-33.
    [83]朱建光,朱玉霜.RB3起泡剂对铅锌硫化矿的浮选性能矿冶工程,1994(4),20-26.
    [84]A R Gerson,A G Lange, K.E. Prince, R. St. C. Smart. The mechanism of copper activation of sphalerite, Appl. Surf. Sci.52,81-120 (1997) 14,15.
    [85]王晖,钟宏.浮选药剂应用研究现状及展望[J],国外金属矿选矿,1997,(3).
    [86]Perry D L, Tsao L and Tayolr L A,Surface studies of the Inter-action of Copper ions with metal sulfide minerals[A]. Proceedings-The Electrochemical Society,1984(10):169-184.
    [87]BUCKLEY A N, WOODS R,WOUTERLOOD H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions[J]. International Journal of Mineral processing,1989,26(1-2): 29-49.
    [88]BUCKLEY A N, GOH S W, LAMB R N, WOODS R. Interaction of thiolcollectors with pre- oxidised sulfide minerals[J]. International Journal of Mineral Processing,2003,72(1-4):163-74.
    [89]BUCKLEY A N, WOODS R. X-ray photoelectron spectroscopic and electrochemical studies of the interaction of xanthate with galena in relation to the mechanism proposed by Page and Hazell[J]. International Journal of Mineral Processing,1990,28(3-4):301-11.
    [90]LAAJALEHTO K,KARTIO I,SUONINEN E.XPS and SR-XPS techniques applied to sulphide mineral surfaces[J]. International Journal of Mineral Processing,1997,51(1-4):163-70.
    [91]HAMILTON I C, WOODS R. An investigation of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry[J]. Journal of Electroanalytical Chemistry,1981, (118):327-43.
    [92]ALMEIDA C M V B, GIANNETTI B F.The electrochemical behavior of pyrite-pyrrhotite mixtures [J]. Journal of Electroanalytical Chemistry,2003,553:27-34.
    [93]BUSWELL A M, BRADSHAW D J, HARRIS P J,EKMEKCI Z. The use of electrochemical measurements in the flotation of a platinum group minerals(PGM) bearing ore[J]. Minerals Engineering, 2002,15(6):395-404.
    [94]LEPPINEN J O. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Precessing,1990,30(3-4):245-63.
    [95]LEPPINEN J O, BASILIO C I, YOON R H. In-situ FTIR study of ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential[J]. International Journal of Mineral Processing,1989, 26(3-4):259-74.
    [96]张芹.铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究[D].长沙:中南大学,2004.
    [97]L6pez Valdivieso A, A. Sanchez Lopez A, Ojeda Escamilla C, et al. Flotation and depression control of arsenopyrite through pH and pulp redox potential using xanthate as the collector[J]. International Journal of Mineral Processing,2006,81(1):27-34.
    [98]KHMELEVA T N, CHAPELET J K,SKINNER W M, et al. Depression mechanics ms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite [J]. International Journal of Mineral Processing,2006,79(1):61-75.
    [99]LIU Y,L1U Q. Flotation separation of carbonate from sulfide minerals,Ⅱ:mechan isms of flotation depression of sulfide minerals by thioglyeollic acid and citric acid[J], Minerals Engineering,2004,17(7-8): 865-78.
    [100]Huerta-Cerdan A, de la Rosa J.M.,. Gonzalez C.A, et al.Cyclic voltammetry and dielectric studies on PbS-potassium ethyl xanthate-dextrine system under flotation and depression conditions[J].Journal of Materials Processing Technology,2003, (143-144):23-7.
    [101]BOULTON A, FORNASIERO D, RALSTON J. Depression of iron sulphide flotation in zinc oughers [J]. Minerals Engineering,2001,14(9):1067-79.
    [102]邱廷省.无机组合抑制剂对黄铁矿浮选行为及机理研究[J].南方冶金学院学报,2004(4):95-98.
    [103]孔令文,刘谊兵.新疆某高硫铅锌矿石选矿工艺试验研究[J],甘肃冶金,2007,29(5),59-61.
    [104]吴若琼.加温通二氧化硫浮选锌精矿,有色金属(选矿部分)[J],1991(1):43-46.
    [105]Finkelstein N P, Addendum to:the activation of sulphide minerals for flotation:a review,International Journal of mineral processing,1999,55:283-286.
    [106]覃文庆,硫化矿颗粒的电化学行为与电位调控浮选技术[M],北京:高等教育出版社,2001.
    [107]Mory, M. S, Grano,S. R, Ralston,J., Prestidge, C. A.and Verity,B.,The Electrochemistry of Pb"Activated Sphalerite in Relation to Flotation, Minerals Engineering,2001,14(9):1009-1017.
    [108]陈金中.铁闪锌矿与磁黄铁矿浮选分离新方法研究[J].有色金属:选矿部分,1994(1):34-40.
    [109]张英,覃武林,孙伟,等.石灰和氢氧化钠对黄铁矿浮选抑制的电化学行为[J].中国有色金属学报,11(3):675-679.
    [110]余润兰,邱冠周,胡岳华,等Ca(OH)2体系中铁闪锌矿和磁黄铁矿的电化学行为差异,[J],金属矿山,2005(8):30~33.
    [111]SUN Wei, LIU Run-qing, CAO Run—feng, et al. Flotation separation of marmatite from pyrrhotite using DMPS as depressant[J]. Trams. Nonferrous Met. SOC. China,2006(16):671-675.
    [112]熊道陵,王兴卫,钟洪呜,等.丙三醇黄原酸钠抑制磁黄铁矿作用机理研究[J],矿冶工程,2011,31(1):30-32.
    [113]王淀佐,邱冠周,胡岳华.资源加工学[M],北京:科学出版社,2005:218-220.
    [114]张芹,胡岳华,顾帼华,等.铁闪锌矿的浮选行为及其表面吸附机理[J],中国有色金属学报,2004,14(4),676-680.
    [115]吴伯增、陈建明等.丁黄药体系铁闪锌矿的浮选行为与电化学研究[J].矿冶工程,2004(12):34-36.
    [116]龚明光,等.泡沫浮选[M],北京:冶金工业出版社,2007,8.
    [117]Zhou chen,Roe-Hoan Yoon. Electrochemistry of copper activation of sphalerite at pH=9.2. International Journal of Mineral Processing,2000(58):57-66.
    [118]QING Wen-qin, HE Ming-fei, CHEN Yu-ping. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation.Transactions of Nonferrous Metals Society of China. 2008(18):949-954.
    [119]R. Woods, R.H. Yoon and C.A. Young.Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system. International Journal of Mineral Processing.1987,20:109-120.
    [120]Allison.S.A and Goold.L.A,A Determination of the Product of Reaction Between Various sulfide Minerals and Aqueous Xanthate Solution and a Correction of the Products with Electrode Rest Potentials, Metal. Tram.1972(3):E2613-2618.
    [121]Xiong Tong, Shaoxian Song, Jian He, Feng Rao, Alejandro Lopez-Valdivieso.Activation of High-Iron Marmatite in Froth Flotation by Ammoniacal Copper(Ⅱ) Solution. Minerals Engineering 20(2007)259-263.
    [122]王福良,等.铅锌选矿评述[A].第九届全国选矿年评学术会议论文集[C],厦门,2001.
    [123]杨梅金陈建华,马少健,等.黄铁矿自诱导电化学浮选研究[J],金属矿山,2003(1):34~35.
    [124]童雄,周庆华,刘四清,等.含铟高铁闪锌矿的活化[J],有色金属(季刊),2007(1).
    [125]童雄.锌铅矿石的现代选矿和湿法冶金新技术、新工艺与文山州锌铅矿业可持续发展的对策,文山州矿产资源开发与环境保护,文山州发展计划委员会,2003.7:20~48.
    [126]易飞鸿,奚长生.稀散元素回收与应用[J].益阳师专学报,2001(6):34~37.
    [127]张才明.从氧化锌烟尘中回收锗的研究[J].有色金属,1994(3):9-13.
    [128]周令治,邹家炎.当代高新技术的支撑材料—稀散金属[J].有色金属科技进步与展望-纪念<有色金属>创刊50周年专辑:1999(12):303-310.
    [129]A.de la Cuadra, A.Hernandez, F.J.Alguacil. Polygermanates and their role in the obtaining GeO2 from zinc concentrates. Proceedings of the ⅩⅪ International Mineral Processing Congress. [M],2000,7:A6-82.
    [130]卜国基.浅谈铟、镉在大厂矿田的分布及综合回收前景[J],广西地质,2000,(1):37-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700