反馈式振荡器相位噪声的理论分析及优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振荡器,包括声体波(BAW)和声表面波(SAW)振荡器,由于其在高频/甚高频/特高频(HF/VHF/UHF)频段具有方便获取的高品质因数的特性,是天文、物理、航空航天、雷达、测试、测量和通信系统等研究领域中最为常用的基础元件之一。随着现代电子信息技术水平的不断提高,振荡器作为各种频率源的参考源和产生时间频率基准的关键器件,其相位噪声越来越成为限制各种电路与系统性能的一个关键因素。因此,研究和分析降低相位噪声的途径对振荡器的设计和应用都具有十分重要的意义。
     在振荡器的相位噪声模型之中,最为直观、使用最为方便的是Leeson的相位噪声模型。但是经典的Leeson模型缺乏对相位噪声影响最大的有载品质因数与振荡电路参数之间定量的研究和分析。本文正是在Leeson模型的基础上,揭示了振荡器中谐振器的等效电路参数和振荡电路参数对有载品质因数值的决定关系,提出了不同振荡电路类型下的有载品质因数的显性表示式。进而在提高有载品质因数值的基础上,定量分析和评估了多种材料、多种工艺和多种振荡电路的声体波和声表面波振荡器的相位噪声。本文主要工作和创新点包括:
     1.目前振荡器的设计缺少物理角度的方法简单而精确的优化振荡电路,为了解决这一问题,本文提出了一种简单而有效的可针对皮尔斯和巴特勒振荡电路的相位噪声分析方法。
     2.分析了振荡器的各种相位噪声模型,从振荡器Leeson模型的基础上揭示了振荡器中谐振器的等效电路参数和振荡电路参数对有载品质因数的影响,进而通过对双口网络理论的分析,提出了在不同振荡器电路类型下的有载品质因数的显性表示式,弥补了Leeson模型缺乏有载品质因数与振荡电路参数之间定量关系的不足。
     3.从振荡器频谱纯度的角度结合实际的皮尔斯和巴特勒振荡电路,根据本文提出的物理基础上的有载品质因数表示式,详细研究了谐振器等效电路参数和振荡电路参数对有载品质因数的共同影响;在此基础上分别针对120MHzAT切和SC切皮尔斯晶体振荡器、315MHz巴特勒声表面波压控振荡器以及钽酸锂晶体压控振荡器几种不同材料、不同工艺、不同电路类型的振荡器,对比研究了相位噪声的优化技术,提出了一种基于提高有载品质因数的振荡器设计方法。大量的实验事实证明,本文提出的从提高有载品质因数的角度出发降低相位噪声的方法能够有效的改善振荡器的相位噪声特性,对振荡器设计具有指导意义,同时为低相位噪声振荡器及其谐振器的深入研究提供了量化的分析方法和科学依据。
     4.深入研究了振荡器的温度补偿和隔振方法,并分别设计了一种新型的AT切低相位噪声集成温度补偿晶体振荡器和一种石英晶体振荡器的双层被动隔振系统,以求振荡器达到更好的频率稳定度和相位噪声水平;精确推导了串电容后晶体谐振器等效电路参数的公式,得到的结果与使用了高频、高品质因数或高电容比等假设下的结果一致,故只要等效电路相同,此公式同样适用于低品质因数、低电容比器件,甚至适用于实际的电感电容网络,此推导结果扩展了谐振器等效电路参数公式的应用范围;另外,研究了声体波谐振器中的能陷问题,从理论结合实验的方法给出了石英晶体振荡器的能陷现象与相位噪声的关系,这对在低相位噪声声体波振荡器中的谐振器设计具有指导作用。
Oscillators including bulk acoustic wave (BAW) and surface acoustic wave (SAW)oscillators are the most basic components widely used in astronomy, physics, aerospace,radar, test and measurement, communication system and other research areas because ofits high quality factor characteristics in the HF/VHF/UHF bands. Oscillators arereference sources of various frequency sources and key devices produced the time andfrequency standards. With the development of modern electronic informationtechnology, phase noise of oscillators becomes a key factor in limiting the performanceof electronic system and frequency stability of oscillators plays a decisive role in theequipment performance. Therefore, research and analysis of the way to reduce phasenoise has the very vital significance to oscillators design and application.
     In the oscillators’ phase noise models, Leeson’s phase noise model is the mostintuitive and convenient to use. At present, the classic Leeson model lacks quantitativeresearch and analysis between loaded quality factor which is the biggest impact of phasenoise with the equivalent circuit parameters of resonator and the oscillation circuitparameters. This paper will reveal that the equivalent circuit parameters of resonatorand the oscillation circuit parameters have conclusive concern with the loaded qualityfactor in oscillators based on Leeson model, and this paper also proposes loaded qualityfactor formulation according to different oscillation circuits. It is applied to quantitativeanalysis and evaluation on phase noise of bulk acoustic wave and surface acoustic waveoscillators used different materials, techniques and oscillation circuits based onimproving loaded quality factor. The innovation works mainly include:
     1. At present, the situation of oscillator design lakes the physical insight andmethods for simple yet accurate analyzing how to optimize an oscillation circuit. Toremedy this situation, this work develops a simple but effective method for the Pierceand Butler oscillators.
     2. Oscillators’ phase noise models are analyzed, and the conclusive concernbetween the equivalent circuit parameters of resonator and the oscillation circuitparameters and the loaded quality factor is presented on the basis of Leeson model. On the basis of the analysis of two-port network theory, rigorous loaded quality factorformulation of different oscillator circuits is obtained. It makes up for the shortcomingthat Leeson model lacks quantitative research and analysis between loaded qualityfactor and oscillation circuit parameters.
     3. From an oscillator noise spectrum viewpoint, combined with actual Pierce andButler oscillation circuits, a detailed study of the impact on loaded quality factorimposed by equivalent circuit parameters of resonator and the oscillation circuitparameters is presented according to the formulation of loaded quality factor obtainedbased on physical model. Based on the analysis, the phase noise optimizationtechnology and design method of the120MHz AT-cut and SC-cut Pierce crystaloscillators,315MHz Butler common-base surface acoustic wave voltage controlledoscillator and lithium tantalite voltage controlled oscillator respectively, which are usingdifferent materials, techniques and oscillation circuits, are researched. A large numberof experimental facts prove that the method to reduce phase noise based on improvingloaded quality factor can ameliorate oscillator phase noise characteristics and has aguiding significance to oscillator design. This dissertation provides quantitative analysismethods and scientific basis for in-depth study of low phase noise oscillators andresonators.
     4. Temperature compensation and vibration isolation technology are in-depthstudied. A new AT-cut temperature compensated crystal oscillator (TCXO) isresearched and a two-stage passive vibration isolation system for crystal oscillator ispresented to achieve better frequency stability effectively. The formula for the crystalresonator equivalent circuit parameters with series capacitor is re-derived. The result issame as the result used much assumption including high frequency, high quality factor,and high capacitance ratio and so on. Hence, this formula can be in common use forvarious devices of low quality factor or low capacitance ratio, even for the actualinductor-capacitor network, as long as these devices have the same equivalent circuits.The application scope of this formula is expanded. In addition, theory of energytrapping is concerned in the design of bulk acoustic wave resonators, and therelationship between energy trapping and phase noise of the quartz crystal oscillator aregiven by the method combined the theory with experiment. The research of energytrapping has a guiding significance to the design of resonators in low phase noise bulk acoustic wave oscillators.
引文
[1]刘明亮.振荡器的原理和应用[M].北京:高等教育出版社,1984,73-80
    [2] M. Odyniec. RF and microwave oscillator design[M]. Boston: Artech House,2002
    [3]周渭,偶晓娟,周晖,等.时频测控技术[M].西安:西安电子科技大学出版社,2006,172-174
    [4]白居宪.低噪声频率合成[M].西安:西安交通大学出版社,1994,9-53
    [5] W. F. Egan. Practical RF system design[M]. Hoboken, NJ: John Wiley&Sons,2003,245-247
    [6] A. Grebennikov. RF and microwave transistor oscillator design[M]. Chichester: John Wiley,2007,187-196
    [7] G. Gonzalez. Foundations of oscillator circuit design[M]. Norwood, MA: Artech House,2007,68-76
    [8] W. P. Robins.相位噪声[M].北京:人民邮电出版社,1988,4-8
    [9] D. B. Leeson. A Simple model of feedback oscillator noise spectrum[J]. Proceedings of the IEEE,1966,54:329-330
    [10] K. S. Kundert. Introduction to RF simulation and its application[J]. IEEE Journal of Solid-StateCircuits,1999,34(9):1298-1319
    [11] K. A. Kouznetsov, R. G. Meyer. Phase noise in LC oscillators[J]. IEEE Journal of Solid-StateCircuits,2000,35(8):1244-1248
    [12] D. Murphy, J. J. Rael, A. A. Abidi. Phase noise in LC oscillators: a phasor-based analysis of ageneral result and of loaded Q[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2010,57(6):1187-1203
    [13] G. Sauvage. Phase noise in oscillators: a mathematical analysis of Leeson model[J]. IEEETransactions on Instrumentation and Measurement,1977,26(4):408-410
    [14] S. Galliou, F. Sthal, M. Mourey. New phase noise model for crystal oscillators application to theClapp oscillator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(11):1422-1428
    [15] S. Galliou, F. Sthal, M. Mourey. Enhanced phase noise model for quartz crystal oscillators[C].2002IEEE International Frequency Control Symposium,627-632
    [16] F. Sthal, S. Galliou, J. Imbaud, et al. The effect of power-drive level on the calibration of thebridge instrument for the measurement of the quartz stability[C].2009IEEE InternationalFrequency Control Symposium Joint with the22nd European Frequency and Time Forum,487-491
    [17] Lax M. Classical noise V noise in self-sustained oscillators[J]. Physical Review,1967,160(2):290-307
    [18] K. Korukawa. Some basic characteristics of broadband negative resistance oscillator circuits[J].Bell System Technical Journal,1969,48(6):1937-1955
    [19] E. Hafner. The effects of noise in oscillators[J]. Proceedings of the IEEE,1966,54(2):179-198
    [20] J. Rutman, J. Uebersfeld. A model for flicker frequency noise of oscillators[J]. Proceedings ofthe IEEE,1972,60(2):233-235
    [21] H. J. Siweris, B. Schiek. Analysis of noise upconversion in microwave FET oscillators[J]. IEEETransactions on Microwave Theory and Techniques,1985,33(3):233-242
    [22] A. Schonfelder. Phase noise in coherent systems: basic mdel for simulations[J]. ElectronicsLetters,1991,27(19):1725-1727
    [23] J. Craninckx, M. Steyaert. Low-noise voltage-controlled oscillators using enhanced LC-tanks[J].IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing.1995,42(12):794-804
    [24] C. Samori, A. L. Lacaita, F. Villa, et al. Spectrum folding and phase noise in LC tunedoscillators[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital SignalProcessing.1998,45(7):781-790
    [25] F. Herzel, M. Pierschel, P. Weger, et al. Phase noise in a differential CMOS voltage-controlledoscillator for RF applications[J]. IEEE Transactions on Circuits and Systems II: Analog andDigital Signal Processing.2000,47(1):11-15
    [26] E. A. Vittoz, M. G. R. Degrauwe. High-performance crystal oscillator circuits: theory andapplication[J]. IEEE Journal of Solid-State Circuits,1987,23(3):774-783
    [27] J. C. Nallatamby, M. Prigent. Extension of the Leeson formula to phase noise calculation intransistor oscillators with complex tanks[J]. IEEE Transactions on Microwave Theory andTechniques,2003,51(3):690-696
    [28] J. C. Nallatamby, M. Prigent, M. Camiade, et al. Phase noise in oscillators Leeson formularevisited[J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(4):1386-1394
    [29] F. X. Kaertner. Determination of the correlation spectrum of oscillators with low noise[J]. IEEETransactions on Microwave Theory and Techniques,1989,37(1):90-101
    [30] A. Hajimiri, T. H. Lee. General theory of phase noise in electrical oscillators[J]. IEEE Journal ofSolid-State Circuits,1998,33(2):179-194
    [31] A. Hajimiri, S. Limotyrakis, T. H. Lee. Jitter and phase noise in ring oscillators[J]. IEEE Journalof Solid-State Circuits,1999,34(6):790-804
    [32] T. H. Lee, A. Hajimiri. Oscillator phase noise: a tutorial[J]. IEEE Journal of Solid-State Circuits.2000,35(3):326-336
    [33] A. Hajimiri, T. H. Lee. Design issues in CMOS differential LC oscillators[J]. IEEE Journal ofSolid-State Circuits,1999,34(5):717-724
    [34] A. Hajimiri, T. H. Lee. The design of low phase noise oscillators[M]. Boston: Kluwer Academic,1999
    [35] A. Demir, A. Mehrotra, J. Roychowdhury. Phase noise in oscillators: a unifying theory andnumerical methods for characterization[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2000,47(5):655-674
    [36] A. Demir. Computing timing jitter from phase noise spectra for oscillators and phase-lockedloops with white and1/f noise[J]. IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications,2006,53(9):1869-1884
    [37] A. Demir. Phase noise and timing jitter in oscillators with colored-noise sources[J]. IEEETransactions on Circuits and Systems I: Fundamental Theory and Applications,2002,49(12):1782-1791
    [38] A. Demir. Noise analysis problems and techniques for RF electronic circuits and optical fibercommunication systems[C].2007IEEE International Symposium on Circuits and Systems,513-516
    [39] A. Demir. Fully nonlinear oscillator noise analysis: an oscillator with no asymptotic phase[J].International Journal of Circuit Theory and Applications,2007,35(2):175-203
    [40] A. Demir, A. L. Sangiovanni-Vincentelli. Simulation and modeling of phase noise in open-looposcillators[C].1996IEEE Custom Integrated Circuits Conference,453-456
    [41] A. Demir, A. Mehrotra, J. Roychowdhury. Phase noise and timing jitter in oscillators[C].1998IEEE Custom Integrated Circuits Conference,45-48
    [42] J. Mukherjee, P. Roblin. Novel modeling methodology of LC differential oscillator noise[J].Microwave and Optical Technology Letters,2006,48(4):805-808
    [43] J. Mukherjee, P. Roblin, S. Akhtar. An analytic circuit-based model for white and flicker phasenoise in LC oscillators[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2007,54(7):1584-1598
    [44] T. Djurhuus, V. Krozer, J. Vidkjr, et.al. Oscillator phase noise: a geometrical approach[J]. IEEETransactions on Circuits and Systems I: Regular Papers,2009,56(7):1373-1382
    [45]万心平,郑继禹,张厥盛.论证振荡器相位噪声幂律谱的形成机理[J].西安电子科技大学学报,1981,8(1):69-76
    [46]万心平,张厥盛,郑继禹.论证振荡器相位噪声幂律谱的形成机理及低噪声振荡器的设计考虑[J].电子测量技术,1981,5(6):47-53
    [47]张厥盛,万心平.振荡器相位噪声的谱形及品质研究[J].通信学报,1982,3(3):64-68
    [48]张海明.频率源的相位噪声特性分析[J].无线电通信技术,1999,25(1):25-27
    [49]徐锐敏,延波.微波振荡器相位噪声的非线性电流源分析法[J].电子科技大学学报,1999,28(4):371-373
    [50]范建兴,杨华中,江蕙,等.正则扰动下周期时变系数矩阵Sylvester表示的振荡器相位噪声分析方法[J].中国科学E辑:信息科学,2006,36(8):912-924
    [51]臧永蔓.频率合成器的相位噪声分析[J].无线电工程,2007,37(9):38-40
    [52] S. K. Magierowski, S. Zukotynski. CMOS LC-oscillator phase-noise analysis using nonlinearmodels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers,2004,51(4):664-677
    [53] G. De Giovanni, M. Chomiki. New phase noise measurement techniques&ultra-low noiseSAW oscillators[C].2010IEEE International Frequency Control Symposium,116-118
    [54] S. Tabatabaei, A. Partridge. Silicon MEMS oscillators for high-speed digital systems[J]. IEEEMicro,2010,30(2):80-89
    [55] W. W. Cheng, S. R. Dong, Y. Han, et al. A low power, low phase noise FBAR oscillator[J].Integrated Ferroelectrics,2009,105(1):75-86
    [56] A. Imani, H. Hashemi. Analysis and design of low phase-noise oscillators with nonlinearresonators[J]. IEEE Transactions on Microwave Theory and Techniques,2012, PP(99):1-12
    [57] M. M. Driscoll, R. A. Jelen, N. G. Matthews. Extremely low phase noise UHF oscillatorsutilizing high-overtone, bulk-acoustic resonators[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,1992,39(6)
    [58] M. M. Driscoll. Low noise, VHF crystal-controlled oscillator utilizing dual, sc-cut resonators[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1986,33(6):698-704
    [59] M. M. Driscoll. Modeling phase noise in multifunction subassemblies[J]. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2012,59(3):373-381
    [60] M. M. Driscoll. Prediction of acoustic resonator-stabilized oscillator sustaining stage phasenoise characteristics from low Q resonator oscillator noise measurements[C].47th IEEE AnnualInternational Frequency Control Symposium,1993,202-208
    [61] M. M. Driscoll. Quartz crystal resonator G sensitivity measurement methods and recentresults[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1990,37(5):386-392
    [62] M. M. Driscoll. Reduction of quartz crystal oscillator flicker-of-frequency and white phasenoise (floor) levels and acceleration sensitivity via use of multiple resonators[J]. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,1993,40(4):427-430
    [63] M. M. Driscoll. Linear frequency tuning of SAW resonators[J]. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1991,38(4):366-369
    [64] W. Zhou, H. Wang, H. Zhou, et al. The technical development of crystals and oscillators inchina and their market situation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2006,53(1):30-33
    [65] M. Pardo, L. Sorenson, F. Ayazi. A phase-noise model for nonlinear piezoelectrically-actuatedMEMS oscillators[C].2011IEEE International Symposium on Circuits and Systems,221-224
    [66] J. Arcamone, B. Misischi, F. Serra-Graells, et al. A compact and low-power CMOS circuit forfully integrated NEMS resonators[J]. IEEE Transactions on Circuits and Systems II: ExpressBriefs,2007,54(5):377-381
    [67] U. L. Rohde, A. K. Podar, G. Bock. The design of modern microwave oscillators for wirelessapplications-theory and optimization[M]. Hoboken, NJ: John Wiley,2005,10-11
    [68] K. Chang. RF and microwave wireless systems[M]. New York: Wiley,2000,119-122
    [69]吴毅强,邓忠华.压电器件[M].北京:电子工业出版社,1995,8-20
    [70] W. A. Edson. Noise in oscillators[J]. Proceedings of the IRE,1960,48(8):1454-1466
    [71] B. Razavi. RF microelectronics[M]. Upper Saddle River, NJ: Prentice Hall,1998,217-222
    [72] B. Razavi. A study of phase noise in CMOS oscillators[J]. IEEE Journal of Solid-State Circuits,1966,31(3):331-343
    [73] E. Rubiola. Phase noise and frequency stability in oscillators[M]. Norwood, NY: CambridgeUniversity Press,2009,112-113
    [74] E. Rubiola, R. Brendel. The AM noise mechanism in oscillators[C].2009IEEE InternationalFrequency Control Symposium Joint with the22nd European Frequency and Time Forum,33-39
    [75] E. Rubiola. The measurement of AM noise of oscillators[C].2006IEEE InternationalFrequency Control Symposium,750-758
    [76] E. Rubiola, E. Salik, N. Yu, et al. Phase-noise and amplitude-noise measurement of low-powersignals[C].2004IEEE International Frequency Control Symposium,292-297
    [77] E. Rubiola, E. Salik, N. Yu, et al. Phase noise measurements of low power signals[J].Electronics Letters,2003,39(19):1389-1390
    [78] E. Rubiola, V. Giordano. On the1/f frequency noise in ultra-stable quartz oscillators[J]. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007,54(1):15-22
    [79] T. Ohira. Rigorous Q-factor formulation for one-and two-port passive linear networks from anoscillator noise spectrum viewpoint[J]. IEEE Transactions on Circuits and Systems II: ExpressBriefs,2005,52(12):846-850
    [80] T. Ohira. Extended Adler’s injection locked Q factor formula for general one-and two-portactive device oscillators[J]. IEICE Electronics Express,2010,7(19):1486-1492
    [81] T. Ohira, K. Araki. Active Q-Factor and equilibrium stability formulation for sinusoidaloscillators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs,2007,54(9):810-814
    [82] X. H. Huang, F. Tan, W. Wei, et al. A revisit to phase noise model of Leeson[C].2007IEEEInternational Frequency Control Symposium Joint with the21st European Frequency and TimeForum,238-241
    [83] G. Gonzalez. Mircowave transistor amplifiers: analysis and design[M]. Englewood Cliffs, NJ:Prentice Hall,1984,95-102
    [84] J. Engberg, T. Larsen. Noise theory of linear and nonlinear circuits[M]. Chichester: John Wiley,1995,41-45
    [85]赵声衡,赵英.晶体振荡器[M].北京:科学出版社,2008,88-94
    [86] E. P. EerNisse. Electric constants of quartz. J. Quartz Resonator Frequency Shifts Arising fromElectrode Stress[C].29th Annual Symposium on Frequency Control,1975,1-4
    [87] K. K. Clarke, D. T. Hess. Communication circuits: analysis and design[M]. Reading, Mass.:Addison-Wesley,1971,243-247
    [88] X. H. Huang, W. Wei, F. Tan, et al. High-frequency overtone TCXO based on mixing of dualcrystal oscillators[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2007,54(6):1103-1106
    [89] X. H. Huang, Y. Wang, W. Fu, et al. The design and implementation of a120-MHz Piercelow-phase-noise crystal oscillator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, andFrequency Control,2011,58(7):1302-1306
    [90] X. H. Huang, Y. Wang, W. Fu. The design and implementation of a Pierce low phase noisecrystal oscillator[J]. Chinese Journal of Electronics,2011,20(3):571-574
    [91]黄显核,王艳,严刚峰.基于提高有载Q的120MHz低相噪晶体振荡器设计[J].电子科技大学学报,2009,38(5):693-695
    [92] J. Everard. Low phase noise oscillators including some detailed designs[C].2007IEEEInternational Frequency Control Symposium Joint with the21st European Frequency and TimeForum,1156-1163
    [93] J. Everard. Fundamentals of RF circuit design with low noise oscillators[M]. Chichester: JohnWiley,2001,191-196
    [94] J. Everard, M. Xi. Simplified phase noise model for negative resistance oscillators[C].2011IEEE International Frequency Control Symposium Joint with the25th European Frequency andTime Forum,1-5
    [95] J. Everard, M. Xu, S. Bale. Simplified phase noise model for negative-resistance oscillators anda comparison with feedback oscillator models[J]. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2012,59(3):382-390
    [96] M. E. Frerking. Crystal oscillator design and temperature compensation[M]. New York: VanNostrand Reinhold,1978,5-13
    [97] V. M. T. Lam, P. C. L. Yip, C. R. Poole. Microwave oscillator design with power prediction[J].IEEE electronics letters,1991,27(17):1574-1575
    [98]张福学,王丽坤.现代压电学(下册)[M].北京:科学出版社,2002,121-128
    [99]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980,239-247
    [100]吴连法.声表面波器件及其应用[M].北京:人民邮电出版社,1983,122-132
    [101]武以立,邓盛刚,王永德.声表面波原理及其在电子技术中的应用[M].北京:国防工业出版社,1983,248-255
    [102]肖鸣山,宋道仁.声表面波器件基础[M].山东:山东科学技术出版社,1980,156-166
    [103] X. H. Huang, Y. Wang, W. Fu. Optimization and realization of a315MHz low phase noisevoltage controlled SAW oscillator[J], IEEE Transactions on Circuits and Systems II: ExpressBriefs,2012,59(1):16-19
    [104] U. L. Rohde, A. K. Poddar. Low noise, low power consumption, configurable, and adaptableultrawideband VCOs[C].2006IEEE International Conference on Ultra-Wideband,545-550
    [105] U. L. Rohde, A. K. Poddar. Voltage controlled crystal oscillator[C].2009IEEE SarnoffSymposium,1-6
    [106] U. L. Rohde, A. K. Poddar. Adaptive mode-coupled harmonically tuned high-Q ultralow phase noise sources[J]. Ultrasonics,2011,54(9):106-120
    [107] J. Craninckx, M. Steyaert. A1.8-GHz CMOS low-phase-noise voltage-controlled oscillatorwith prescaler[J]. IEEE Journal of Solid-State Circuits,1995,30(12):1474-1482
    [108] J. Craninckx, M. S. J. Steyaert. A1.8-GHz low-phase-noise CMOS VCO using optimizedhollow spiral inductors[J]. IEEE Journal of Solid-State Circuits,1997,32(5):736-744
    [109] M. Tiebout. Low-power low-phase-noise differentially tuned quadrature VCO design instandard CMOS[J]. IEEE Journal of Solid-State Circuits,2001,36(7):1018-1024
    [110] N. M. Nguyen and R. G. Meyer. Start-up and frequency stability in high-frequencyoscillators[J]. IEEE Journal of Solid-State Circuits,1992,27(5):810-820
    [111] U. L. Rohde, D. P. Newkirk. RF/microwave circuit design for wireless applications[M]. NewYork: John Wiley,2000,125-127
    [112]刘兰村.钽酸锂晶体宽带滤波器[J].电讯技术,1991,31(4):43-47
    [113] M. M. Driscoll, C. R. Vale, R. W. Weinert. Measurement of flicker noise in high-Q, LithiumTantalate, bulk wave resonators[C]. IEEE Ultrasonics Symposium,1987,347-352
    [114] J. Everard. Low phase noise oscillators: theory and application[C].2009IEEE InternationalFrequency Control Symposium Joint with the22nd European Frequency and Time Forum,338-343
    [115] U. L. Rohde, A. K. Poddar. A novel voltage controlled crystal oscillator (VCXO)[C].2009IEEE International Frequency Control Symposium Joint with the22nd European Frequencyand Time Forum,470-477
    [116] J. R. Vig, Y. Kim. Noise in microelectromechanical system resonators[J]. IEEE Transactionson Ultrasonics, Ferroelectrics, and Frequency Control,46(6):1558-1565
    [117] X. H. Huang, D. Liu, Y. Wang, et al. Precise derivation for the equivalent circuit parameters ofa crystal resonator with series capacitor[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,2012,59(6):1316-1317
    [118]吴培才,刘进忙,胡国平.温度补偿晶体振荡器[J].北京:国防工业出版社,1994,23-27
    [119] J. R. Vig, R. L. Filler. Temperature stable crystal oscillator[J]. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1995,42(4):797-799
    [120] D. V. Bogomolov, R. Boroditsky. Low phase noise UHF TCXO[C].2005IEEE InternationalFrequency Control Symposium,509-511
    [121] X. H. Huang, W. Wei, F. Tan, et al. Microcontroller compensated overtone TCXO with lowphase noise characteristic[C].2008IEEE International Frequency Control Symposium,829-832
    [122] X. H. Huang, W. Wei, F. Tan, et al. An improved overtone crystal oscillator withmicroprocessor temperature compensation[C].2006IEEE International Frequency ControlSymposium,217-220
    [123] X. H. Huang, W. Wei, F. Tan, et al. Design for a low phase noise overtone TCXO[C].2007IEEE International Frequency Control Symposium Joint with the21st European Frequencyand Time Forum,246-249
    [124]王艳,黄显核,闫立群,等.高精度低噪声集成温度补偿晶体振荡器[J].压电与声光,2010,32(6):909-911
    [125] W. L. Smith, W. J. Spencer. Precision crystal frequency standards[C].15th AnnualSymposium on Frequency Control,1961,139-155
    [126] R. L. Filler. The effect of vibration on frequency standards and clocks[C].35th AnnualSymposium on Frequency Control,1981,31-39
    [127] R. L. Filler. The acceleration sensitivity of quartz crystal oscillators: a review[J]. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,1988,35(3):297-305
    [128] E. I. Rivin. Passive vibration isolation[M]. New York: ASME Press,2003,48-49
    [129] W. T. Thomson. Theory of vibration with applications[M]. Englewood Cliffs, N.J.:Prentice-Hall,1981,14-29
    [130]王艳,黄显核,钱智超.晶体振荡器双层隔振系统的设计与实验[J].压电与声光,2011,33(1):93-95
    [131] D. Salt. Handbook of quartz crystal device[M]. England: Van Nostrand Reinhold (UK)Company,1987,104
    [132] V. E. Bottom. Introduction of quartz crystal unit design[M]. New York: Van Nostrand ReinholdCompany,1982,109
    [133] W. Shockley, D. R. Curran, D. J. Koneval. Energy trapping and related studies of multipleelectrode filter crystals[C].17th Annual Symposium on Frequency Control,1963,88-126
    [134] M. M. Driscoll. Oscillator AM-to-FM noise conversion due to the dynamic frequency-drivesensitivity of the crystal resonator[C].2008IEEE International Frequency Control Symposium,672-676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700