新型磷光OLED主客体材料的设计合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于有机电致发光二级管(OLED)的新型显示和照明技术,具有巨大的应用潜力,已经成为学术界和产业界关注的焦点。与荧光OLED相比,磷光OLED由于具有更高的发光效率而成为OLED技术研究和发展的主流方向。在磷光OLED器件中,除了器件结构外,OLED关键材料是影响OLED器件性能的另一个重要因素。其中,有机层材料(主要包括空穴传输层材料、电子传输层材料和发光层材料)尤其是发光层材料(包括主体材料和客体掺杂材料)往往对磷光OLED的效率和寿命起着决定性的作用。因此,人们对性能优异的OLED关键材料的研发始终都没有停止过。本论文主要围绕OLED发光层材料展开研究,发展了一类新型的三氮唑/咔唑二元体系的双极性主体材料和一类新型的三氮唑/咔唑/膦氧三元体系的双极性主体材料;针对目前蓝光OLED磷光掺杂材料是制约OLED技术发展的瓶颈问题,合成了一类新型的蓝光苯基咪唑环金属铱磷光掺杂材料,并研究了其相应的器件性能;同时设计合成了一类新型的三氮唑/膦氧二元体系的电子传输材料。具体研究内容如下:
     1.将具有高空穴传输性能的咔唑基团和具有良好电子传输性能的三氮唑基团通过化学手段连接组合,合成得到了四个三氮唑/咔唑二元体系的双极性主体材料。研究结果表明这些新型主体材料具有宽带隙(E_g:3.29–3.52eV),高的三线态能级(E_T:2.56–2.76eV),高的热稳定性(T_d:426–454度),高的玻璃化温度(T_g:116–156°C)以及优异的成膜性能。空穴和电子的单载流子器件实验表明此类主体材料在对空穴和电子传输方面都表现出了较好的平衡性,是一类新型的双极性主体材料。该系列主体材料制作的绿光和蓝光PHOLED器件在启亮电压和效率方面都比传统的主体材料(如CBP和mCP)制作的相应器件表现出了更好的性能,绿光和蓝光PHOLED器件的电流发光效率最高分别达到了32.7cd/A和21.1cd/A。并且此系列主体材料所表现出的构效之间的规律性关系也为其它新类型主体材料的设计提供了有益的参考。
     2.将具有良好的电子传输和空穴阻挡能力的三氮唑单元、具有高三线态能量高空穴传输能力的咔唑单元以及具有可以有效的阻断π共轭体系保持材料高三线态能量同时可以有效改善材料电子传输性能的膦氧基团通过化学手段连接组合,合成得到了三氮唑/咔唑/膦氧三元体系双极性主体材料。空穴和电子的单载流子器件实验表明此类主体材料在对空穴和电子传输方面表现出了很好的平衡性,具有双极性特性,同时具有很高的三线态能值(E_T:3.06eV),适合作为蓝光PHOLED的主体材料,进一步的器件性能表征也证实该三元体系双极性主体材料对蓝光PHOLED器件表现出很好的性能,相应的蓝光PHOLED器件的电流发光效率最高达到了41.6cd/A,同时该主体材料应用于橙光和绿光PHOLED器件也表现出了比较好的器件性能。实验结果表明此主体材料是一种具有一定普适性的双极性主体材料。
     3.研究了四个以苯基咪唑同系物作为配体的蓝光环金属铱磷光配合物的光理和电化学性质,该系列磷光材料具有很高的量子产率(≥48%),是一类很好的蓝光磷光客体材料。同时对它们作为PHOLED器件的客体掺杂材料进行了器件方面的表征,结果显示其应用于蓝光PHOLED器件的电流效率最高达到了61.5cd/A(EQE23.1%),是目前为止报道的均配的蓝光金属铱PHOLED器件中效率最高的。通过研究配体的位阻效应和电子效应对配合物性能的影响,总结出构效之间的规律性关系,为设计新型高效、稳定、深蓝发射的磷光掺杂材料提供了一种研究思路。
     4.通过在吸电子的三氮唑基团上引入可以改善材料电子传输性能的二苯基膦氧基团,合成得到了三氮唑/膦氧类电子传输材料。利用核磁共振、质谱等对它们的结构进行了表征,并对该材料的光物理和电化学性质以及器件性能进行了表征。通过二苯基膦氧基团的引入,该材料在玻璃化温度以及电子的传输性能方面都表现出比结构相似的传统电子传输材料TAZ明显的提高。通过电子的单载流子器件比较实验表明,在相同的电压下,该材料具有比传统电子传输材料TPBI、BCP和TAZ更高的电流密度值,表现出更好的电子传输性能。将TPO作为电子传输材料应用于绿光磷光器件,器件在启亮电压和效率方面要比相同条件下的TAZ、TPBI和BCP器件的表现要好,特别是功率效率方面比后者有一倍左右的提高。
Organic light-emitting diodes (OLEDs) have attracted much attention from bothacademic and industrial communities for their potential practical applications indisplays and solid state lighting. Compared with fluorescent OLED, phosphorescentOLED has been the mainstream OLED technology because of the higher luminousefficiency. To the phosphorescent OLED devices, in addition to the device structure, thekey OLED materials are another important factor affecting the performance of OLEDdevices. Wherein the organic layer materials (including the hole transport layer material,electron transport layer material, and light-emitting layer material), especiallylight-emitting layer materials (including host material and dopant material) are ofcrucial importance for the efficiency and lifetime of the phosphorescent OLED.Therefore, the efforts in searching better key OLED materials have never beenexhausted. Herein, the OLED light-emitting layer materials are mainly focused on,including a series of novel bipolar triazole/carbazole binary system as well as a noveltriazole/carbazole/phosphine oxide ternary system host materials and a series of bluephenyl imidazole-based iridium(III) phosphorescent dopant materials. Otherwise, anovel triazole/phosphine oxide binary system electron transport material was alsodeveloped. Follows are the details:
     1. Combining the carbazole group with good hole-transporting ability and thetriazole group with excellent electron-transporting ability, four noveltriazole/carbazole bipolar host materials were designed and synthesized. Thesehost materials are all confirmed by NMR and MS. These new materials werefound to exhibit wide energy gaps (E_g:3.29–3.52eV), high triplet energies(E_T:2.56–2.76eV), high thermal stability (T_d:426–454oC), highglass-transition temperatures (T_g:116–156oC) and excellent film formingproperty. Electron-only (EOD) and hole-only (HOD) devices of them were in the current densities between EOD and HOD, such evidently proves thebipolar transporting property of these materials. Green and blue PHOLEDdevices fabricated with them as host materials showed better performancesthan those with traditional host material (such as CBP and mCP). The highestcurrent efficiency of32.7and21.1cd/A for green and blue devices wereobtained, respectively. The structure-property relationship also provides auseful reference for the design of other new types of host materials.
     2. Ternary bipolar host material TCPO has been designed and synthesized. Basedn the previous work of the triazole/cabazole hybrid host materials, we chose adiphenylphosphine oxide as a third functional group in TCPO.Diphenylphosphine oxide, which has a strong electron-withdrawing ability,can improve the electron transporting ability of TCPO. Compared with othergroups, diphenylphosphine oxide dose not extend the conjugation, which willnot decrease the triplet energy of the core. With these properties, high tripletenergy (E_T:3.06eV) and excellent bipolar properties were obtained. Bluephosphorescent OLEDs using TCPO as host materials showed very highefficiency of41.6cd/A. Orange and green phosphorescent OLEDs usingTCPO as host have also been fabricated, which showed good performances,indicating the TCPO could be a universal host material.
     3. Blue homoleptic iridium complexes using phenyl-imidazole derivatives asligands have been synthesized. Photophsycal, thermal and electrochemicalproperties have been investigated. These four complexes showed blueemissions around474nm and high quantum yield (≥48%), which could beused as blue dopants in phosphorescent OLEDs. High current efficiency of61.5cd/A (EQE23.1%) was achieved by using the iridium complex as dopant,wich is the highest efficiencies ever reported on homoleptic blue iridiumcomplexes. The rules between the ligands and the properties have also beendiscovered, which could be used as a guide for designing deep blue dopantsfor phosphorescent OLEDs.
     4. Electron transporting material (E_TM) triazole/diphenylphosphine oxide-basedTPO has been designed and synthesized. By combining two strongelectron-withdrawing groups, excellent electron transporting abilities could be expected in TPO. Compared with a structurally similar electron transportingmaterial TAZ, TPO showed much higher glass transfer temperature and betterelectron transporting ability, which could be attributed to thediphenylphosphine oxide group. Green phosphorescent OLED using TPO asan E_TM showed better performances than that of traditional E_TMs (TPBI,BCP and TAZ). The turn-on voltage decreased and the power efficiencydoubled, compared with TPBI, BCP and TAZ-based devices. These resultsimplied the diphenylphosphine oxide group could be a useful group in novelE_TMs.
引文
(1) A. Bernanose, M. C., P. Vouaux J. Chim. Phys.1953,50,64.
    (2) A. Bernanose, P. V. J. Chim. Phys.1953,50,261.
    (3) A. Bernanose J. Chim. Phys.1955,52,369.
    (4) A. Bernanose, P. V. J. Chim. Phys1955,52,509.
    (5) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys.1963,38,2042.
    (6) Helfrich, W.; Schneider, W. G. Phy.l Rev. Lett.1965,14,229.
    (7) Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Adv. Mater.2000,12,1737.
    (8) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett.1987,51,913.
    (9) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.;Forrest, S. R. Nature1998,395,151.
    (10) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R.Nature2006,440,908.
    (11) Zhou, X.; Pfeiffer, M.; Blochwitz, J.; Werner, A.; Nollau, A.; Fritz, T.; Leo, K. Appl.Phys. Lett.2001,78,410.
    (12) Oyamada, T.; Sasabe, H.; Adachi, C.; Murase, S.; Tominaga, T.; Maeda, C. Appl.Phys. Lett.,2005,86,033503.
    (13) Diez, C.; Reusch, T. C. G.; Lang, E.; Dobbertin, T.; Brutting, W. J. Appl. Phys.2012,111,103107.
    (14) Wemken, J. H.; Krause, R.; Mikolajick, T.; Schmid, G. J. Appl. Phys.2012,111,074502.
    (15) Sasabe, H.; Minamoto, K.; Pu, Y.-J.; Hirasawa, M.; Kido, J. Org. Electron.2012,13,2615.
    (16) Tao, Y. T.; Yang, C. L.; Qin, J. G. Chem. Soc. Rev.2011,40,2943.
    (17) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater.2011,23,926.
    (18) Tao, Y.; Wang, Q.; Yang, C.; Wang, Q.; Zhang, Z.; Zou, T.; Qin, J.; Ma, D. Angew.Chem. Int. Ed.2008,47,8104.
    (19) Tao, Y.; Wang, Q.; Yang, C.; Zhong, C.; Zhang, K.; Qin, J.; Ma, D. Adv. Funct.Mater.2010,20,304.
    (20) Gao, Z. Q.; Luo, M.; Sun, X. H.; Tam, H. L.; Wong, M. S.; Mi, B. X.; Xia, P. F.;Cheah, K. W.; Chen, C. H. Adv. Mater.2009,21,688.
    (21) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.;Kakimoto, M.-a. Org. Lett.2008,10,421.
    (22) Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J. T.; Ke, T.-H.; Chen, L.-Y.; Tsai,M.-H.; Wu, C.-C. Angew. Chem. Int. Ed.2008,47,581.
    (23) Chen, C.-H.; Huang, W.-S.; Lai, M.-Y.; Tsao, W.-C.; Lin, J. T.; Wu, Y.-H.; Ke,T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater.2009,19,2661.
    (24) Rothmann, M. M.; Haneder, S.; Da Como, E.; Lennartz, C.; Schildknecht, C.;Strohriegl, P. Chem. Mater.2010,22,2403.
    (25) An, Z. F.; Chen, R. F.; Yin, J.; Xie, G. H.; Shi, H. F.; Tsuboi, T.; Huang, W.Chem-Eur J2011,17,10871.
    (26) Rothmann, M. M.; Fuchs, E.; Schildknecht, C.; Langer, N.; Lennartz, C.; Munster,I.; Strohriegl, P. Org. Electron.2011,12,1192.
    (27) Chang, C.-H.; Kuo, M.-C.; Lin, W.-C.; Chen, Y.-T.; Wong, K.-T.; Chou, S.-H.;Mondal, E.; Kwong, R. C.; Xia, S.; Nakagawa, T.; Adachi, C. J. Mater. Chem.2012,22,3832.
    (28) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.;Kakimoto, M.-a. Chem. Mater.2008,20,2532.
    (29) Gu, X.; Zhang, H.; Fei, T.; Yang, B.; Xu, H.; Ma, Y.; Liu, X. The J. Phys. Chem. A2009,114,965.
    (30) Chou, H.-H.; Cheng, C.-H. Adv. Mater.2010,22,2468.
    (31) Gong, S.; Zhao, Y.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. J. Phys. Chem. C2010,114,5193.
    (32) Koech, P. K.; Polikarpov, E.; Rainbolt, J. E.; Cosimbescu, L.; Swensen, J. S.; VonRuden, A. L.; Padmaperuma, A. B. Org. Lett.2010,12,5534.
    (33) Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J.-J. Synth. Met.2007,157,743.
    (34) Tao, Y.; Wang, Q.; Ao, L.; Zhong, C.; Yang, C.; Qin, J.; Ma, D. J. Phys. Chem. C2010,114,601.
    (35) Hung, W.-Y.; Tu, G.-M.; Chen, S.-W.; Chi, Y. J. Mater. Chem.r2012,22,5410.
    (36) Chen, Y.-M.; Hung, W.-Y.; You, H.-W.; Chaskar, A.; Ting, H.-C.; Chen, H.-F.;Wong, K.-T.; Liu, Y.-H. J. Mater. Chem.2011,21,14971.
    (37) Hung, W.-Y.; Chi, L.-C.; Chen, W.-J.; Mondal, E.; Chou, S.-H.; Wong, K.-T.; Chi,Y. J. Mater. Chem.2011,21,19249.
    (38) Fukagawa, H.; Irisa, S.; Hanashima, H.; Shimizu, T.; Tokito, S.; Yokoyama, N.;Fujikake, H. Org. Electron.2011,12,1638.
    (39) Jiang, W.; Duan, L.; Qiao, J.; Dong, G.; Wang, L.; Qiu, Y. Org. Lett.2011,13,3146.
    (40) Su, S.-J.; Cai, C.; Kido, J. Chem. Mater.2011,23,274.
    (41) Jeon, S. O.; Lee, J. Y. J. Mater. Chem.2012,22,10537.
    (42) Su, S.-J.; Cai, C.; Kido, J. J. Mater. Chem.2012,22,3447.
    (43) Zheng, C.-J.; Ye, J.; Lo, M.-F.; Fung, M.-K.; Ou, X.-M.; Zhang, X.-H.; Lee, C.-S.Chem. Mater.2012,24,643.
    (44) Cho, Y. J.; Lee, J. Y. J. Phys. Chem. C2011,115,10272.
    (45) Gong, S.; Chen, Y.; Luo, J.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Adv. Funct.Mater.2011,21,1168.
    (46) Fan, C.; Zhao, F.; Gan, P.; Yang, S.; Liu, T.; Zhong, C.; Ma, D.; Qin, J.; Yang, C.Chem. Eur. J.2012,18,5510.
    (47) Yu, D.; Zhao, F.; Han, C.; Xu, H.; Li, J.; Zhang, Z.; Deng, Z.; Ma, D.; Yan, P. Adv.Mater.2012,24,509.
    (48) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater.2004,16,4556.
    (49) Hughes, G.; Bryce, M. R. J. Mater. Chem.2005,15,94.
    (50) Tao, Y.; Wang, Q.; Yang, C.; Qin, J.; Ma, D. ACS Applied Materials&Interfaces2010,2,2813.
    (51) Kepler, R. G.; Beeson, P. M.; Jacobs, S. J.; Anderson, R. A.; Sinclair, M. B.;Valencia, V. S.; Cahill, P. A. Appl. Phys. Lett.1995,66,3618.
    (52) Holmes, R. J.; D'Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E.Appl. Phys. Lett.2003,83,3818.
    (53) Naka, S.; Okada, H.; Onnagawa, H.; Tsutsui, T. Appl. Phys. Lett.2000,76,197.
    (54) Chopra, N.; Lee, J.; Zheng, Y.; Eom, S.-H.; Xue, J.; So, F. ACS Appl. Mater.Interfaces2009,1,1169.
    (55) Tokuhisa, H.; Era, M.; Tsutsui, T.; Saito, S. Appl. Phys. Lett.1995,66,3433.
    (56) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; B ssler, H.; Porsch, M.;Daub, J. Adv. Mater.1995,7,551.
    (57) Su, S.-J.; Chiba, T.; Takeda, T.; Kido, J. Adv. Mater.2008,20,2125.
    (58) Sasabe, H.; Gonmori, E.; Chiba, T.; Li, Y.-J.; Tanaka, D.; Su, S.-J.; Takeda, T.; Pu,Y.-J.; Nakayama, K.-i.; Kido, J. Chem. Mater.2008,20,5951.
    (59) Chen, H.-F.; Wang, T.-C.; Lin, S.-W.; Hung, W.-Y.; Dai, H.-C.; Chiu, H.-C.; Wong,K.-T.; Ho, M.-H.; Cho, T.-Y.; Chen, C.-W.; Lee, C.-C. J. Mater. Chem.2012,22,15620.
    (60) Lee, C. W.; Lee, J. Y. Chem. Eur. J.2012,18,6457.
    (61) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.;Bau, R.; Thompson, M. E. J. Am. Chem.l Soc.2003,125,7377.
    (62) Tsai, M. H.; Lin, H. W.; Su, H. C.; Ke, T. H.; Wu, C. c.; Fang, F. C.; Liao, Y. L.;Wong, K. T.; Wu, C. I. Adv. Mater.2006,18,1216.
    (63) Lee, J.; Lee, J.-I.; Lee, J. Y.; Chu, H. Y. Org. Electron.2009,10,1529.
    (64) Chopra, N.; Swensen, J. S.; Polikarpov, E.; Cosimbescu, L.; So, F.; Padmaperuma,A. B. Appl. Phys. Lett.2010,97,033304.
    (65) Chen, Y.; Chen, J.; Zhao, Y.; Ma, D. Appl. Phys. Lett.2012,100,213301.
    (66) Sasabe, H.; Toyota, N.; Nakanishi, H.; Ishizaka, T.; Pu, Y.-J.; Kido, J. Adv. Mater.2012,24,3212.
    (67) Zheng, C.-J.; Ye, J.; Lo, M.-F.; Fung, M.-K.; Ou, X.-M.; Zhang, X.-H.; Lee, C.-S.Chem. Mater.2012,24,643.
    (68) Sasabe, H.; Seino, Y.; Kimura, M.; Kido, J. Chem. Mater.2012,24,1404.
    (69) Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater.2008,20,4189.
    (70) Tao, S.; Lai, S. L.; Wu, C.; Ng, T. W.; Chan, M. Y.; Zhao, W.; Zhang, X. Org.Electron.2011,12,2061.
    (71) Jeon, S. O.; Yook, K. S.; Joo, C. W.; Lee, J. Y. Adv. Mater.2010,22,1872.
    (72) Jeon, S. O.; Yook, K. S.; Joo, C. W.; Lee, J. Y. Adv. Funct. Mater.2009,19,3644.
    (73) Jeon, S. O.; Jang, S. E.; Son, H. S.; Lee, J. Y. Adv. Mater.2011,23,1436.
    (74) Sasabe, H.; Takamatsu, J.-i.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer,N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J. Adv. Mater.2010,22,5003.
    (75) Holmes, R. J.; Forrest, S. R.; Sajoto, T.; Tamayo, A.; Djurovich, P. I.; Thompson,M. E.; Brooks, J.; Tung, Y.-J.; D'Andrade, B. W.; Weaver, M. S.; Kwong, R. C.;Brown, J. J. Appl. Phys. Lett.2005,87,243507.
    (76) Yook, K. S.; Jeon, S. O.; Joo, C. W.; Lee, J. Y. Org. Electron.2009,10,170.
    (77) Wee, K.-R.; Cho, Y.-J.; Jeong, S.; Kwon, S.; Lee, J.-D.; Suh, I.-H.; Kang, S. O. J.Am. Chem. Soc.2012,134,17982.
    (78) Zheng, Y.; Eom, S.-H.; Chopra, N.; Lee, J.; So, F.; Xue, J. Appl. Phys. Lett.2008,92,223301.
    (79) Lee, J.; Lee, J.-I.; Lee, J. Y.; Chu, H. Y. Appl. Phys. Lett.2009,95,253304.
    (80) Hudson, Z. M.; Sun, C.; Helander, M. G.; Chang, Y.-L.; Lu, Z.-H.; Wang, S. J. Am.Chem. Soc.2012,134,13930.
    (81) Fleetham, T.; Wang, Z.; Li, J. Org. Electron.2012,13,1430.
    (1)李公春,张万强,周威,杨风岭,苯甲酸乙酯的合成,河北化工,2010,33.
    (2)陈文杰,廖道华,邻氯苯甲酰肼的合成,化学世界,第五期,285.
    (3)梁泰硕,胡永玲,2,4,6-三甲基苯甲酰氯制备,化学工程师,2007,146,11.
    (4)Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J.-J. Synth. Met.2007,157,743.
    (5)Raymong Kwong, Matthew Nugent, Patent: US2006/0222886A1.
    (6)Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita andM. Kakimoto, Chem. lett.2008,37,262.
    (1) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett.1993,63,2627.
    (2) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett.2000,77,904.
    (3) He, G.; Pfeiffer, M.; Leo, K.; Hofmann, M.; Birnstock, J.; Pudzich, R.; Salbeck, J.Appl. Phys. Lett.2004,85,3911.
    (4) Kwon, S.; Wee, K.-R.; Kim, A.-L.; Kang, S. O. J. Phys. Chem. Lett.2009,1,295.
    (5) Kim, J. H.; Yoon, D. Y.; Kim, J. W.; Kim, J.-J. Synth. Met.2007,157,743.
    (6) Tao, Y.; Wang, Q.; Ao, L.; Zhong, C.; Yang, C.; Qin, J.; Ma, D. J. Phys. Chem. C2010,114,601.
    (7) Jeon, J. Y.; Park, T. J.; Jeon, W. S.; Park, J. J.; Jang, J.; Kwon, J. H.; Lee, J. Y.Chem. Lett.2007,36,1156.
    (8) Shen, J. Y.; Yang, X. L.; Huang, T. H.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Wu, C. C.;Yeh, M. C. P. Adv. Funct. Mater.2007,17,983.
    (9) Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J. Adv. Mater.2008,20,4189.
    (10) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.;Kakimoto, M.-a. Chem. Mater.2008,20,2532.
    (11) Gong, S.; Fu, Q.; Wang, Q.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Adv. Mater.2011,23,4956.
    (12) Yook, K. S.; Lee, J. Y. J. Mater. Chem.2012,22,14546.
    (13) Zhang, B.; Tan, G.; Lam, C.-S.; Yao, B.; Ho, C.-L.; Liu, L.; Xie, Z.; Wong, W.-Y.;Ding, J.; Wang, L. Adv. Mater.2012,24,1873.
    (14) Matsushima, T.; Jin, G.-H.; Murata, H. J. Appl. Phys.2008,104,054501.
    (15) Yook, K. S.; Lee, J. Y. Adv. Mater.2012,24,3169.
    (16) Gong, S.; Zhao, Y.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. J. Phys. Chem. C2010,114,5193.
    (17) Tao, Y.; Wang, Q.; Yang, C.; Zhong, C.; Zhang, K.; Qin, J.; Ma, D. Adv. Funct.Mater.2010,20,304.
    (18) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater.2011,23,926.
    (19) Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Marco, P. D. Appl. Phys. Lett.2000,76,2352.
    (20) Kwon, S.; Wee, K.-R.; Pac, C.; Kang, S. O. Org. Electron.2012,13,645.
    (1) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys.2001,90,5048.
    (2) Sasabe, H.; Minamoto, K.; Pu, Y.-J.; Hirasawa, M.; Kido, J. Org. Electron.2012,13,2615.
    (3) Padmaperuma, A. B.; Sapochak, L. S.; Burrows, P. E. Chem. Mater.2006,18,2389.
    (4) Vecchi, P. A.; Padmaperuma, A. B.; Qiao, H.; Sapochak, L. S.; Burrows, P. E. Org.Lett.2006,8,4211.
    (5) Kim, D.; Salman, S.; Coropceanu, V.; Salomon, E.; Padmaperuma, A. B.;Sapochak, L. S.; Kahn, A.; Brédas, J.-L. Chem. Mater.2009,22,247.
    (6) Chang, H.-H.; Tsai, W.-S.; Chang, C.-P.; Chen, N.-P.; Wong, K.-T.; Hung, W.-Y.;Chen, S.-W. Org. Electron.2011,12,2025.
    (7) Jeong, S. H.; Lee, J. Y. J. Mater. Chem.2011,21,14604.
    (8) Sasabe, H.; Toyota, N.; Nakanishi, H.; Ishizaka, T.; Pu, Y.-J.; Kido, J. Adv. Mater.2012,24,3212.
    (9) Kim, M.; Lee, J. Y. Org. Electron.2013,14,67.
    (10) Jeon, J. Y.; Park, T. J.; Jeon, W. S.; Park, J. J.; Jang, J.; Kwon, J. H.; Lee, J. Y.Chem. Lett.2007,36,1156.
    (11) Shen, J. Y.; Yang, X. L.; Huang, T. H.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Wu, C. C.;Yeh, M. C. P. Adv. Funct. Mater.2007,17,983.
    (1) Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.;Forrest, S. R. Nature1998,395,151.
    (2) Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys.2001,90,5048.
    (3) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.;Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem.2001,40,1704.
    (4) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.;Bau, R.; Thompson, M. E. J. Am. Chem. Soc.2003,125,7377.
    (5) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.;Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am.Chem. Soc.2003,125,12971.
    (6) Holmes, R. J.; Forrest, S. R.; Sajoto, T.; Tamayo, A.; Djurovich, P. I.; Thompson,M. E.; Brooks, J.; Tung, Y.-J.; D'Andrade, B. W.; Weaver, M. S.; Kwong, R. C.;Brown, J. J. Appl. Phys. Lett.2005,87,243507.
    (7) Chew, S.; Lee, C. S.; Lee, S.-T.; Wang, P.; He, J.; Li, W.; Pan, J.; Zhang, X.;Kwong, H. Appl. Phys. Lett.2006,88,093510.
    (8) McGee, K. A.; Mann, K. R. Inorg. Chem.2007,46,7800.
    (9) Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson,M. E. J. Am. Chem. Soc.2009,131,9813.
    (10) Yook, K. S.; Jeon, S. O.; Joo, C. W.; Lee, J. Y. Organic Electronics2009,10,170.
    (11) Sasabe, H.; Takamatsu, J.-i.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer,N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J. Adv. Mater.2010,22,5003.
    (12) Brooks, J.; Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.; Bau, R.;Thompson, M. E. Inorg. Chem.2002,41,3055.
    (13)D’Andrade, B. W.; Brooks, J.; Adamovich, V.; Thompson, M. E.; Forrest, S. R. Adv.Mater.2002,14,1032.
    (14) Lu, W.; Mi, B.-X.; Chan, M. C. W.; Hui, Z.; Che, C.-M.; Zhu, N.; Lee, S.-T. J. Am.Chem. Soc.2004,126,4958.
    (15) Cocchi, M.; Virgili, D.; Fattori, V.; Rochester, D. L.; Williams, J. A. G. Adv. Funct.Mater.2007,17,285.
    (16) Fleetham, T.; Wang, Z.; Li, J. Org. Electron.2012,13,1430.
    (17) Hudson, Z. M.; Sun, C.; Helander, M. G.; Chang, Y.-L.; Lu, Z.-H.; Wang, S. J. Am.Chem. Soc.2012,134,13930.
    (18) Rossi, E.; Colombo, A.; Dragonetti, C.; Roberto, D.; Ugo, R.; Valore, A.; Falciola,L.; Brulatti, P.; Cocchi, M.; Williams, J. A. G. Journal of Materials Chemistry2012,22,10650.
    (19) Maness, K. M.; Terrill, R. H.; Meyer, T. J.; Murray, R. W.; Wightman, R. M. J. Am.Chem. Soc.1996,118,10609.
    (20) Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am. Chem. Soc.1999,121,3525.
    (21) Rudmann, H.; Shimada, S.; Rubner, M. F. J. Am. Chem. Soc.2002,124,4918.
    (22) Tung, Y. L.; Lee, S. W.; Chi, Y.; Chen, L. S.; Shu, C. F.; Wu, F. I.; Carty, A. J.;Chou, P. T.; Peng, S. M.; Lee, G. H. Adv. Mater.2005,17,1059.
    (23) Xia, H.; Li, M.; Lu, D.; Zhang, C. B.; Xie, W. J.; Liu, X. D.; Yang, B.; Ma, Y. G.Adv. Funct. Mater.2007,17,1757.
    (24) Carlson, B.; Phelan, G. D.; Kaminsky, W.; Dalton, L.; Jiang, X.; Liu, S.; Jen, A. K.Y. J. Am. Chem. Soc.2002,124,14162.
    (25) Tung, Y.-L.; Wu, P.-C.; Liu, C.-S.; Chi, Y.; Yu, J.-K.; Hu, Y.-H.; Chou, P.-T.; Peng,S.-M.; Lee, G.-H.; Tao, Y.; Carty, A. J.; Shu, C.-F.; Wu, F.-I. Organometallics2004,23,3745.
    (26) Lin, C.-H.; Hsu, C.-W.; Liao, J.-L.; Cheng, Y.-M.; Chi, Y.; Lin, T.-Y.; Chung,M.-W.; Chou, P.-T.; Lee, G.-H.; Chang, C.-H.; Shih, C.-Y.; Ho, C.-L. J.Mater.Chem.2012.
    (27) Li, Y.; Liu, Y.; Guo, J.; Wu, F.; Tian, W.; Li, B.; Wang, Y. Synth. Met.2001,118,175.
    (28) Li, F.; Zhang, M.; Feng, J.; Cheng, G.; Wu, Z.; Ma, Y.; Liu, S.; Sheng, J.; Lee, S. T.Appl. Phys. Lett.2003,83,365.
    (29) Li, B.; Li, M.; Hong, Z.; Li, W.; Yu, T.; Wei, H. Appl. Phys. Lett.2004,85,4786.
    (30) Si, Z.; Li, J.; Li, B.; Zhao, F.; Liu, S.; Li, W. Inorg. Chem.2007,46,6155.
    (31) Zhang, Q.; Zhou, Q.; Cheng, Y.; Wang, L.; Ma, D.; Jing, X.; Wang, F. Adv. Mater.2004,16,432.
    (32) Che, G.; Su, Z.; Li, W.; Chu, B.; Li, M.; Hu, Z.; Zhang, Z. Appl. Phys. Lett.2006,89,103511.
    (33) Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.; Adachi, C. Adv.Funct. Mater.2012,2327.
    (34) Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson,M. E.; Forrest, S. R. Appl. Phys. Lett.2001,79,2082.
    (35) Baranoff, E.; Curchod, B. F. E.; Frey, J.; Scopelliti, R.; Kessler, F.; Tavernelli, I.;Rothlisberger, U.; Gr tzel, M.; Nazeeruddin, M. K. Inorg. Chem.2012,51,215.
    (36) Takizawa, S.-y.; Nishida, J.-i.; Tsuzuki, T.; Tokito, S.; Yamashita, Y. Inorg.Chem.2007,46,4308.
    (37) Baranoff, E.; Fantacci, S.; De Angelis, F.; Zhang, X.; Scopelliti, R.; Gr tzel, M.;Nazeeruddin, M. K. Inorg. Chem.2011,50,451.
    (38) King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc.1985,107,1431.
    (1) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Appl. Phys. Lett.1993,63,2627.
    (2) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett.2000,77,904.
    (3) He, G.; Pfeiffer, M.; Leo, K.; Hofmann, M.; Birnstock, J.; Pudzich, R.; Salbeck, J.Appl. Phys. Lett.2004,85,3911.
    (4) Cocchi, M.; Kalinowski, J.; Fattori, V.; Williams, J. A. G.; Murphy, L. Appl. Phys.Lett.2009,94,073309.
    (5) Kwon, S.; Wee, K.-R.; Kim, A.-L.; Kang, S. O. J. Phys. Chem. Lett.2010,1,295.
    (6) Son, H. S.; Lee, J. Y. Org. Electron.2011,12,1025.
    (7) Chang, C.-H.; Kuo, M.-C.; Lin, W.-C.; Chen, Y.-T.; Wong, K.-T.; Chou, S.-H.;Mondal, E.; Kwong, R. C.; Xia, S.; Nakagawa, T.; Adachi, C. J. Mater. Chem.2012,22,3832.
    (8) Tao, Y. T.; Yang, C. L.; Qin, J. G. Chem. Soc. Rev.2011,40,2943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700