增敏性化学发光分析体系的构建及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文运用化学发光的基本原理和方法对一些增敏性化学发光体系进行了研究,构建了新的增敏性化学发光分析方法。
     研究了CdTe量子点、二过碘酸合铜、2-取代-4,5-二(2-呋喃基)-1H-咪唑和稀土离子的发光性质及增敏作用,构建了不同的增敏性化学发光体系。基于对化学发光动力学曲线、化学发光光谱及荧光光谱等的研究,考察了体系的反应介质、反应物浓度和共存物质等因素对化学发光信号的影响,优化了一系列实验条件,探讨了体系的发光机理。
     利用所建立的发光体系实现了对多酚、Cu~(2+)和白蛋白的灵敏性检测,并用新方法分别测定了菟丝子中的金丝桃苷、环境水样中的邻苯二酚和对苯二酚、水系沉积物和土壤等物质中的Cu~(2+)及人血清中白蛋白的含量。
The chemiluminescence (CL) has attracted a great deal of attention as an interesting anduseful detection method in analytical chemistry because of its advantages. It has beendeveloped to be an important and powerful tool in different fields such as environmentalmonitoring, drug analysis, food analysis, biomedical detection, and clinical diagnose. MostCL reactions have low quantum efficiencies and thus show weak luminescence. The weakemission can be greatly enhanced by sensitizers, which is used to establish sensitized CLsystem. The sensitized CL system for detection has the advantages of longer emission time,stronger CL intensity, higher sensitivity and veracity, wider linear range and easiermeasurement. In the paper, some recent developments and applications of sensitized CLsystems, including the uses of metal ions, fluorescent substances, surfactants, enzymes andnanoparticles are reviewed. The CL properties of CdTe quantum dots (QDs),diperiodatocuprate (III)(DPC),2-substituted-4,5-di(2-furyl)-1H-imidazoles and lanthanideions were investigated, and some of sensitized CL systems were developed. The effects ofreaction medium, reactant concentrations and coexisting substances on the CL emission wereinvestigated. The possible enhancement mechanisms of the CL systems were investigated.The methods were successfully applied to determine the content of the practical samples.
     In this paper,3-mercaptocarboxylic acid (MPA) modified CdTe QDs were used assensitizers and emissive species for CL analysis. The addition of CdTe into thecalcein-K_3Fe(CN)_6system and Tween20into the CdTe-H2O2system could inducesignificant enhancement of CL signals. The new sensitized CL systems ofCdTe-calcein-K_3Fe(CN)_6and Tween20-CdTe-H_2O_2were developed. The effects of theparticle sizes of CdTe QDs and reactant concentrations on the CL emission were investigated in detail. The possible enhancement mechanisms of the CL systems were further investigatedbased on the photoluminescence (PL) and CL spectra. The influences of polyphenols, such ascatechol, hydroquinone, hyperin, chlorogenic acid and kaempferol, on the CL signals of theCdTe-calcein-K_3Fe(CN)_6and Tween20-CdTe-H_2O_2systems were examined. It was foundthat the addition of the polyphenols into the systems could induce inhibition of CL signals.There is a good linear relationship between the quenched intensity for the CL and theconcentration or the logarithm of concentration of polyphenols. The proposed methods wereapplied to the determination of hyperin in seed of Cuscuta chinensis Lam. and catechol in tapwater sample, respectively. The results obtained were satisfactory. The proposed systemshave advantages of high sensitivity and wide linear response range for the determination ofpolyphenols.
     The DPC solution was prepared according to the reported method. In the paper, asensitized CL system was developed based on the catalytical effect of DPC on the1,10-phenanthroline (phen)-H_2O_2in the presence of cetyltrimethylammonium bromide(CTAB). The effects of experimental parameters, including reaction medium andconcentrations of DPC, H_2O_2, CTAB and phen, on the CL intensity of the system wereinvestigated. Meanwhile the increase of CL intensity of the DPC-phen-H_2O_2-CTAB system isproportional to the concentration of phen in the range of low concentration. The linear rangeof the calibration curve is5.0×10~(-9)-1.0×10~(-6)mol/L, and the corresponding detection limit is1.9×10~(-9)mol/L. The CL mechanism was also discussed briefly based on the PL and CLspectra. Under the optimal conditions, the effects of polyphenols on theDPC-phen-H_2O_2-CTAB CL system were investigated. It was observed that polyphenolsinhibit the CL signal of the system. Hydroquinone was used as an example to investigate theapplication of the CL system for the determination of polyphenols. The quenched CLintensity is linearly related to the logarithm of concentration of hydroquinone. The linearrange of the calibration curve is2.5×10~(-9)-1.0×10~(-5)g/mL, and the corresponding detectionlimit is1.8×10~(-9)g/mL. The method was applied to the determination of hydroquinone inwater samples, such as tap water, rain water and lake water samples. The spiked samples wereanalyzed and the recoveries of hydroquinone at the different concentration levels ranged from 92%to106%.
     In the paper, two2-substituted-4,5-di(2-furyl)-1H-imidazoles,2,4,5-tri(2-furyl)-1H-imidazole (TFI) and2-phenyl-4,5-di(2-furyl)-1H-imidazole (PDFI), were synthesizedaccording to the reported methods. The directly oxidized CL of TFI and PDFI by basic H_2O_2and acidic KMnO4were studied in detail. The H_2O_2and KMnO4could directly oxidize TFIand PDFI to produce strong CL emission, and the CL emission induced by TFI was sronger.The addition of Cu~(2+)into the TFI/PDFI-H_2O_2system and albumin into the TFI/PDFI-KMnO4system could induce significant enhancement of CL signals, and the enhanced CL intensity islinearly related to the concentration of Cu~(2+)and the logarithm of concentration of albumin,respectively. Two new sensitized CL systems were developed. The proposed methods havebeen used to determine trace amount of Cu~(2+)and albumin with limits of detection (3σ) of6.5×1011mol/L,3.5×10-10mol/L, respectively. The interference of some metal ions, glucoseand amino acids was tested, and the results indicated the proposed methods are quite selectivefor determination of Cu~(2+)and albumin. The proposed methods were applied to thedetermination of Cu~(2+)in the reference material samples (such as silicate rock, soil and streamsediments) and human serum albumin (HSA) in human serum samples, respectively. Theresults obtained were satisfactory.
     The reactions of lanthanide ions Tb~(3+), Eu~(3+), Ce~(3+) and La~(3+) with some common oxidants,including K_2S_2O_8, H_2O_2,(NH_4)_2S_2O_8, Ce(SO_4)_2, K_3Fe(CN)_6, KMnO_4, were investigated. Theexperimental results indicate that only K_2S_2O_8and (NH_4)_2S_2O_8can react with lanthanide ionsin alkaline medium, which produces CL signals. The rank order of CL intensity was Tb~(3+)>La~(3+)> Eu~(3+)> Ce~(3+) in the presence of the same oxidant. However, compared with CL inducedby K_2S_2O_8, that induced by (NH_4)_2S_2O_8was weaker. Therefore, K_2S_2O_8was selected asoxidant for the CL reaction. A new CL system of Tb~(3+)-K_2S_2O_8was developed for thedetermination of albumin, such as bovine serum albumin (BSA), HSA and ovalbumin (OVA).Some experimental conditions were examined and optimized. The linear ranges of thecalibration curves are5.0×10~(-9)-5.0×10~(-6)mol/L for BSA,5.0×10-8-1.0×10~(-5)mol/L for HSAand2.5×10~(-7)-1.0×10~(-5)mol/L for OVA, and the corresponding detection limits are1.9×10~(-9)mol/L,1.5×10~(-8) mol/L and1.5×10~(-7)mol/L, respectively. The method was applied to the determination of HSA in human serum samples, and the results were in agreement with thoseobtained by the bromcresol green method. The relative errors for the analytical results werefrom-2.0%to4.3%.
引文
[1] Wang J. P., Li N. B., Luo H. Q. Chemiluminescence determination of ferulic acid byflow-injection analysis using cerium(IV) sensitized by rhodamine6G [J]. SpectrochimicaActa Part A,2008,71:204-208.
    [2] Cui H., Zhang Q. L., Myint A., Ge X. W., Liu L. J. Chemiluminescence ofcerium(IV)–rhodamine6G–phenolic compound system [J]. Journal of Photochemistry andPhotobiology A: Chemistry,2006,181:238-245.
    [3] Liu W. B., Huang Y. M. Cerium(IV)-based chemiluminescence of phentolaminesensitized by rhodamine6G [J]. Analytica Chimica Acta,2004,506:183-187.
    [4] Hosseini M., Abkenar S. D., Chaichi M. J., Ganjali M. R., Norouzi P. A study ofquenching and enhancing effects of some amino acids on peroxyoxalate chemiluminescenceof rhodamine6G [J]. Spectrochimica Acta Part A,2009,72:484-489.
    [5] Wang R. F., Wan L. J., Li Q., Liu X. D., Huang Y. M. Chemiluminescence of synephrinebased on the cerium(IV)–rhodamine B system [J]. Luminescence,2007,22:140-146.
    [6] Satienperakul S., Phongdong P., Liawruangrath S. Pervaporation flow injection analysisfor the determination of sulphite in food samples utilising potassium permanganate–rhodamine B chemiluminescence detection [J]. Food Chemistry,2010,121:893-898.
    [7] Han S. Q., Liu E. B., Li H. Flow injection chemiluminescence determination of heminusing the rhodamine B–H2O2–NaOH system [J]. Microchimial Acta,2005,149:281-286.
    [8] Cao W., Fu Y. J., Gong P. X., Ma Y., Qiao S., Yang J. H. N-bromosuccinimide-fluorescein system for the determination of protein by flow injection chemiluminescence [J].Microchimical Acta,2010,168:17-21.
    [9] Du J. X., Liu W. X., Lu J. R. Chemiluminescence behaviour of alkaline earth metal ionsin the potassium permanganate–fluorescein reaction [J]. Luminescence,2003,18:341-345.
    [10] Huang C. B., Zhang K., Liu X. L., Wang S. F. A flow-injection chemiluminescencemethod for the determination of human serum albumin, using the reaction of fluorescein–human serum albumin–sodium hypochlorite by the enhancement effect of the cationicsurfactant cetyltrimethylammonium bromide [J]. Luminescence,2007,22:393-400.
    [11] Nie F., Lu J. R. Determination of fenfluramine based on potassium permanganate–calcein chemiluminescence system [J]. Talanta,2008,74:1242-1246.
    [12] Nie F., Lu J. R. Determination of trace aluminum (III) using a novel cerium (IV)-calceinchemiluminescence detection [J]. Spectrochimica Acta Part A,2008,71:350-354.
    [13] Gerardi R. D., Barnett N. W., Lewis S. W., Analytical applications of tris(2,2′-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent [J]. Analytica Chimica Acta,1999,378:1-41.
    [14] Jackson W. A., Bobbitt D. R., Chemiluminescent detection of amino acids using in situgenerated Ru(bpy)33+[J]. Analytica Chimica Acta,1994.285:309-320.
    [15] Waguespack B. L., Lillquist A., Townley J. C., Bobbitt D. R. Evaluation of a tertiaryamine labeling protocol for peptides and proteins using Ru(bpy)33+-based chemiluminescencedetection [J]. Analytica Chimica Acta,2001,441:231-241.
    [16] Xi J., Ai X. P., He Z. K. Chemiluminescence determination of barbituric acid usingRu(phen)32+-Ce(Ⅳ) system [J]. Talanta,2003,59:1045-1051.
    [17] Han H. Y., He Z. K., Zeng Y. E. A direct chemiluminescence method for thedetermination of nucleic acids using Ru(phen)32+–Ce(IV) system [J]. Fresenius Journal ofAnalytical Chemistry,1999,364:782-785.
    [18] Han H. Y., He Z. K., Zeng Y. E. Chemiluminescence method for the determination ofglutathione in human herum using the Ru(phen)32+–KMnO4system [J]. Microchimica Acta,2006,155:431-434.
    [19] Rezaei B., Mokhtari A., Khayamian T. A simple and rapid flow-injectionchemiluminescence method for the determination of noscapine with Ru(phen)32+-Ce(IV)system [J]. Annali di Chimica,2007,97:605-614.
    [20] Tian D., Duan C., Wang W., Li N., Zhang H., Cui H., Lu Y. Y. Sandwich-typeelectrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminollabeling and gold nanoparticle amplification [J]. Talanta,2009,78(2):399-404.
    [21] Robards K., Worsfold P. J., Analytical applications of liquid-phase chemiluminescence[J]. Analytica Chimica Acta,1992,266(2):147-173.
    [22] Chai Y., Tian D. Y., Wang W., Cui H. A novel electrochemiluminescence strategy forultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling andamplification of gold nanoparticles and biotin-streptavidin system [J]. ChemicalCommunications,2010,46(40):7560-7562.
    [23] Knecht B. G., Strasser A., Dietrich R., M rtlbauer E., Niessner R., Weller M. G..Automated microarray system for the simultaneous detection of antibiotics in milk [J].Analytical Chemistry,2004,76(3):646-654.
    [24] Barbara I., Eberlein-Knig B., Behrendt H., Niessner R., Ring J., Weller M. G.Microarrays for the screening of allergen-specific IgE in human serum [J]. AnalyticalChemistry,2003,75(3):556-562.
    [25] Rubina A. Y., Dyukova V. I., Dementieva E. I., Stomakhin A. A., Nesmeyanov V. A.,Grishin E. V., Zasedatelev A. S. Quantitative immunoassay of biotoxins on hydrogel-basedprotein microchips [J]. Analytical Biochemistry,2005,340(2):317-329.
    [26] Zhang D. H. Adsorption and photodesorption of oxygen on the surface and crystalliteinterfaces of sputtered ZnO films [J]. Materials Chemisrty and Physics,1996,45:248.
    [27] Martin C. R., Mitchell D. T. Nanomaterials in analytical chemistry [J]. AnalyticalChemistry,1998,70(9):322A-327A.
    [28] Ding Z., Quinn B. M., Haram S. K., Pell L. E., Korgel B. A., Bard A. J. Electrochemistryand electrogenerated chemiluminescence from silicon nanocrystal quantum dots [J]. Science,2002,296(5571):1293-1297.
    [29] Myung N., Bae Y., Bard A. J. Effect of surface passivation on the electrogeneratedchemiluminescence of CdSe/ZnSe nanocrystals [J]. Nano Letters,2003,3(8):1053-1055.
    [30] Myung N., Ding Z. F., Bard A. J. Electrogenerated chemiluminescence of CdSenanocrystals [J]. Nano Letters,2002,2(11):1315-1319.
    [31] Myung N., Lu X. M., Johnston K. P., Bard A. J. Electrogenerated chemiluminescence ofGe nanocrystals [J]. Nano Letters,2004,4(1):183-185.
    [32] Bae Y., Myung N., Bard A. J. Electrochemistry and electrogenerated chemiluminescenceof CdTe nanoparticles [J]. Nano Letters,2004,4(6):1153-1161.
    [33] Poznyak S. K., Talapin D. V., Shevchenko E. V., Weller H. Quantum dotchemiluminescence [J]. Nano Letters,2004,4(4):693-698.
    [34] Wang Z. P., Li J., Liu B., Hu J. Q., Yao X., Li J. H. Chemiluminescence of CdTenanocrystals induced by direct chemical oxidation and its size-dependent andsurfactant-sensitized effect [J]. Journal of Physical Chemistry B,2005,109:23304-23311.
    [35] Miyazawa T., Fujimoto K., Suzuki T., Yasuda K. Determination of phospholipidhydroperoxide using luminol chemiluminescence-high performance liquid chromatography[J]. Methods Enzymol,1994,233:324-332.
    [36] Xiao C. B., King D. W., Palmer D. A., Wesolowski D. J. Study of enhaneement effeets inthe chemiluminescence method for Cr(Ⅲ) in the ng L-1range [J]. Analytica Chimica Acta,2000,415:209-219.
    [37] Nakamura H., Abe Y., Koizumi R., Suzuki K., Mogi Y., Hirayama T., Karube I. Achemiluminescence bioehemical oxygen demand measuring method [J]. Analytica ChimicaActa,2007,602:94-100.
    [38] Parejo I., Petrakis C., Kefalas P. A Transition metal enhanced luminolchemiluminescence in the presence of a chelator [J]. Journal of Pharmacological andToxicological Methods,2000,43:183-190.
    [39] Giokas D. L., Vlessidis A. G., Evmiridis N. P. On-line selective detection of antioxidantsfree-radical scavenging activity based on Co(Ⅱ)/EDTA-induced luminol hemiluminescenceby flow injection analysis [J]. Analytica Chimica Acta,2007,589:59-65.
    [40] Baj S., Krawczyk T., Staszewska K. The influence of dioxygen on luminolchemiluminescence [J]. Luminescence,2009,24:348-354.
    [41] Zhang W., Danielson N. D. Characterization of a micro spiral glow cell forchemiluminescence detection [J]. Microchemical Journal,2003,75:255-264.
    [42] Bastos E. L., Romoff P., Eckert C. R., Baader W. J. Evaluation of antiradical capacity byH2O2-hemin-induced luminol chemiluminescence [J]. Journal of Agricultural and FoodChemistry,2003,51:7481-7488.
    [43] Bezzia S., Loupassakia S., Petrakisa C., Kefalas P., Calokerinos A. Evaluation ofperoxide value of olive oi1and antioxidant activity by luminol chemiluminescence [J].Talanta,2008,77:642-646.
    [44] Zhang J. R., Cazers A. R., Lutzke B. S., Hall E. D. HPLC-chemiluminescence andthermospray LC/MS study of hydroperoxides generated from phosphatidylcholine [J]. FreeRadical Biology and Medicine,1995,18: l-10.
    [45] Santos V. R. D., Paula W. X., Kalapothakis E. Influence of the luminolchemiluminescence reaction on the confirmatory tests for the detection and characterizationof bloodstains in forensic analysis [J]. Forensic Science International: Genetics SupplementSeries,2009,2:196-197.
    [46] Zhou S. L., Huang J. H., Huang W. H., Lu X., Cheng J. K. Monitoring the reaction ofhemoglobin with hydrogen peroxide by capillary electrophoresis-chemiluminescencedetection [J]. Journal of Chromatography B,2007,850:343-347.
    [47] Luo L. R., Zhang Z. J., Ma L. F. A design of reaction-controlled chemiluminescenceimaging and its application [J]. Analytical Chimical Acta,2005,543:222-228.
    [48] Nie F., Lu J. Determination of trace aluminum (III) using a novel cerium (IV)-calceinchemiluminescence detection [J]. Spectrochimica acta Part A,2008,71(2):350-354.
    [49] Zhang S. C., Wu Y. Y., Li H. Chemiluminescence of cobalt(II)–hydrogen peroxide–hydrogencarbonate in the absence of luminescent reagents [J]. Talanta,2000,53:609–616.
    [50] Zhang L., Zhou J., Hao Y., He P., Fang Y. Determination of Co2+based on the cobalt(II)-catalyzed electrochemiluminescence of luminol in acidic solution [J]. Electrochimica Acta,2005,50(16-17):3414-3419.
    [51] Liu P., Hun X., Qing H. Dendrimer-based biosensor for chemiluminescent detection ofDNA hybridization [J]. Microchimica Acta,2011,175(1-2):201-207.
    [52] Yang X. F., Li H. Chemiluminescence of cobalt(II)-catalysed auto-oxidation of sulphiteand its application to cobalt analysis [J]. Luminescence,2004,19(5):253-258.
    [53] Lin Z., Xie Z. Direct determination of amino acids by pressurized capillaryelectrochromatography with chemiluminescence detection [J]. Journal of Separation Science,2008,31(15):2852-2859.
    [54] Liu M., Li B., Zhang Z., Lin J. M. Enhancing effect of DNA on chemiluminescence fromthe decomposition of hydrogen peroxide catalyzed by copper(II)[J]. Analytical andBioanalytical Chemistry,2005,381(4):828-832.
    [55] Li D., Du J., Lu J. Chemiluminescence determination of atenolol in biological fluids by aeuropium-sensitized permanganate-sulfite system [J]. Microchimica Acta,2008,161(1-2):169-173.
    [56] Chen Y. C., Lin W. Y. Enhancement of chemiluminescence of the KIO4-luminol systemby gallic acid, acetaldehyde and Mn2+: application for the determination of catecholamines [J].Luminescence,2010,25:43-49.
    [57] Ruengsitagoon W., Liawruangrath S., Townshend A. Flow injection chemiluminescencedetermination of paracetamol [J]. Talanta,2006,69(4):976-983.
    [58] Liu J., Qiao B., Zhang N., He L. Direct detection of ultra-trace vanadium (V) in naturalwaters by flow-injection chemiluminescence with controlled-reagent-release technology [J].Journal of Geochemical Exploration,2009,103(1):45-49.
    [59] Nakano S., Sakamoto K., Takenobu A., Kawashima T. Flow-injection chemiluminescentdetermination of vanadium(IV) and total vanadium by means of catalysis on the periodateoxidation of purpurogallin [J]. Talanta,2002,58:1263-1270.
    [60] Qu P., Yan S. C., Lu H., Lu Z. H. Flow-injection chemiluminescence determinations forhuman blood lead using controlled reagent release technology [J]. Microchimica Acta,2008,163(3-4):321-326.
    [61] Nakashima K., Yamasaki H., Shimoda R., Kuroda N., Aklyama S., Baeyens W. R. G.Flow-injection analytical of cobalt(Ⅱ) utilizing enhanced lophine chemiluminescence withhydroxylammonium chloride [J]. Biomedical Chromatography,1997,11:63-64.
    [62] Wang X., Yin X., Cheng H. Microflow injection chemiluminescence system with spiralmicrochannel for the determination of cisplatin in human serum [J]. Analytica Chimica Acta,2010,678(2):135-139.
    [63] Zhang H., Li W., Sheng Z., Han H., He Q. Ultrasensitive detection of porcine circovirustype2using gold(Ⅲ) enhanced chemiluminescence immunoassay [J]. Analyst,2010,135(7):1680-1685.
    [64] Kamruzzaman M., Ferdous T., Alam A. M., Lee S. H., Kim S. Y., Kim Y. H., Kim S.H. A metal enhanced flow-injection chemiluminescence method for the rapid determinationof norfloxacin in pharmaceutical formulations and serum sample [J]. Bulletin of the KoreanChemical Society,2011,32(2):639-644.
    [65] Li J. J., Zhang Z. L., Qu L. B., Yang R. Determination of pazufloxacin mesylas byterbium sensitized chemiluminescence method [J]. Spectroscopy and Spectral Analysis,2009,29(1):73-77.
    [66] Kaczmarek M., Idzikowska A., Lis S. Europium-sensitized chemiluminescence ofsystem tetracycline–H2O2–Fe(II)/(III) and its application to the determination of tetracycline[J]. Journal of Fluorescence.2008,18(6):1193-1197.
    [67] Song Z. H., Hou S., Yu X. Y., Xie X. F., Shao X. D. In vitro monitoring of picogramlevels of captopril in human urine using flow injection chemiluminescence with immobilizedreagent technique [J]. Analytical Letters,2006,39(6):1115-1127.
    [68] Chen S., Yan G., Schwartz M. A., Perrin J. H., Schulman S. G. Penicillin-enhancedchemiluminescence of the luminol-H2O2-Co2+system [J]. Journal of Pharmaceutical Sciences,1991,80(11):1017-1019.
    [69] Li H., Du J. X. Sensitive chemiluminescence determination of three thiol compoundsbased on Cu(II)-catalyzing luminol reaction in the absence of an oxidant [J]. AnalyticalLetters,2009,42(13):2131-2140.
    [70] Fernández J. M. R., Bosque-Sendra J. M., García-Campa a A. M., Barrero F. A.Chemiluminescence determination of amikacin based on the inhibition of the luminol reactioncatalyzed by copper [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,36:969-974.
    [71] Thongpoon C., Liawruangrath B., Liawruangrath S., Wheatley A., Townshend A. Flowinjection chemiluminescence determination of cephalosporins in pharmaceutical preparationsusing tris (2,2′-bipyridyl) ruthenium (II)-potassium permanganate system [J]. AnalyticaChimica Acta,2005,553:123-133.
    [72] Townshend A., Ruengsitagoon W., Thongpoon C., Liawruangrath S. Flow injectionchemiluminescence determination of tetracycline [J]. Analytica Chimica Acta,2005,541:105-111.
    [73] Amini N., Kolev. S. D. Gas-diffusion flow injection determination of Hg(II) withchemiluminescence detection [J]. Analytica Chimica Acta,2007,582:103–108.
    [74] Song Z. H., Yue Q. L., Wang C. N. Flow injection chemiluminescence determination offemtogram-level cobalt in egg yolk, fish tissue and human serum [J]. Food Chemistry,2006,94:457–463.
    [75] Som-Auma W., Threeprom J., Li H. F., Lin J. M. Determination of chromium(III) andtotal chromium using dual channels on glass chip with chemiluminescence detection [J].Talanta,2007,71:2062–2068.
    [76] Li L. N., Li N. B., Luo H. Q. A new chemiluminescence method for the determination ofnickel ion [J]. Spectrochimica Acta Part A,2006,64:391–396.
    [77] Fei N, Jiuru L. Determination of ketotifen by using calcein as chemiluminescencereagent [J]. Analytica chimica acta,2007,592(2):168-172.
    [78] Du J., Lu J., Zhang X. Flow-injection chemiluminescence determination of cobalt usinga cobalt(II)(1,10-phenanthroline)3complex-catalyzed lucigenin-periodate reaction [J].Microchimica Acta,2005,153(1-2):21-25.
    [79] Fan S. L., Qu F., Zhao L. X. Flow-injection analysis for the determination of totalinorganie carbonand total organic carbon in water using the H2O2-luminol-uraninechemiluminescent reaction [J]. Analytical and Bioanalytical Chemistry,2006,386:2175-2182.
    [80] Navas Díaz A., Sanchez F. G., Torijas M. C., Lovillo J. Chemiluminescent lipasedetermination based on the enhanced luminol/H2O2/horseradish peroxidase/fluoresceindiacetate energy transfer system [J]. Fresenius Journal of Analytical Chemistry,1999,365:537–540.
    [81] Hosseini M., Abkenar S. D., Chaichi M. J., Ganjali M. R., Norouzi P. A study ofquenching and enhancing effects of some amino acids on peroxyoxalate chemiluminescenceof rhodamine6G [J]. Spectrochimica acta Part A,2009,72(3):484-489.
    [82] Yang Z., Wang X., Qin W., Zhao H. Capillary electrophoresis–chemiluminescencedetermination of norfloxacin and prulifloxacin [J]. Analytica Chimica Acta,2008,623(2):231-237.
    [83] Yi L., Zhao H. C., Chen S. L., Jin L. P., Zheng D. D., Wu Z. L. Flow-injection analysisof two fluoquinolones by the sensitizing effeet of terbium(Ⅲ) on chemiluminescence of thepotassium permanganate-sodium sulfite system [J]. Talanta,2003,61(3):403-409.
    [84] Wang X. L., Chen S. L., Zhao H. C., Jin L. P., Li X. Europium sensitizedchemiluminescence determination of pazufloxacin mesylate in urine and serum [J]. AnalyticalLetters,2005,38:971-979.
    [85] Sun H, Li L, Chen X. Investigation on sensitized chemiluminescence systems and theirmechanism for five fluoroquinolones [J]. Analytica Chimica Acta,2006,576(2):192-199.
    [86] Lin J. M., Yamada M. Microheterogeneous systems of micelles microemulsions asreaction media in chemiluminescent analysis [J]. TrAC Trends in Analytical Chemistry,2003,22(2):99-107.
    [87] Gumüslü S., Erkili A., Yücel G., Serteser M., zben T. The effects of detergents ont-butyl hydroperoxide-induced chemiluminescence [J]. International Journal of Clinical andLaboratory Research1996,26(3):203-206.
    [88] Davletshin A. I., Egorov V. V., Zubov V. P. Effect of surfactants on peroxidase activity. I.Effect of anionic surfactants [J]. Bioorganicheskaia Khimiia,1998,24:426-429.
    [89] Motsenbocker M. A., Oda K., Ichimori Y. Enhancers of the non-peroxidative metalporphyrin chemiluminescence reaction [J]. Journal of Bioluminescence andChemiluminescence,1994,9(l):7-13.
    [90] Huang C. B., Zhang K., Ci Y. X. Sensitization of surfactants on the chemiluminescencereaction of fluorescein isothiocyanate labeled proteins [J]. Journal of Biochemical andBiophysical Methods,2007,70:341–347.
    [91] Xie C. G., Li H. F. Determination of tannic acid in industrial wastewater based onchemiluminescence system of KIO4-H2O2-Tween40[J]. Luminescence,2010,25(5):350-354.
    [92] Wada M., Abe K., Ikeda R., Harada S., Kuroda N., Nakashima K. Enhancement ofperoxyoxalate chemiluminescence intensity by surfactants and its application to detectdetergent [J]. Talanta,2010,81(3):1133-1136.
    [93] Sorouraddin M. H., Iranifam M., Imani-Nabiyyi A. Study of the enhancement of a newchemiluminescence reaction and its application to determination of beta-lactam antibiotics [J].Luminescence,2009,24(2):102-107.
    [94] Kamruzzaman M., Alam A. M., Ferdous T., Lee S. H., Kim Y. H., Kim S. H.Ultrasensitive study of gatifloxacin based on its enhancing effect on the cerium (IV)-sodiumhyposulfite chemiluminescence reaction in a micellar medium [J]. Journal of Fluorescence,2011,21(4):1539-1545.
    [95] Liu X., Li A., Zhou B., Qiu C., Ren H. Chemiluminescence determination of surfactantTriton X-100in environmental water with luminol-hydrogen peroxide system [J]. ChemistryCentral Journal,2009,3(1):7.
    [96] Sorouraddin M. H., Iranifam M., Naseri A., Fadakar-Sardroud M., Gharari-Alibabalou H.Direct chemiluminescence determination of penicillin G potassium and a chemometricaloptimization approach [J]. Luminescence,2011,26(6):622-628.
    [97] Jia B. X., Li Y. Q., Liu C. H., Li K., Qi Y. X. Flow injection determination ofmetoclopramide based on KMnO4-HCHO chemiluminescence in a micellar medium [J].Journal of Luminescence,2010,130(11):2188-2191.
    [98] Cui H., Li S. F., Lin X. Q. Chemiluminescence of Ce(Ⅳ) and surfactant Tween20[J].Analyst,2001,126:553–554.
    [99] Tang G., Huang Y., Shi W. Reverse micelle-based chemiluminescence system forquinine sulphate [J]. Luminescence,2005,20(3):181-186.
    [100] Shi W., Yang J., Huang Y. Ion-pair complex-based solvent extraction combined withchemiluminescence determination of chlorpromazine hydrochloride with luminol in reversemicelles [J]. Journal of Pharmaceutical and Biomedical Analysis,2004,36(1):197-203.
    [101] Wang J. N., Zhang C., Wang H. X., Yang F. Z., Zhang X. R. Development of aluminol-based chemiluminescence flow-injection method for the determination of dichlorvospesticide [J]. Talanta,2001,54:1185-1193.
    [102] Cannizzaro V., Bowie A. R., Sax A., Achterberg E. P., Worsfold P.J. Determination ofcobalt and iron in estuarine and coastal waters using flow injection with chemiluminescencedetection [J]. Analyst,2000,125(1):51-57.
    [103] Huang C. B., Zhang K., Liu X. L., Wang S. F. A flow-injection chemiluminescencemethod for the determination of human serum albumin, using the reaction offluorescein-human serum albumin-sodium hypochlorite by the enhancement effect of thecationic surfactant cetyltrimethylammonium bromide [J]. Luminescence,2007,22(5):393-400.
    [104] Huang C., Zhang K., Ci Y. Sensitization of surfactants on the chemiluminescencereaction of fluorescein isothiocyanate labeled proteins [J]. Journal of Biochemical andBiophysical Methods,2007,70(3):341-347.
    [105] Liu X., Du J., Lu J. Determination of parathion residues in rice samples using a flowinjection chemiluminescence method [J]. Luminescence,2003,18(5):245-248.
    [106] Erbao L., Bingchun X. Flow injection determination of adenine at trace level based onluminol–K2Cr2O7chemiluminescence in a micellar medium [J]. Journal of Pharmaceuticaland Biomedical Analysis,2006,41(2):649-653.
    [107] Zhang G. F., Chen H. Y. Studies of micelle and trace non-polar organic solvent on anew chemiluminescence system and its application to flow injection analysis [J]. AnalyticaChimica Acta,2000,409:75-81.
    [108] Huang Y. M., Zhang C., Zhang X. R., Zhang Z. J. Chemiluminescence of sulfite basedon auto-oxidation sensitized by rhodamine6G [J]. Analytica Chimica Acta,1999,391:95-100.
    [109] Townshend A., Youngvises N., Wheatley R. A., Liawruangrath S. Flow-injectiondetermination of cinnarizine using surfactant-enhanced permanganate chemiluminesence [J].Analytica Chimica Acta,2003,499(1-2):223-233.
    [110] Zhang M., Zhang C., Qi H. Energy transfer electrogenerated chemiluminescence for thedetermination of sulfite [J]. Microchimica Acta,2004,144(1-3):155-160.
    [111] Lu C., Song G., Lin J., Huie C. Enhancement in sample preconcentration by the on-lineincorporation of cloud point extraction to flow injection analysis inside thechemiluminescence cell and the determination of total serum bilirubin [J]. Analytica ChimicaActa,2007,590(2):159-165.
    [112] Zhang L. H., Teshima N., Hasebe T., Kurihara M., Kawashima T. Flow-injectiondetermination of trace amounts of dopamine by chemiluminescence detection [J]. Talanta,1999,50:677-683.
    [113Fuster M. Y., Fernández B. B., Lahuerta Z. L., Martínez C. J. Flow injectionanalysis–direct chemiluminescence determination of ergonovine maleate enhanced byhexadecylpyridinium chloride [J]. Analyst,1999,124(3):413-416.
    [114] Watanabe K., Ishii Y., Shitanda I., Itagaki M. Chemiluminescent determination ofchromium (VI) with4-methoxycoumarin and the effect of alkaline solutions on thechemiluminescence [J]. Bunseki Kagaku,2011,60(7):585-591.
    [115] Catala-Icardo M., Lopez-Paz J. L., Choves-Baron C., Pena-Badena A. Native vsphotoinduced chemiluminescence in dimethoate determination [J]. Analytica Chimica Acta,2012,710:81-87.
    [116] Tang J., Wang T., Liu E. B. Study on the mechanism of sodium formate enhancingluminol chemiluminescence and its application in micellar medium [J]. Spectroscopy andSpectral Analysis,2009,29(11):2901-2903.
    [117] Hao L. A., Du J. X., Lu J. R. Flow injection chemiluminescence determination ofphenol in neutral medium [J]. Analytical Letters,2011,44:38-47.
    [118] Huang C. B., Zhang K., Yang W. Y., Wang S. F. On-line flow-injectionchemiluminescence determination of bovine serum albumin using surfactant-enhanceddichlorofluorescein-hypochlorite system [J]. Analytical Letters,2010,43(14):2275-2282.
    [119] Rao Z. M., Zou P., Chen M., Xiu F. R., Chen Y. L., Hong K. J. Flow-injectionchemiluminescence determination of procaterol hydrochloride [J]. Spectroscopy and SpectralAnalysis,2008,28(2):269-272.
    [120] Liu X. Y., Hu F., Li A. F. Chen Y. P., Wu C. M. Study on chemiluminescence assay ofsurfactant PEG-400using luminol-hydrogen peroxide system [J]. Analytical Letters,2008,41(7):1279-1289.
    [121] Fujiwara T., Mohammadzai I. U., Kojima M., Kumamaru T. An improved method forthe flow-injection determination of iodine using the luminol chemiluminescence reaction in areversed micellar medium of cetyltrimethylammonium chloride in1-hexanol-cyclohexane [J].Analytical Sciences,2006,22(1):67-71.
    [122] Huang Y. M., Zhang C., Zhang X. R., Zhang Z. J. A sensitive chemiluminescence flowsystem for the determination of sulfite [J]. Analytical Letters,1999,32(6):1211-1224.
    [123] Alpeeva I. S., Sakharov I. Y. Luminol-hydrogen peroxide chemiluminescence producedby sweet potato peroxidase [J]. Luminescence,2007,22:92-96.
    [124] Li B. X., Zhang Z. J., Jin Y. Plant tissue-based chemiluminescence flow biosensor forglyeolic acid [J]. Analytical Chemistry,2001,73:1203-1206.
    [125] Li B. X., Lan D., Zhang Z. J. Chemiluminescence flow-through biosensor for glucosewith eggshell membrane as enzyme immobilization platform [J]. Analytical Biochemistry,2008,374:64-70.
    [126] Wolter A., Niessner R., Seidel M. Detection of escherichia coli O157: H7, salmonellatyphimurium, and legionella pneumophila in water using a flow-through chemiluminescencemicroarray readout system [J]. Analytical Chemisty,2008,80:5854-5863.
    [127] Karsunke X. Y. Z., Niessner R., Seidel M. Development of a multichannel flow-throughchemiluminescence microarray chip for parallel calibration and detection of pathogenicbacteria [J]. Analytical and Bioanalytical Chemistry,2009,395:1623-1630.
    [128] Varsamis D. G., Touloupakis E., Morlacchi P., Ghanotakis D. F., Giardi M. T., Cullen D.C. Development of a photosystem Ⅱ-based optical microfluidic sensor for herbicide detection[J]. Talanta,2008,77:42-47.
    [129] Panasenko O. M., Chekanov A. V., Vlasova I. I., Sokolov A. V., Ageeva K. V., Pulina M.O., Cherkalina O. S., Vasilev V. B. Influence of ceruloplasmin and lactoferrin on thechlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence [J].Biophysics,2008,53:268-272.
    [130] Yeh H. C., Lin W. Y. Stopped-flow study of the enhanced chemiluminescence for theoxidation of luminol with hydrogen peroxide catalyzed by microperoxidases8[J]. Talanta,2003,59:1029-1038.
    [131] Nakamra M., Nakamra S. One-and two-electron oxidations of luminol by peroxidasesystems [J]. Free Radical Biology and Medicine,1998,24:537-544.
    [132] Hodgson M., Jones P. Enhanced chemiluminescence in the peroxidase-luminol-H2O2system: anomalous reactivity of enhancer phenols with enzyme intermediates [J]. Journal ofBioluminescence and Chemiluminescence,1989,3:21-25.
    [133] Navas D. A., Garcia S. F., Gonzalez G. J. A. Enhancement and inhibition of luminolchemiluminescence by phenolic acids [J]. Journal of Bioluminescence andChemiluminescence,1995,10:175-184.
    [134] Fu Z.F., Yang Z. J., Tang J. H., Liu H., Yan F., Ju H. X. Channel and substrate zonetwo-dimensional resolution for chemiluminescent multiplex immunoassay [J]. AnalyticalChemistry,2007,79:7376-7382.
    [135] Fu Z. F., Liu H., Ju H. X. Flow-through multianalyte chemiluminescentimmunosensing system with designed substrate zone-resolved technique for sequentialdetection of tumor markers [J] Analytical Chemistry,2006,78:6999-7005.
    [136] Elenis D. S., Ioannou P. C., Christopoulos T. K. Quadruple-analyte chemiluminometrichybridization assay. Application to double quantitative competitive polymerase chainreaction [J]. Analytical Chemistry,2007,79:9433-9440.
    [137] Motsenbocker M., Ichimori J. Y., Kondo K. Metal prophyrin chemiluminescencereaction and application to immunoassay [J]. Analytieal Chemisty,1993,65(4):397-402.
    [138] Chen Q. Y., Li D. H., Zhu Q. Z., Yang H. H., Zheng H., Xu J. G. Investigation on thepotential use of the mimetic peroxidase-catalyzed reaction of hydrogen peroxide ando-hydroxyphenylfluorone in fluorescence analysis [J]. Analytica Chimica Acta,2000,406(2):209-215.
    [139] Deshpande K., Mishra R. K., Bhand S. A high sensitivity micro formatchemiluminescence enzyme inhibition assay for determination of Hg(II)[J]. Sensors,2010,10(7):6377-6394.
    [140] Liu F., Li Y. M., Song C. J., Dong B. Q., Liu Z. J., Zhang K., Li H. T., Sun Y. J., Wei Y.Y., Yang A. G., Yang K., Jin B. Q. Highly sensitive microplate chemiluminescence enzymeimmunoassay for the determination of staphylococcal enterotoxin b based on a pair of specificmonoclonal antibodies and its application to various matrices [J]. Anaytical Chemisty,2010,82:7758-7765.
    [141] Huang Y., Shi M., Zhao S., Liang H. A sensitive and rapid immunoassay forquantification of testosterone by microchip electrophoresis with enhanced chemiluminescencedetection [J]. Electrophoresis,2011,32(22):3196-3200.
    [142] Huang Y., Zhao S., Shi M., Liu Y. M. Chemiluminescent immunoassay of thyroxineenhanced by microchip electrophoresis [J]. Analytical Biochemistry,2010,399(1):72-77.
    [143] Sakharov I. Y., Berlina A. N., Zherdev A. V., Dzantiev B. B. Advantages of soybeanperoxidase over horseradish peroxidase as the enzyme label in chemiluminescentenzyme-linked immunosorbent assay of sulfamethoxypyridazine [J]. Journal of Agriculturaland Food Chemistry,2010,58(6):3284-3289.
    [144] Bi S., Zhou H., Zhang S. Multilayers enzyme-coated carbon nanotubes as biolabel forultrasensitive chemiluminescence immunoassay of cancer biomarker [J]. Biosensors andBioelectronics,2009,24(10):2961-2966.
    [145] Yang X. Y., Guo Y. S., Bi S., Zhang S. S. Ultrasensitive enhanced chemiluminescenceenzyme immunoassay for the determination of α-fetoprotein amplified by double-codifiedgold nanoparticles labels [J]. Biosensors and Bioelectronics,2009,24(8):2707-2711.
    [146] Bi S., Yan Y., Yang X., Zhang S. Gold nanolabels for new enhancedchemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads [J].Chemistry,2009,15(18):4704-4709.
    [147] Zheng Y., Chen H., Liu X. P., Jiang J. H., Luo Y., Shen G. L., Yu R. Q. Anultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulatedliposome [J]. Talanta,2008,77(2):809-814.
    [148] Yang Z. J., Fu Z. F., Yan F., Liu H., Ju H. X. A chemiluminescent immunosensor basedon antibody immobilized carboxylic resin beads coupled with micro-bubble acceleratedimmunoreaction for fast flow-injection immunoassay [J]. Biosensors and Bioelectronics,2008,24:35–40.
    [149] Quan Y., Zhang Y., Wang S., Lee N., Kennedy I. R. A rapid and sensitivechemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisinB1in food samples [J]. Analytica Chimica Acta,2006,580(1):1-8.
    [150] Wang S., Du L., Lin S., Zhuang H. Flow injection chemiluminescence for thedetermination of estriol via a noncompetitive enzyme immunoassay [J]. Microchimica Acta,2006,155(3-4):421-426.
    [151] Wang S., Lin S., Du L., Zhuang H. Flow injection chemiluminescence immunoassay for17beta-estradiol using an immunoaffinity column [J]. Analytical and Bioanalytical Chemistry,2006,384(5):1186-1190.
    [152] Roda A., Mirasoli M., Guardigli M., Michelini E., Simoni P., Magliulo M.Development and validation of a sensitive and fast chemiluminescent enzyme immunoassayfor the detection of genetically modified maize [J]. Analytical and Bioanalytical Chemistry,2006,384(6):1269-1275.
    [153] Banu S., Greenway G. M., Alan W. R. Luminol chemiluminescence induced byimmobilised xanthine oxidase [J]. Analytica Chimica Acta,2005,541(1-2):89-95.
    [154] Lin J. H., Yan F., Ju H. X., Noncompetitive enzyme immunoassay for α-fetoproteinusing flow injection chemiluminescence [J]. Applied Biochemistry and Biotechnology,2004,117:93-102.
    [155] Lin J., Yan F., Ju H. Noncompetitive enzyme immunoassay for carcinoembryonicantigen by flow injection chemiluminescence [J]. Clinica Chimica Acta,2004,341(1-2):109-115.
    [156] Wang J. H., Huang W. H., Liu Y. M., Cheng J. K., Yang J. Capillary electrophoresisimmunoassay chemiluminescence detection of zeptomoles of bone morphogenic protein-2inrat vascular smooth muscle cells [J]. Analytical Chemisty,2004,76:5393-5398.
    [157] Luo L., Zhang Z., Ma L. Determination of recombinant human tumor necrosis factor-αin serum by chemiluminescence imaging [J]. Analytica Chimica Acta,2005,539(1-2):277-282.
    [158] Ramos M. C., Torijas M. C., Navas D. A. Enhanced chemiluminescence biosensor forthe determination of phenolic compounds and hydrogen peroxide [J]. Sensors and ActuatorsB,2001,73:71-75.
    [159] Navas D. A., Sanchez F. G., Torijas M. C., Lovillo J. Chemiluminescent lipasedetermination based on the enhanced luminol/H2O2/horseradish peroxidase/fluoresceindiacetate energy transfer system [J]. Fresenius Journal of Analytical Chemistry,1999,365:537-540.
    [160] Rongen H. A. H., van der Horst a H. M., van Oosterhout A. J. M., Bult A., vanBennekom W. P. Application of xanthine oxidase-catalyzed luminal chemiluminescence in amouse interleukin-5immunoassay [J]. Journal of Immunological Methods,1996,197:161-169.
    [161] Lin J. H., Zhang H., Zhang S. S. New bienzymatic strategy for glucose determinationby immobilized-gold nanoparticle-enhanced chemiluminescence [J]. Science in China SeriesB-Chemistry,2009,52(2):196-202.
    [162] Roda A., Manetta A. C., Portanti O., Mirasoli M., Guardigli M., Pasini P., Lelli R. Arapid and sensitive384-well microtitre format chemiluminescent enzyme immunoassay for19-nortestosterone [J]. Luminescence,2003,18(2):72-78.
    [163] Lan D., Li B. X., Zhang Z. J. Chemiluminescence flow biosensor for glucose based ongold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase [J].Biosensors and Bioelectronics,2008,24(4):940-944.
    [164] Michalkiewicz S., Manlyszko J. Study on the stability of Co(Ⅲ), Mn(Ⅲ) and Ti(Ⅲ)ions in acetic acid solutions [J]. Analytical Chemica Acta,2000,403:333-337.
    [165] Veeresh T. M., Patil R. K., Nandibewoor S. T. Thermodynamic quantities for theoxidation of ranitidine by diperiodatocuprate(III) in aqueous alkaline medium [J]. TransitionMetal Chemistry,2008,33(8):981-988.
    [166] Kumar A., Vaishali P., Ramamullh. Kinetics and mechanism of oxidation ofethylenediamine and related compounds by diperiodatoargentate (Ⅲ) ion [J]. InternationalJournal of Chemical Kinetics,2000,32:286-293.
    [167] Abdulazizkhan L., Harihar, Mohammedsaleem R., Kembhavi, Sharanappa T.,Nandibewoor. Kinetics and mechanism of the oxidation of l,10-phenanthroline bydiperiodatonickelate (IV) in aqueous alkline medium [J]. Monatshefte für Chemie,2000,131:1129-1137.
    [168] Shan J. H., Wang L. P., Shen S. G., Sun H. W. Kinetics and mechanism of oxidation ofsome hydroxy butyric acid salts by ditelluratocuprate (III) in alkaline medium [J]. TurkishJournal of Chemistry,2003,27:265-272.
    [169] Kirschenbaum L. J., Rush J. D. Polypeptide complexes of silver (Ⅲ)[J].Journal of theAmerican Chemical Society,1984,106(4):1003-1010.
    [170] Johnson M. D., Read J. F. Kinetics and mechanism of the ferrate oxidation ofthiosulfate and other sulfur-containing species [J]. Inorganic Chemistry,1996,35:6795-6799.
    [171] Hu Y. F., Zhang Z. J., Yang C. Y., The determination of hydrogen peroxide generatedfrom cigarette smoke with an ultrasensitive and highly selective chemiluminescence method[J]. Analytica Chimica Acta,2007,601:95-100.
    [172] Hu Y., Zhang Z., Yang C. Measurement of hydroxyl radical production in ultrasonicaqueous solutions by a novel chemiluminescence method [J]. Ultrasonics Sonochemistry,2008,15(5):665-672.
    [173] Hu Y. F., Zhang Z. J., Yang C. Y. A sensitive chemiluminescence method for thedetermination of H2O2in exhaled breath condensate [J]. Analytical Sciences,2008,24:201-205.
    [174] Yang X., Guo Y., Wang A. Luminol/antibody labeled gold nanoparticles forchemiluminescence immunoassay of carcinoembryonic antigen [J]. Analytical Chimica Acta,2010,666(l-2):91-96.
    [175] Chen H., Gao F., He R., Cui D. X. Chemiluminescence of luminol catalyzed by silvernanoparticles [J]. Journal of Colloid and Interface Science,2007,315(l):158-163.
    [176] Guo J. Z., Cui H., Zhou W., Wang W. Ag nanoparticle-catalyzed chemiluminescentreaction between luminol and hydrogen peroxide [J]. Journal of Photochemistry andPhotobiology A: Chemistry,2008,193(2-3):89-96.
    [177] Cui H., Zhang Z. F., Shi M. J., Xu Y., Wu Y. L. Light emission of gold nanoparticlesinduced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide [J].Analytical Chemisty,2005,77:6402-6406.
    [178] Cui H., Zhang Z. F., Shi M. J. Chemiluminescent reactions induced by goldnanoparticles [J]. Jouranl of Physical Chemistry B,2005,109:3099-3103.
    [179] Zhang Z. F., Cui H., Lai C. Z., Liu L. J. Gold nanoparticle-catalyzed luminalchemiluminescence and its analytical applications [J]. Analytical Chemistry,2005,77:3324-3329.
    [180] Li S. F., Zhang X. M., Yao Z. J. Enhanced chemiluminescence of the rhodamine6G-cerium(Ⅳ) system by Au-Ag alloy nanoparticles [J]. Jouranl of Physical Chemistry B,2009,117(35):15586-15592.
    [181] Feng Q. Z., Li H. F., Zhang Z. Y., Lin J. M. Gold nanoparticles for enhancedchemiluminescence and determination of2,4-dichlorophenol in environmental water samples[J]. Analyst,2011,136:2156-2160.
    [182] Zhao S. L., Niu T. X., Song Y. R., Liu Y. M. Gold nanoparticle-enhancedchemiluminescence detection for CE [J]. Electrophoresis,2009,30:1059-1065.
    [183] Yu X. J., Wang Q. J. The determination of copper ions based on sensitizedchemiluminescence of silver nanoclusters [J]. Microchimica Acta,2011,173:293-298.
    [184] Chen X. L., Wang C., Tan X. M., Wang J. X. Determination of bisphenol A in watervia inhibition of silver nanoparticles-enhanced chemiluminescence [J]. Analytica ChimicaActa,2011,689:92-96.
    [185] Zhao S. L., Lan X. H., Liu Y. M. Gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence assay of trace uric acid [J]. Electrophoresis,2009,30:2676-2680.
    [186] Li S. F., Zhang X. M., Yao Z. J., Yu R., Huang F., Wei X. W. Enhancedchemiluminescence of the rhodamine6G-cerium(IV) system by Au-Ag alloy nanoparticles [J].Jouranl of Physical Chemistry C,2009,113:15586-15592.
    [187] Ding C. F., Wang Z. F., Zhong H., Zhang S. S. Ultrasensitive chemiluminescencequantification of single-nucleotide polymorphisms by using monobase-modified Au and CuSnanoparticles [J]. Biosensors and Bioelectronics,2010,25:1082-1087.
    [188] Bi S., Yan Y. M., Yang X. Y., Zhang S. S. Gold nanolabels for new enhancedchemiluminescence immunoassay of alpha-fetoprotein based on magnetic beads [J].Chemistry A European Journal,2009,15:4704-4709.
    [189] Qi Y. Y., Li B. X., Zhang Z. J. Label-free and homogeneous DNA hybridizationdetection using gold nanoparticles-based chemiluiminescence system [J]. Biosensors andBioelectronics,2009,24:3581-3586.
    [190] Zhao Y. S., Zhao S. L., Huang J. M., Ye F. G. Quantum dot-enhancedchemiluminescence detection for simultaneous determination of dopamine and epinephrineby capillary electrophoresis [J]. Talanta,2011,85:2650-2654.
    [191] Sun C. Y., Liu B., Li J. H. Sensitized chemiluminescence of CdTe quantum-dots onCe(IV)-sulfite and its analytical applications [J]. Talanta,2008,75:447-454.
    [192] Wang Z. P., Li J., Liu B., Li J. H. CdTe nanocrystals sensitized chemiluminescence andthe analytical application [J]. Talanta,2009,77:1050-1056.
    [193] Li S. F., Zhang X. M., Du W. X., Ni Y. H., Wei X. W. Chemiluminescence reactions ofa luminol system catalyzed by ZnO nanoparticles [J]. Jouranl of Physical Chemistry C,2009,113:1046-1051.
    [194] Jie G. F., Liu P., Zhang S. S. Highly enhanced electrochemiluminescence of novelgold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumormarkerw [J]. Chemical Communications,2010,46:1323-1325.
    [195] Li X. M., Sun L., Ge A. Q., Guo Y. S. Enhanced chemiluminescence detection ofthrombin based on cerium oxide nanoparticles [J]. Chemical Communications,2011,47:947-949.
    [196] Zhu Q. S., Han M., Wang H. S., Liu L. L., Bao J. C., Dai Z. H., Shen J.Electrogenerated chemiluminescence from CdS hollow spheres composited with carbonnanofiber and its sensing application [J]. Analyst,2010,135:2579-2584.
    [197] Wang W. J., Zhang S. C., Liu C. H., Lu L. Z., Wang S. D., Zhang X. R. CEimmunoassay with enhanced chemiluminescence detection of erythropoietin using silicadioxide nanoparticles as pseudostationary phase [J]. Electrophoresis,2009,30:3092-3098.
    [198] Zhang Z. F., Cui H., Lai C. Z., Liu L. J. Gold nanoparticle-catalyzed luminolchemiluminescence and its analytical applications [J]. Analytical Chemistry,2005,77:3324-3329.
    [199] Fan A. P., Lau C., Lu J. Z. Magnetic bead-based chemiluminescent metal immunoassaywith a colloidal gold label [J]. Analytical Chemistry,2005,77:3238-3242.
    [200] Cui H., Zhang Z. F., Shi M. J., Xu Y., Wu Y. L. Light emission of gold nanoparticlesinduced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide [J].Analytical Chemistry,2005,77:6402-6406.
    [201] Kanwal S., Fu X. H., Su X. G. Size dependent active effect of CdTe quantum dots onpyrogallol-H2O2chemiluminescence system for chromium(III) detection [J]. MicrochimicaActa,2010,169:167-172.
    [202] Safavi A., Absalan G., Bamdad F. Effect of gold nanoparticle as a novel nanocatalyston luminol–hydrazine chemiluminescence system and its analytical application [J]. AnalyticaChimica Acta,2008,610:243-248.
    [203] Yu X. J., Jiang Z. H., Wang Q. J., Guo Y. S. Silver nanoparticle-basedchemiluminescence enhancement for the determination of norfloxacin [J]. Microchimica Acta,2010,171:17-22.
    [204] Li S. F., Li X. Z., Zhang Y. Q., Huang F., Wang F. F., Wei X. W. Enhancedchemiluminescence of the luminol–KIO4system by ZnS nanoparticles [J]. Microchimica Acta,2009,167:103-108.
    [205] Chen H., Li R, B., Lin L., Guo G. S., Lin J. M. Determination of L-ascorbic acid inhuman serum by chemiluminescence based on hydrogen peroxide–sodium hydrogencarbonate–CdSe/CdS quantum dots system [J]. Talanta,2010,81:1688-1696.
    [206] Haghighi B., Bozorgzadeh S. Flow injection chemiluminescence determination ofisoniazid using luminol and silver nanoparticles [J]. Microchemical Journal,2010,95:192-197.
    [207] Wang L, Tang Y. Determination of dipyridamole using TCPO-H2O2chemiluminescence in the presence of silver nanoparticles [J]. Luminescence,2011,26(6):703-709.
    [208] Zhang S. S., Zhong H., Ding C. F. Ultrasensitive flow injection chemiluminescencedetection of dna hybridization using signal dna probe modified with au and CuS nanoparticles[J]. Analytical Chemisty,2008,80:7206-7212.
    [209] Li J., Li Q., Lu C., Zhao L. Determination of nitrite in tap waters based onfluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate andperoxynitrous acid [J]. Analyst,2011,136(11):2379-2384.
    [210] Tian D., Duan C., Wang W., Cui H. Ultrasensitive electrochemiluminescenceimmunosensor based on luminol functionalized gold nanoparticle labeling [J]. Biosensors andBioelectronics,2010,25(10):2290-2295.
    [211] Zhao S., Niu T., Song Y., Liu Y. M. Gold nanoparticle-enhanced chemiluminescencedetection for CE [J]. Electrophoresis,2009,30(6):1059-1065.
    [212] Islam M. S., Kang S. H. Chemiluminescence detection of label-free C-reactive proteinbased on catalytic activity of gold nanoparticles [J]. Talanta,2011,84(3):752-758.
    [213] Li Y., Yang P., Wang P., Wang L. Development of a novel luminol chemiluminescentmethod catalyzed by gold nanoparticles for determination of estrogens [J]. Analytical andbioanalytical chemistry,2007,387(2):585-592.
    [214] Zhang H., Zhang L., Lu C., Zhao L., Zheng Z. CdTe nanocrystals-enhancedchemiluminescence from peroxynitrous acid-carbonate and its application to the directdetermination of nitrite [J]. Spectrochimica Acta Part A,2012,85(1):217-222.
    [215] He S., Shi W., Zhang X., Li J., Huang Y. β-cyclodextrins-based inclusion complexes ofCoFe2O4magnetic nanoparticles as catalyst for the luminol chemiluminescence system andtheir applications in hydrogen peroxide detection [J]. Talanta,2010,82(1):377-383.
    [216] Xu S. L., Cui H. Luminol chemiluminescence catalysed by colloidal platinumnanoparticles [J]. Luminescence,2007,22(2):77-87.
    [217] Wu J., Fu X., Xie C., Yang M., Fang W., Gao S. TiO2nanoparticles-enhanced luminolchemiluminescence and its analytical applications in organophosphate pesticide imprinting[J]. Sensors and Actuators B: Chemical,2011,160(1):511-516.
    [218] Lan D., Li B., Zhang Z. Chemiluminescence flow biosensor for glucose based on goldnanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase [J].Biosensors and Bioelectronics,2008,24(4):934-938.
    [219] Chen H., Lin L., Lin Z., Lu C., Guo G., Lin J. M. Flow-injection analysis of hydrogenperoxide based on carbon nanospheres catalyzed hydrogen carbonate–hydrogen peroxidechemiluminescent reaction [J]. Analyst,2011,136(9):1957-1964.
    [220] Zisimopoulos E. G., Tsogas G. Z., Giokas D. L., Kapakoglou N. I., Vlessidis A. G.Indirect chemiluminescence-based detection of mefenamic acid in pharmaceuticalformulations by flow injection analysis and effect of gold nanocatalysts [J]. Talanta,2009,79(3):893-899.
    [1] Zhang H., Zhou Z., Yang B. The influence of carboxyl groups on the photoluminescenceof mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. Journal of Physical ChemistryB,2003,107:8-13.
    [2] Goldman E. R., Balighian E. D., Mattoussi H., Kuno M. K., Mauro J. M., Tran P. T.,Anderson G. P. Avidin: a natural bridge for quantum dot-antibody conjugates [J]. Journal ofthe American Chemical Society,2002,124:6378-6382.
    [3] Goldman E. R., Clap P. A. R., Anderson G. P., Uyeda H. T., Mauro J. M., Medintz I. L.,Mattoussi H. Multiplexed toxin analysis using four colors of quantum dot fluororeagenis [J].Analytical Chemisty,2004,76(3):684-688.
    [4] Gerion D., Chen F., Kannan B., Fu A., Parak W. J., Chen D. J., Majumdar A., AlivisatosA. P. Room-temperature single-ucleotide polymorphism and multiallele DNA deteetion usingfluorescent nanoestals and mieroarrays [J]. Analytical Chemisty,2003,75(18):4766-4772.
    [5] Zheng Y. G., Gao S. J., Ying J. Y. Synthesis and cell-imaging applications ofglutathione-capped CdTe quantum dots [J]. Advanced Materials,2007,19:376-380.
    [6] Myung N., Bae Y., Bard A. J. Effect of surface passivation on the electrogeneratedchemiluminescence of CdSe/ZnSe nanocrystals [J]. Nano Letters,2003,3:1053-1055.
    [7] Rodriguez-Viejo J., Jensen K. F., Mattoussi H., Michel J., Dabbousi B. O., Bawendi, M.G. Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantumdot composites [J]. Applied Physics Letters,1997,70:2132-2134.
    [8] Poznyak S. K., Talapin D. V., Shevchenko E. V., Weller H. Quantum dotchemiluminescence [J]. Nano Letters,2004,4:693-698.
    [9] Wang Z. P., Li J., Liu B., Hu J. Q., Yao X., Li J. H. Chemiluminescence of CdTenanocrystals induced by direct chemical oxidation and its size-dependent andsurfactant-sensitized effect [J]. Journal of Physical Chemistry B,2005,109:23304-23311.
    [10] Li Y. X., Yang P., Wang P., Huang X., Wang L. CdS nanocrystal inducedchemiluminescence: reaction mechanism and applications [J]. Nanotechnology,2007,18:225602.
    [11] Chen H., Lin L., Lin Z., Guo G. S., Lin J. M. Chemiluminescence arising from thedecomposition of peroxymonocarbonate and enhanced by CdTe quantum dots [J]. Journal ofPhysical Chemistr A,2010,114:10049-10058.
    [12] Sun C. Y., Liu B., Li J. H. Sensitized chemiluminescence of CdTe quantum-dots onCe(IV)-sulfite and its analytical applications [J]. Talanta,2008,75:447-454.
    [13] Wang H. Q., Li Y. Q., Wang J. H., Xu Q., Li X. Q., Zhao Y. D. Sensitizedchemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications [J].Analytical Chimica Acta,2008,610:68-73.
    [14] Triantis T., Stelakis A., Dimotikali D., Papadopoulos K. Investigations on theantioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion usingchemiluminescence techniques [J]. Analytical Chimica Acta,2005,536:101-105.
    [15] Anesini C., Ferraro G. E., Filip R. Total polyphenol content and antioxidant capacity ofcommercially available tea (Camellia sinensis) in argentina [J]. Journal of Agricultural andFood Chemistry,2008,56:9225-9229.
    [16] Bandoniené D., Murkovic M. On-line HPLC-DPPH screening method for evaluation ofradical scavenging phenols extracted from apples (Malus domestica L.)[J]. Journal ofAgricultural and Food Chemistry,2002,50:2482-2487.
    [17] Bi S. Y., Ding L., Tian Y., Song D. Q., Zhou X., Liu X., Zhang H. Q. Investigation of theinteraction between flavonoids and human serum albumin [J]. Journal of Molecular Structure,2004,703:37-45.
    [18] Huang B., Ban X. Q., He J. S., Tong J., Tian J., Wang Y. W. Hepatoprotective andantioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves [J].Food Chemistry,2010,120:873-878.
    [19] Zhang H., Wang L. P., Xiong H. M., Hu L. H., Yang B., Li W. Hydrothermal synthesisfor high-quality CdTe nanocrystals [J]. Advanced Materials,2003,15:1712-1715.
    [20] Yu W. W., Qu L., Guo W., Peng X. G. Experimental determination of the extinctioncoefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chemistry of Materials,2003,15:2854-2860.
    [21] Nie F., Lu J. R. Novel chemiluminescence system with calcein as chemiluminescentreagent [J]. Luminescence,2007,22:480–486.
    [22] Zhang L. J., Xu C. L., Li B. X. Chemiluminescence of CdTe quantum dots usingK3Fe(CN)6as oxidant and its capping ligand-dependent effect [J]. Microchemical Journal,2010,95:186-191.
    [23] Wang Z. P., Li J., Liu B., Hu J. Q., Yao X., Li J. H. Chemiluminescence of CdTeNanocrystals Induced by Direct Chemical Oxidation and Its Size-Dependent andSurfactant-Sensitized Effect [J]. Journal of Physical Chemistry B,2005,109:23304-23311.
    [24] Townshend A., Youngvises N., Wheatley R. A., Liawruangrath S. Flow-injectiondetermination of cinnarizine using surfactant-enhanced permanganate chemiluminesence [J].Analytica Chimica Acta,2003,499:223-233.
    [25] Huang Y. M., Zhang C., Zhang X. R., Zhang Z. J. Chemiluminescence analysis ofmenadione sodium bisulfite and analgin in pharmaceutical preparations and biological fluids[J]. Journal of Pharmaceutical and Biomedical Analysis,1999,21:817-825.
    [26] Rose A. L., Waite T. D., Chemiluminescence of luminol in the presence of iron(II) andoxygen: oxidation mechanism and implications for its analytical use [J]. Analytical Chemisty,2001,73:5909-5920.
    [27] He D., Zhang Z., He C. Investigation on the interaction between dihydroxybenzene andFe3+-H2O2-Rh6G system based on enhancing chemiluminescence [J]. Luminescence,2006,21:15-19.
    [28] Cui H., Meng R., Jiang H. Y., Zhao H. Z. Flow injection analysis of polyphenols withinhibited chemiluminescence detection [J]. Chinese Journal of Luminescence,1999,20:158-164.
    [1] Shan J. H., Wang L. P., Shen S. G., Sun H. W. Kinetics and mechanism of oxidation ofethylene glycol monobutyl ether by diperiodatocuprate (III) in alkaline medium [J]. ChineseJournal of Inorganic Chemistry,2002,18:887-891.
    [2] Jose T. P., Tuwar S. M. Oxidation of threonine by the analytical reagent diperiodatocuprate(III)–an autocatalysed reaction [J]. Journal of Molecular Structure,2007,827:137-144.
    [3] Shan J. H., Wang L. P., Shen S. G., Sun H. W. Kinetics and mechanism of oxidation ofsome hydroxy butyric acid salts by ditelluratocuprate (III) in alkaline medium [J]. TurkishJournal of Chemistry,2003,27:265-272.
    [4] Veeresh T. M., Nandibewoor S. T. Thermodynamic quantities for the different stepsinvolved in the mechanism of osmium (VIII) catalysed oxidation of L-lysine by a new oxidant,diperiodatoargentate (III)(stopped flow technique)[J]. Journal of Chemical Thermodynamics,2008,40:284-291.
    [5] Kumar A., Kumar P., Ramamurthy P. Kinetics of oxidation of glycine and relatedsubstrates by diperiodatoargentate (III)[J]. Polyhedron,1999,18:773-780.
    [6] Shan J. H., Qian J., Gao M. Z., Shen S. G., Sun H. W. Kinetics and mechanism ofoxidation of n-propanolamine by dihydroxydiperiodatonickelate (IV) in alkaline medium [J].Turkish Journal of Chemistry,2004,28:9-15.
    [7] Shettar R. S., Nandibewoor S. T. Kinetic, mechanistic and spectral investigations ofruthenium (III)-catalysed oxidation of4-hydroxycoumarin by alkaline diperiodatonickelate(IV)(stopped flow technique)[J]. Journal of Molecular Catalysis A: Chemical,2005,234:137-143.
    [8] Delaude L., Laszlo P., Lehance P. Oxidation of organic substrates with potassium ferrate(VI) in the presence of the K10montmorillonite [J]. Tetrahedron letters,1995,36:8505-8508.
    [9] Kulkarni S. D., Nandibewoor S. T. A kinetic and mechanistic study on oxidation ofIsoniazid drug by alkaline diperiodatocuprate (III)–a free radical intervention [J]. TransitionMetal Chemiatry,2006,31:1034-1039.
    [10] Rozovoskii G. I., Misyavichyus A. K., Prokopchik A. Y. Reduction of copper (III) inalkaline ditelluratocuprate (III) solutions [J]. Kinet Catal,1975,16:337.
    [11] Liu Y. H., Liu Z. H., Zhang Y. Z., Deng K. L. Graft copolymerizaztion of methyl acrylateonto chitosan initiated by potassium diperiodatocuprate (III)[J]. Journal of Applied PolymerScience,2003,89:2283-2289.
    [12] Savina I. N., Mattiasson B., Galaev I. Y. Graft polymerization of vinyl monomers insidemacroporous polyacrylamide gel, cryogel, in aqueous and aqueous-organic media initiated bydiperiodatocuprate (III) complexes [J]. Journal of Polymer Science: Part A: PolymerChemistry,2006,44:1952-1963.
    [13] Liu Y. H., Bai L. B., Zhang R. Y., Li Y. X., Liu Y. W., Deng K. L. Blockcopolymerization of poly(ethylene glycol) and methyl acrylate using potassiumdiperiodatocuprate (III)[J]. Journal of Applied Polymer Science,2005,96:2139-2145.
    [14] Jose T. P., Tuwar S. M. Oxidation of threonine by the analytical reagentdiperiodatocuprate (III)–an autocatalysed reaction [J]. Journal of Molecular Structure,2007,827:137-144.
    [15] Redd K. B., Sethuram B., Rao T. N. Kinetics of oxidative deamination anddecarhoxylation of some amino aeids by diperiodatoeuPrate(Ⅲ) in alkaline medium [J].Indian Journal of Chemistry,1981,20A:395-397.
    [16] Hiremath D. C., Sirsalmath K. T., Nandibewoor S. T. Osmium(VIII)/ruthenium (III)catalysed oxidation of L-lysine by diperiodatocuprate (III) in aqueous alkaline medium: acomparative mechanistic approach by stopped flow technique [J]. Catalysis Letters,2008,122:144-154.
    [17]胡玉斐.铜的超常氧化态配合物在化学发光分析中的应用研究[D].重庆:西南大学博士学位论文,2008.
    [18] Wu Z. J., Zhang Z. B., Liu L. S. Electrochemical studies of a Cu(II)–Cu(III) couple:cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presenceof periodate anions [J]. Electrochimica Acta.,1997,42:2719–2723.
    [19] Yang C. Y., Zhang Z. J., Wang J. L. Flow-injection chemiluminescence determination ofdihydralazine sulfate in serum using luminol and diperiodatocuprate (III) system [J].Spectrochimica Acta Part A.,2010,75:77–82.
    [20] Hu Y. F., Zhang Z. J., Li G. K. A novel chemiluminescence method for the determinationof ergometrine maleate in serum sample without chemiluminescence reagent [J]. Talanta,2010,81:499–504.
    [21] Li B. X., Zhang Z. J., Liu W. Flow-injection chemiluminescence determination ofchlortetracycline using on-line electrogenerated [Cu(HIO6)2]5as the oxidant [J]. Talanta,2001,55:1097-1102.
    [22] Hu Y. F., Li G. K., Zhang Z. J. A flow injection chemiluminescence method for thedetermination of lincomycin in serum using a diperiodato-cuprate(III)-luminol system [J].Luminescence,2011,26:313–318.
    [23] Zhang Y. T., Zhang Z. J., Sun Y. H., Wei Y. Development of an analytical method for thedetermination of β2-agonist residues in animal tissues by high-performance liquidchromatography with on-line electrogenerated [Cu(HIO6)2]5--luminol chemiluminescencedetection [J]. Journal of Agricultural and Food Chemistry,2007,55:4949-4956.
    [24] Hu Y. F., Zhang Z. J. Determination of free cholesterol based on a novel flow-injectionchemiluminescence method by immobilizing enzyme [J]. Luminescence,2008,23:338-343.
    [25] Hu Y. F., Zhang Z. J., Yang C. Y. The determination of hydrogen peroxide generated fromcigarette smoke with an ultrasensitive and highly selective chemiluminescence method [J].Analytica Chimica Acta,2007,60:95-100.
    [26] Hu Y., Zhang Z., Yang C. Measurement of hydroxyl radical production in ultrasonicaqueous solutions by a novel chemiluminescence method [J]. Ultrasonics Sonochemistry,2008,15(5):665-672.
    [27] Li T., Xie H. Y., Fu Z. F. Micellar electrokinetic chromatography-chemiluminescentdetection of biogenic amines using N-(4-aminobutyl)-N-ethylisoluminol as derivatizationreagent and trivalent copper chelate as chemiluminescence enhancer [J]. Analytica ChimicaActa,2012,719:82-86.
    [28] Chauhan S., Chauhan M. S., Kaushal D., Syal V. K., Jyoti J. Study of micellar behaviorof SDS and CTAB in aqueous media containing furosemide-a cardiovascular drug [J]. Journalof Solution Chemistry,2010,39:622–638.
    [29] Paleos C. M., Vassilopoulos G., Nikokavouras J. Chemiluminescence in oriented systems:chemiluminescence of10,10′-dimethyl-9,9′-biacridinium nitrate in micellar media [J]. Journalof Photochemistry,1982,18:327-334.
    [30] Xiao C. B., Palmer D. A., Wesolowski D. J., Lovitz S. B., King D. W. Carbon dioxideeffects on luminol and1,10-phenanthroline chemiluminescence [J]. Analytical Chemistry,2002,74:2210-2216.
    [1] Fridman N., Kaftory M., Speiser S. Structures and photophysics of lophine and doublelophine derivatives [J], Sensors and Actuators B,2007,126:107-115.
    [2] U ucu ü., Karaburun N. G., I ikda I. Synthesis and analgesic activity of some1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives [J]. IL Farmaco,2001,56:285-290.
    [3] Nashima K. Lophine derivatives as versatile analytical tools [J], BiomedicalChromatography,2003,17:83-95.
    [4]Santos J., Mintz E. A., Zehnder O., Bosshard C., Bua X. R., Günterb P. New class ofimidazoles incorporated with thiophenevinyl conjugation pathway for robust nonlinearoptical chromophores [J]. Tetrahedron Lettres,2001,42:805-808.
    [5] Fridman N., Speiser S., Kaftory M. Structures and chromogenic properties ofbisimidazole derivatives [J]. Crystal Growth Design,2006,6:1653-1662.
    [6] Fridman N., Speiser S., Kaftory M. Chromotropic behavior of lophine nitro-derivatives[J]. Crystal Growth Design,2006,6:2281-2288.
    [7] Kimura M., Lu G. H., Iga H., Tsunenaga M., Zhang Z. Q., Hu Z. Z. The stereoselectivethermal rearrangement of chiral lophine peroxides [J], Tetrahedron Letters,2007,48:3109-3113.
    [8] Nakashima K., Yamasaki H., Kuroda N., Akiyama S. Evaluation of lophine derivatives aschemiluminogens by a flow-injection method [J], Analytica Chimica Acta,1995,303:103-107.
    [9] Fridman N., Kaftory M., Eichen Y., Speiser S. Crystal structures and solution spectroscopyof lophine derivatives [J], Journal of Molecular Structure,2009,917:101-109.
    [10] Siddiqui S. A., Narkhede U. C., Palimkar S. S., Daniel T., Lahoti R. J., Srinivasan K. V.Room temperature ionic liquid promoted improved and rapid synthesis of2,4,5-triarylimidazoles from aryl aldehydes and1,2-diketones or a-hydroxyketone [J]. Tetrahedron,2005,61:3539-3546.
    [11] Nakashima K., Fukuzaki Y., Nomura R., Shimoda R., Nakamura Y., Kuroda N., AkiyamaS., Irgum K. Fluorescence and chemiluminescence properties of newly developed lophineanalogues [J]. Dyes and Pigments,1998,38:127-136.
    [12] Testa A. C. Laser flash photolysis study of triphenylimidazole [J]. Spectrochimica ActaPart A.,2000,56:901-904.
    [13] Chou P., McMorrow D., Aartsma T. J., Kasha M. The proton-transfer laser galn spectrumand ampllficatlon of spontaneous emission of3-hydroxyflavone [J]. Journal of PhysicalChemistry,1984,88:4596-4599.
    [14] Radziszewski B. Untersuchungen über hydrobenzamid, Amarin und lophin [J].Chemische Berichte,1877,10:70-75.
    [15] Nakashima K., Yamasaki H., Shimoda R., Kuroda N., Akiyama S., Baeyens W. R. G.Flow-injection analysis of cobalt(Ⅱ) utilizing enhanced lophine chemiluminescence withhydroxylammonium chloride [J]. Biomedical Chromatography,1997,11:63-64.
    [16] Marho D. F., Ingle J. D. J. Determination of chromium (Ⅵ) in water by lophinechemiluminescence [J]. Analytical Chemistry,1981,53:294-298.
    [17] MacDonald A., Chan K. W., Nieman T. A. Lophine chemiluminescence for metal iondeterminations [J]. Analytical Chemistry,1979,51:2077-2082.
    [18] Marho D. F., Ingle J. D. J. Ion exchange separation of cobalt from alkaline earth andselected transition metals with lophine chemiluminescence detection [J]. Analytical Chemistry,1981,53:292-294.
    [19] Nakashima K., Yamasaki H., Kuroda N., Akiyama S. Evaluation of lophine derivatives aschemiluminogens by a flow-injection method [J]. Analytica Chimica Acta,1995,303:103-107.
    [20] Okamoto H., Owari M., Kimura M., Satake K. Preparation of a crown-ether-modifiedlophine peroxide as a guest-sensitive novel chemiluminophore and modulation of itschemiluminescence by metal cations [J]. Tetrahedron Letters,2001,42:7453-7455.
    [21] Wang S. J., Gu Q., Su Q., Chen X. D., Zhang Y. M.2,4,5-Tri-2-furyl-1H-imidazole[J].Acta Crystallographica Sectione E: Structure Reports,2009,65: O3194-U1481.
    [22] Wang C. S., Liu L., Zhang L., Peng Y., Zhou F. M. Redox reactions of theα-synuclein-Cu2+complex and their effects on neuronal cell viability [J]. Biochemistry,2010,49:8134-8142.
    [23] Wang Z. P., Li J., Liu B., Hu J. Q., Yao X., Li J. H. Chemiluminescence of CdTenanocrystals induced by direct chemical oxidation and its size-dependent andsurfactant-sensitized Effect [J]. Jouranl of Physical Chemistry B,2005,109:23304-23311.
    [24] Rose A. L., Waite T. D. Chemiluminescence of luminol in the presence of iron(II) andoxygen: oxidation mechanism and implications for its analytical use [J]. Analytical Chemistry,2001,73:5909-5920.
    [1] Li D., Du J., Lu J. Chemiluminescence determination of atenolol in biological fluids by aeuropium-sensitized permanganate-sulfite system [J]. Microchimica Acta,2008,161(1-2):169-73.
    [2] Lian N., Zhao H. C., Sun C. Y., Chen S. L., Lu Y., Jin L. P. A study on terbium sensitizedchemiluminescence of ciprofloxacin and its application [J]. Microchemical Journal,2003,74:223–230.
    [3] Kaczmarek M., Lis S. Influence of lanthanide(III) ions on the reaction systemtryptophan-H2O2-Fe(II)[J]. International Journal of Photoenergy,2007,2007:1-7.
    [4] Eliseeva S. V., Bunzli J. C. Lanthanide luminescence for functional materials andbio-sciences [J]. Chemical Society Reviews,2010,39(1):189-227.
    [5] Carlos L. D., Ferreira R. A., de Zea Bermudez V., Julian-Lopez B., Escribano P. Progresson lanthanide-based organic-inorganic hybrid phosphors [J]. Chemical Society Reviews,2011,40(2):536-549.
    [6] Hemmila I., Laitala V. Progress in lanthanides as luminescent probes [J]. Journal ofFluorescence,2005,15(4):529-542.
    [7] Ocana J. A., Callejon M., Barragan F. J., Delarosa F. F. Lanthanide sensitizedchemiluminescence determination of grepafloxacin in tablets and human urine [J]. AnalyticaChimica Acta,2003,482:105-113.
    [8] Ouyang J., Baeyens W. R. G., Delanghe J., Van-Der-Weken G., Calokerinos A. C. Cerium(IV)-based chemiluminescence analysis of hydrochlorothiazide [J]. Talanta,1998,46:961.
    [9] Wang X., Zhao H. C., Nie L. H., Jin L. P., Zhang Z. L. Europium sensitizedchemiluminescense determination of rufloxacin[J]. Analytica Chimica Acta,2001,445:169–175.
    [10] Elbanowski M., Staninski K., Kaczmarek M., Lis S. Energy transfer in thechemiluminescent system: Eu(II)/(III)-N3--H2O2[J]. Journal of Alloys and Compounds,2001,23(324):670–672.
    [11] Voloshin A. I., Shavaleev N. M., Kazakov V. P. Chemiluminescence of praseodymium(III), neodymium (III) and ytterbium (III) b-diketonates in solution excited from1,2-dioxetane decomposition and singlet-singlet energy transfer from ketone to rare-earthb-diketonates [J]. Journal of Luminescence,2000,91:49-58.
    [12] Oca a J. A., Callejón M., Barragán F. J., Rosa F. F. D. L. Lanthanide sensitizedchemiluminescence determination of grepafloxacin in tablets and human urine [J]. AnalyticaChimica Acta,2003,482:105-113.
    [13] Deftereos N. T., Grekas N., Calokerinos A. C. Flow injection chemiluminometricdetermination of albumin [J]. Analytica Chimica Acta,2000,403:137-143.
    [14] Rodkey F. L. Direct spectrophotometric determination of albumin in human serum [J].Clinical Chemistry,1965,11:478-487.
    [15] Zor T., Selinger, Z. Linearization of the bradford protein assay increases its sensitivity:theoretical and experimental studies [J]. Analytical Biochemistry,1996,236:302-308.
    [16] Flores, R. A rapid and reproducible assay for quantitative eatimation of proteins usingbromophenol blue [J]. Analytical Biochemistry,1978,88:605-611.
    [17] Capitán-Vallvey L. F., Duque O., Mirón-García G., Checa-Moreno R. Determination ofprotein content using a solid phase spectrophotometric procedure [J]. Analytica Chimica Acta,2001,433:155-163.
    [18] Gao H. W., Jiang J., Yu L. Q. Study of the spectrophotometric analysis of proteinsolution with p-iodochlorophosphonazo as adsorbate by the microphase adsorption–spectralcorrection technique [J]. Analyst,2001,126:528-533.
    [19] Jiang, C. Q., Luo, L. Spectrofluorimetric determination of human serum albumin using adoxycycline–europium probe [J]. Analytica Chimica Acta,2004,506:171-175.
    [20] Li D. H., Yang H. H., Zhen H., Fang Y., Zhu Q. Z., Xu J. G. Fluorimetric determinationof albumin and globulin in human serum using tetra-substituted sulphonated aluminumphthalocyanine [J]. Analytica Chimica Acta,1999,401:185-189.
    [21] Dong L. J., Li Y., Zhang Y. H., Chen X. G., Hu Z. D. A flow injection samplingresonance light scattering system for total protein determination in human serum [J].Spectrochimica Acta Part A,2007,66:1317-1322.
    [22] Zhao X. C., You T. Y., Liu J. F., Sun X. H., Yan J. L., Yang X. R, Wang, E. K.Drug-human serum albumin binding studied by capillary electrophoresis withelectrochemiluminescence detection [J]. Electrophoresis,2004,25:3422-3426
    [23] Huang C. B., Zhang K., Liu X. L., Wang, S. F. A flow-injection chemiluminescencemethod for the determination of human serum albumin, using the reaction offluorescein–human serum albumin–sodium hypochlorite by the enhancement effect of thecationic surfactant cetyltrimethylammonium bromide [J]. Luminescence,2007,22:393-400.
    [24] Li Y. H., Zhao D. H., Zhu C. Q., Wang L., Xu J. G. Determination of proteins atnanogram levels by their quenching effect on the chemiluminscence reaction betweenluminol and hydrogen peroxide with manganese-tetrasulfonatophthalocyanine as a newcatalyst [J]. Analytical and Bioanalytical Chemistry,2002,374:395-398.
    [25] Kulmala S., Kankare J., Haapakka K. Electrogenerated luminescence of in aqueoussolutions terbium(III)[J]. Analytica Chimica Acta,1991,252:65-76.
    [26] Memming R. Mechanism of electrochemical reduction of persulfates and hydrogenperoxide [J]. Journal of the Electrochemical Society,1969,116:785-790.
    [27] Carnail, W., The absorption and fluorescence spectra of rare earth ions in solution.Handbook on the physics and chemistry of rare earths, Vol.3. eds.[M], Gschneidner Jr. K.and Eyring L.. North-Holland, Amsterdam,1979.
    [28] Kulmala S., Haapakka K. Terbium(III) lyoluminescence induced by the dissolution ofUV-irradiated potassium peroxodisulfate in aqueous solutions [J]. Analytica Chimica Acta,1994,294:13-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700