IEEE 802.16e宽带无线移动通信网中节能控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着Internet的迅速发展和个人对数据通信需求的急速增长,全球计算机网络和通信技术的发展逐渐呈现三大趋势:无线化、宽带化和IP化。同有线接入系统一样,无线接入系统经历了由窄带到宽带,由面向语音业务到面向数据、多媒体业务的转变。在众多的宽带技术中,以IEEE802.16e(移动WiMAX)为代表的宽带无线移动通信网络技术成为近年来通信技术领域的最大亮点,是构成未来通信网络技术的重要组成部分。
     在宽带无线移动通信网中,如何控制能量消耗延长以电池为主要能量供给的移动终端的使用时间是实现“宽带移动化”必须要解决的核心议题之一。论文围绕IEEE802.16e的无线通信协议展开移动终端的节能研究,分别针对高业务量、低业务量以及多业务连接并存等不同应用场景,分别给出了有效的节能控制策略,同时基于OPNET仿真平台实现了节能机制的建模与仿真。
     论文的主要工作包括以下几个方面:
     1、针对IEEE802.16e的节能类型Ⅰ,提出了一种基于幂函数增长的统一节能控制机制,通过设置增长因子调节休眠模式中休眠间隔的增长幅度,全面分析了不同休眠间隔增长趋势以及不同的休眠参数值对休眠性能的影响。实验得出,增长因子a=2的幂函数增长算法相比IEEE802.16e协议中建议的指数递增算法在能耗与延时方面能同时取得较大改进。
     2、针对在低业务场景中,采用休眠间隔从小到大递增变化的休眠模式会产生过多的休眠周期,导致消耗过多的监听与切换能耗,同时也会造成较大的数据包的等待延时,降低了服务质量等问题,基于下行链路数据包到达时间间隔的实时预测,提出了一种基于流量预测动态调整休眠参数的节能机制(P-PSCI),并分别采用幂函数递减、指数递减与线性递减三种不同的休眠间隔递减趋势给出了三种P-PSCI休眠模式算法:PSCI-PFD、PSCI-ED与PSCI-LD。仿真实验表明,由于考虑了业务流量模式与速率变化,P-PSCI在终端能耗与延时两方面都得到了同时改善,并且得出a=-2的幂函数递减休眠算法取得了最好的性能表现。
     3、针对移动终端有多业务连接同时并存时,由于各连接上休眠模式操作中的侦听间隔不同步,从而降低了移动终端的实际节能效果,提出了一种参数集归一化优化策略:Multi-PSC。该优化策略通过同步所有业务连接的侦听间隔,实现移动终端的最大节能。针对移动站点仅有PSCⅠ业务连接并存、仅有PSCⅡ业务连接并存以及多种PSC Ⅰ与PSC Ⅱ业务混合并存三大典型应用场景,基于Multi-PSC分别提出了三种节能操作机制:Multi-PSCI, Multi-PSCII和Multi-PSCI&Ⅱ。分析表明,Multi-PSC不仅大幅度提高了多业务并存时移动终端的节能效率,同时还降低了数据包的额外延时。
     4、在休眠模式算法研究基础上,针对目前现有主流仿真平台都没有提供对IEEE802.16e节能机制的仿真支持,采用OPNET三层建模机制,通过扩展OPNET WiMAX MAC进程模型,设计与实现了IEEE802.16e节能机制的仿真模块,为IEEE802.16e节能机制的研究提供了公平与可信的仿真环境。
     论文对IEEE802.16e移动终端在通信协议层面的节能控制进行了深入研究,针对不同业务量分别提出了统一的基于幂函数增长的节能控制策略与基于预测的节能控制机制,针对移动终端多业务并存下的节能,提出了参数集归一化优化策略Multi-PSC,并基于OPNET设计与实现了休眠模式仿真平台,这些研究成果在移动WiMAX中具有良好的应用前景,对移动终端节能机制的研究有着重要的促进意义。
With the rapid development of Internet and the growth of personal need for data communication, the development of global computer networks and communication technologies presents three major trends: wireless, broadband and IP-based. Just as the wired access system, the wireless access system has transformed from narrowband to broadband, voice service orientation to data, multimedia service orientation. Among the large number of broadband technologies, the mobile broadband wireless communication network technology established by the IEEE802.16e (Mobile WiMAX) has become the most impressive highlight of the communication technology field. Moreover, it is also playing an important part in the next generation communication network technology.
     In the mobile broadband wireless communication network, how to ensure the quality of service of communication when a mobile terminal moves between different base stations, and control the energy consumption powered mainly by battery to prolong the standby time are crucial issues for mobile broadband. In order to reduce the power consumption of a mobile station and the air interface resource utilization of serving base stations, this dissertation mainly focus on providing different power-saving control strategies for mobile terminals in the IEEE802.16e mobile broadband wireless communication network under different conditions, such as high-speed traffic business, low traffic business and the co-existence of multi-traffic services. Meanwhile, the modeling and simulation for power-saving mechanism of mobile terminals has been implemented based on the OPNET simulation platform.
     The main contributions of this dissertation are presented as follows:
     1. To improve the power saving class of type I (PSC I) proposed by IEEE802.16e for NRT-VR and Best Effort (BE) services, this dissertation presents a unified power saving mechanism based on power-increasing function. In particular, the proposed mechanism can combine with several existing classical sleep mode algorithms by adjusting the sleep interval with growth factor. Furthermore, the impact to sleep performance from different sleep parameter values and the growth trend of different sleep intervals has been studied thoroughly. Experiment results show that, power-increasing function with growth factor a setting to2(a=2) achieves considerable improvement in both energy saving and packet delay of mobile terminals compared with the recommended exponential-increasing function in IEEE802.16e.
     2. In the low traffic condition, the sleep mode in which a sleep cycle always increases from the fixed minimum sleep interval to the maximum sleep interval based on binary exponential increasing can generate unnecessarily high number of sleep cycles, thus leading to excessive listening and switching power consumption. In addition, arriving packets may fall into a relatively long sleep interval, causing a longer packet delay, which eventually reduces the quality of service. Thus a novel and highly efficient power saving mechanism P-PSCI is proposed that can dynamically adjust the values of sleep parameters based on the real-time prediction of the downlink inter-packet interval. In addition, the dissertation proposes three P-PSCI sleep mode algorithms for different adjustment functions:the power-function decreasing sleep algorithm PSCI-PFD, the exponential decreasing sleep algorithm PSCI-ED and the linear decreasing sleep algorithm PSCI-LD. Simulation results and theoretical analysis reveal that the P-PSCI can achieve much better results on reducing the power consumption and the packet delay due to the consideration of the traffic characteristics and rate changes, compared with the other sleep mode algorithms. Moreover, the power-function decreasing sleep algorithm (a=-2) achieves the best performance in both power saving and delay reducing.
     3. With multiple services existing on the mobile stations, the listening intervals in each sleep mode operation are not synchronized all the time. Thus this can bring out some negative impact on the actual energy-saving efficiency of the mobile terminal. To resolve this problem, this dissertation proposes a parameter set optimization strategy (Multi-PSC) that synchronizes all the connected listening intervals while different service connections coexist to achieve maximum energy saving of mobile terminals. In addition, the dissertation also establishes three corresponding parameter set optimization strategies:Multi-PSCI, Multi-PSCII and Multi-PSCI&PSCII, for the three typical scenarios of multiple connections co-existence:co-existence of multiple PSCI connections, co-existence of multiple PSCII connections of, and the co-existence of multiple PSCI and PSCII connections. Theoretical analysis and simulation experiments show that the Multi-PSC mechanism not only greatly improves the energy-saving efficiency of mobile terminals when multiple service connections exist, but also reduces the additional packet delay.
     4. Since the current mainstream simulation platforms do not offer simulation support for IEEE802.16e sleep mode, we adopt three-layer modeling mechanism of OPNET design and implement the simulation module of the IEEE802.16e sleep mode by extending OPNET WiMAX MAC process model, thus providing a convenient, fair, and credible simulation environment for the sleep mode.
     The dissertation performed an in-depth research on IEEE802.16e mobile terminal power-saving control strategy, and proposed a unified power saving mechanism based on the power function growth and power saving mechanism based on prediction for the PSCI, respectively. Moreover, the dissertation established parameter sets optimization strategy, Multi-PSC, for power saving of multiple service connections co-existence. Furthermore, it also designed and implemented the sleep mode simulation platform based on OPNET. These research findings not only have excellent application prospects for mobile WiMAX, but also entail impressive significance for future energy-saving research towards mobile terminals.
引文
[1]罗军舟,吴文甲,杨明.移动互联网:终端、网络与服务[J].计算机学报,2011,34(11):2029-2051.
    [2]Morgan Stanley Research. Mobile Internet Research Report [R]. New York: Morgan Stanley,2009.
    [3]中国互联网络信息中心.第29次中国互联网络发展状况统计报告[EB/OL]. http://www.cnnic.cn/research/bgxz/tjbg/201201/P020120118512855484817.pd f,2012.
    [4]Kuran M S, Tugcu T. A survey on emerging broadband wireless access technologies [J]. Computer Networks,2007,17(3):203-215.
    [5]IEEE Std.802.16-2004, IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems [S], IEEE,2004.
    [6]IEEE 802.16e/D 10-2005, Part 16:Air interface for fixed and mobile broadband wireless access systems-Amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands [S]. IEEE,2005.
    [7]ITU-R M.2012, Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications Advanced (IMT-Advanced) [R]. ITU,2012.
    [8]Ahmadi S. An overview of next-generation mobile WiMAX technology. IEEE Communications Magazine,2009,47(6):84-98.
    [9]Kim T, Lee J, Cha H, et al. An energy-aware transmission mechanism for WiFi-based mobile devices handling upload TCP traffic. International Journal of Communication Systems,2009,22(5):625-640.
    [10]Rahmati A. Zhong L. Context-for-wireless:context-sensitive energy-efficient wireless data transfer [C]. In Proceedings of the 5th International Conference on Moblie Systems, Applications and Services (MobiSys 2007), Puerto Rico, 2007:165-178.
    [11]Lee J, Rosenberg C, Chong E K P. Energy efficient schedulers in wireless networks:Design and optimization [J]. Mobile Networks and Applications, 2006, 11(3):377-389.
    [12]Vallerio K S, Zhong L, Jha N K. Energy-efficient graphical user interface design [J]. IEEE Transactions on Mobile Computing,2006,5(7):846-859.
    [13]Shih E, Bahl P, Sinclair M J. Wake on wireless:an event driven energy saving strategy for battery operated devices [C]. In Proceedings of the 8th Annual International Conference on Molibe Computing and Networking (MobiCom 2002). Atlanta,2002:160-171.
    [14]Zhao X, Guo Y, Feng Q et al. A system context-aware approach for battery lifetime prediction in smart phones [C]. In Proceedings of the 2011 ACM Symposium on Applied Computing, Taiwan,2011:641-646.
    [15]Benini L, Bogliolo A, De Micheli G A survey of design techniques for system-level dynamic power management [J]. IEEE Transactions on Very Large Scale Intergration (VLSI) Systems,2000,8(3):299-316.
    [16]Chiasserini C F, Rao R R. Improving energy saving in wireless systems by using dynamic power management [J]. IEEE Transaction on Wireless Communications,2003,2(5):1090-1100.
    [17]Min J, Cha H, Ha R. System-level integrated power management for handheld systems [J]. Microprocessors and Microsystems,2009,33(3):201-210.
    [18]Kohei Iseda, Tetsumei Tsuruoka, Tsuguo Kato. Power consumption control technology in WiMAX MAC layer [J]. FUJITSU SCI. TECH. J.,2008, 44(3):256-263.
    [19]Kim B, Park J, Choi Y H. Power saving mechanisms of IEEE 802.16e:Sleep Mode vs. Idle Mode [J]. Lecture Notes in Computer Science,2006,4331: 332-340.
    [20]Baek S, Son J J, Dae C B. Performance analysis of Push-to-Talk over IEEE 802.16e with sleep mode and idle mode [C]. In Proceedings of ISPA'06. Sorrento, Italy,2006:332-340.
    [21]Jang J, Han K, Choi S. Adaptive power saving strategies for IEEE 802.16e mobile broadband wireless access [C]. In Proceedings of Asia-Pacific Conference on Communications (APCC 2006),2006:1-5.
    [22]Han K, Choi S. Performance analysis of sleep mode operation in IEEE 802.16e mobile broadband wireless access systems [C]. In Proceedings of 63rd IEEE VTC 2006-Spring,2006:1141-1145
    [23]Sanghvi K, Jain P K, Lele A, et al. Adaptive waiting time threshold estimation algorithm for power saving in sleep mode of IEEE 802.16e [C]. In Proceedings of International Conference on Communication System Software and Middleware (IEEE COMSWARE 2008), Bangalore, India,2008:334-340
    [24]Yang X. Energy saving mechanism in the IEEE 802.16e wireless-MAN [J]. IEEE Communications Letters,2005,9 (7):595-597.
    [25]刘利,李津生,洪佩琳.IEEE 802116e休眠模式算法的研究和改进,计算机学报,2007,30(1):146-152.
    [26]Ge Y, Kuo G S. An efficient sleep mode management Scheme in IEEE 802.16e networks [C]. In Proceedings of IEEE International Conference on Communications (ICC 2007), Glasgow, Scotland,2007.
    [27]JEONG D G, JEON W S. Performance of adaptive sleep period control for wireless communications systems [J]. IEEE Transactions on Wireless Communications,2006,5(11):3012-3016.
    [28]唐朝伟,邵艳清,刘鹏军,等.IEEE802.16e休眠间隔增长算法[J].华中科技大学学报:自然科学版,2009,(9):21-24.
    [29]Almhana J, Liu Z, Li C, et al. Traffic estimation and power saving mechanism optimization of IEEE 802.16e Networks[C]. In Proceedings of IEEE International Conference on Communications (ICC 2008),2008:322-326.
    [30]Chen Tuan-che, Chen Ying-yu, Chen J. An eficient energy saving mechanism for IEEE 802.16e wireless MANs [J]. IEEE Transactions on Wireless Communications,2008,7(10):3708-3712.
    [31]Chen Tuan-che, Chen J, Chen Ying-yu. Maximizing unavailability interval for energy saving in IEEE802.16e wireless MANs [J]. IEEE Transactions on Mobile Computing,2009,8(4):475-487.
    [32]Chen Tuan-che, Chen J. Extended maximizing unavailability interval (eMUI): maximizing energy saving in IEEE 802.16e for mixing type I and type II PSCs [J]. IEEE Communications Letters,2009,13(2):151-153.
    [33]Zheng Si-xian, Wang Kuo-chen, Tsao Shiao-Li, et al. Enhanced sleep mode operations for energy saving in IEEE 802.16e [J]. Lecture Notes in Computer Science,2007,4809:261-272.
    [34]朱斌,薛开平,洪佩琳,卢汉成.COPS:802.16e中一种协作节能算法[J].电子学报,38(7),2010:1683-1687.
    [35]吕绍荣.应用于IEEE 802.16移动无线城域网休眠模式参数设定的智慧策略[D].台湾:国立中央大学,2007.
    [36]Choi H H, Lee J R, Cho D H. Hybrid power saving mechanism for VoIP services with silence suppression in IEEE 802.16e systems [J]. IEEE Communications Letters,2007,11(5):455-457.
    [37]Wu Yi, Le Yan-qun, Zhang Dong-mei. An enhancement of sleep mode operation in IEEE 802.16e systems[C]. In Proceedings of Vehicular Technology Conference (VTC2009),2009:1-6.
    [38]薛建彬,袁占亭.一种新颖的IEEE 802.16e休眠机制[J].兰州理工大学学报,2008,34(2):91-95.
    [39]薛建彬,朱延峰,袁占亭.一种适配数据速率的IEEE 802.16e休眠机制算法[J].吉林大学学报:工学版,2009,39,(2):519-524.
    [40]唐朝伟,傅明怡,邵艳清,等.IEEE802.16e的新型节能机制分析与仿真[J].重庆大学学报:自然科学版,2009,32(1):100-104.
    [41]Kim M G, Choi J Y, Kang Minho. Adaptive power saving mechanism considering the request period of each initiation of awakening in the IEEE 802.16e system [C]. IEEE Communications Letters,2008,12(2):106-108.
    [42]Jung W J, Ki H J, Lee T J, et al. Adaptive sleep mode algorithm in IEEE 802.16e [C]. In Proceedings of Asia-Pacific Conference on Communications (APCC 2007).,2007:483-486.
    [43]Vatsa O J, Raj M, Ritesh K, et al. Adaptive power saving algorithm for mobile subscriber station in 802.16e [C]. In Proceedings Of IEEE Communication Systems Software and Middleware (COMSWARE 2007),2007:1-7.
    [44]Niu Zhi-sheng, Zhu Yan-feng, Benetis Vilius. A phase-type based Markov chain model for IEEE 802.16e sleep mode and its performance analysis[C]. In Proceedings of 20th International Teletraffic Congress (ITC 2007), Ottawa, Canada,2007:17-21.
    [45]Zhang Yan, Fujise Masayuki. Energy management in the IEEE 802.16e MAC [J]. IEEE Communications Letters,2006,10 (4):311-313.
    [46]Xiao Jun-feng, Zou Shi-hong, Ren Biao, et al. An enhanced energy saving mechanism in IEEE 802.16e [C]. In Proceedings of IEEE GLOBECOM 2006, California, USA,2006:1-5.
    [47]XU Fang-min, ZHONG Wei, ZHOU Zheng. A novel adaptive energy saving mode in IEEE 802.16e system [C]. In Proceedings of IEEE Military Communications Conference (MILCOM 2006),2006:1-6.
    [48]Kim M G, Kang M, Choi J Y. Performance evaluation of the sleep mode operation in the IEEE 802.16e MAC [C]. In Proceedings of 9th International Conference on Advanced Communication Technology (ICACT 2007), Gangwon-Do, Korea,2007:602-605.
    [49]Seo J B, Lee S Q, Park N H, et al. Performance analysis of sleep mode operation in IEEE802.16e [C]. In Proceedings of IEEE 60th Vehicular Technology Conference (VTC 2004),2004:1169-1173.
    [50]Zhang Yan. Performance modeling of energy management mechanism in IEEE 802.16e mobile WiMAX [C]. In Proceedings of IEEE Communications and Networking Conference (WCNC 2007), Kowloon, China,2007:3205-3209.
    [51]Park Y, Hwang G. Performance modelling and analysis of the sleep-mode in IEEE802.16e WMAN [C]. In Proceedings of 65th IEEE Vehicular Technology Conference (ICACT 2007), Dublin, Ireland,2007:2801-2806.
    [52]Casilari E, Gonzalez F J, Sandoval F. Modeling of HTTP traffic [J], IEEE Communications Letters,2001,5(6):272-274.
    [53]Crovella M E, Bestavros A. Self-similarity in World Wide Web traffic: Evidence and possible causes [J]. IEEE/ACM Transactions on Networking, 1997,5(6):835-846.
    [54]吴援明,宁正容,梁恩志.网络自相似业务模型进展[J].通信学报,2004,25(3):97-104.
    [55]石江涛,王永纲,戴雪龙,等.自相似网络业务流量的研究与实现[J].通信学报,2005,26(6):112-118.
    [56]施建俊,诸鸿文.Pareto分布在客户端流量建模中的应用[J].计算机研究与发展,2000,37(6):746-751.
    [57]邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12)::1645-1652.
    [58]张树京,齐立心.时间序列分析[M].北京:清华大学出版社,2003.
    [59]张宏莉,方滨兴,胡铭曾等.Internet测量与分析综述[J].软件学报,2003,14(1):110-116.
    [60]邹柏贤,姚志强.一种网络流量平稳化方法[J].通信学报,2004,25(8):14-23.
    [61]袁小坊,陈楠楠,王东,谢高岗,张大方,城域网应用层流量预测模型,计算机研究与发展,Vol.46, No.3,2009:434-442.
    [62]徐科,徐金梧,班晓娟.基于小波分解的某些非平稳时间序列预测方法[J].电子学报,2001,29(4):566-568.
    [63]Tseng Y C, Chen J J, Yang Y C. Managing power saving classes in IEEE 802.16 wireless MANs:A fold-and-demultiplex method [J]. IEEE Transactions on Mobile Computing,2011,10 (9):1237-1247.
    [64]Kong L, Tsang H K. Performance study of power saving classes of type Ⅰ and Ⅱ in IEEE 802.16e [C]. In Proceedings of 31st IEEE Conference on Local Computer Networks (LCN 2006), Tampa, FL, United states,2006:20-27.
    [65]Kwon S W, Cho D H. Modeling and analysis for the coexistence of PSC Ⅰ and PSC Ⅱ in the IEEE 802.16e system [C]. IEEE International symposium on persernal indoor and mobile radio communications (PIMRC 2010), Istanbul, Turkey,2010:1487-1492.
    [66]刘波,安娜,黄旭林.WiMAX技术与应用祥解[M].北京:人民邮电出版社,2007.
    [67]ITU-R M.1034-1. Requirements for the radio interface(s) for international mobile telecommunications-2000 (IMT-2000) [S], ITU,1997.
    [68]Wireless MAN Working Group [OL]. http://wirelessman.org.
    [69]Zhang Yan, Chen Hsiao-Hwa.构建宽带无线城域网的移动WiMAX技术[M].李赞,蔡觉平,陈小军,等译.北京:电子工业出版社,2009.
    [70]Etemad K. Overview of mobile WiMAX technology and evolution [J]. IEEE Communications Magazine,2008,46(10):31-40.
    [71]WiMAX Forum. Technical activities and working groups [EB/OL].2011. http://www.wimaxforum.org/about/technical-activities-and-workin g-groups.
    [72]Wan Li-hua, Ma Wen-chao, Guo Zi-hua. A cross-layer packet scheduling and subchannel allocation scheme in 802.16e OFDMA system [C], IEEE Conference on Wireless Communications and Networking Conference (WCNC 2007), Kowloon, China,2007:1865-1870.
    [73]Chaari L, Kamoun L. An overview of mobility management over IEEE802.16e [C]. International Conference on Telecommunications (ICT2009), Marrakech, Morocco,2009:334-339.
    [74]Xhafa A E, Kangude S, Lu X L. MAC performance of IEEE 802.16e [C]. In Proceedings of 61st IEEE Vehicular Technology Conference (VTC-2005), Stockholm, Sweden,2005:685-689.
    [75]Cicconetti C, Lenzini L, Mingozzi E. Quality of Service support in IEEE 802.16 networks [J]. IEEE Network,2006,20(2):50-55.
    [76]Liu Q W, Wang X, Giannakis G B. A cross-layer scheduling algorithm with QoS support in wireless networks [J]. IEEE Transactions on Vehicular Technology, 2006,55(3):839-847.
    [77]Li B, Qin Y. Low C P, et al. A Survey on Mobile WiMAX [J], IEEE Communications Magazine,2007,45(2):70-75.
    [78]Chen Jian-feng, Jiao Wen-hua, Wang Hong-xi. A service flow management strategy for IEEE 802.16 broadband wireless access systems in TDD mode [C]. In Proceedings of IEEE International Conference on Communications (ICC 2005), Seoul, Korea,2005:3422-3426.
    [79]Wang Li-lei, Xu Hui-min. A new management strategy of service flow in IEEE 802.16 systems [C]. In Proceedings of 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA2008), Singapore,2008:1716-1719.
    [80]郑海英.IEEE 802.16标准关键技术和WiMAX的组网应用[J].电信工程技术与标准化,2008,21(5):5-12.
    [81]Kim M G, Choi J Y, Kang M. Enhanced power saving mechanism to maximize operational efficiency in IEEE 802.16e systems [J]. IEEE Transactions on Wireless Communications,2009,8(9):4710-4719.
    [82]Cho S, Kim K. Improving power savings by using adaptive initial-sleep window in IEEE 802.16e [C]. In Proceedings of IEEE Vehicular Technology Conference (VTC 2007), Dublin, Ireland,2007:1321-1325.
    [83]Leland W E, Taqqu M S, Willinger W, et al. On the self-similar nature of Ethernet traffic [J]. IEEE/ACM Transactions on Networking,1994,2(1):1-15.
    [84]Paxson V, Floyd S. Wide area traffic:the failure of poisson modeling [J]. IEEE/ACM Transaction on Networking,1995,3(3):226-244.
    [85]Erramilli A, Narayan O, Willinger W. Experimental queueing analysis with long-range dependent packet traffic [J]. IEEE/ACM Transaction on Networking,1996,4(2):209-223.
    [86]Sang A, Li S. A predictability analysis of network traffic [J]. Computer Networks,2002,39(4):329-345.
    [87]Willinger W, Paxson V, Riedi R H. Theory and application of long_range dependence [M]. Bosten, Birkhauser,2003:625-716.
    [88]Heffes H, Lucantoni DM. A Markov modulated characterization of packetized voice and data traffic and related satistical multiplexer performance [J]. IEEE Journal on Selected Areas in Communications,1986,4(6):856-868.
    [89]Zou B X, Liu Q. ARMA-based traffic prediction and overload detection of network [J]. Jouunal of Computer Research and Development,2002, 39(12):1645-1652.
    [90]Kokoszka P S, Taqqu M S. Fractional ARIMA with stable innovations [J]. Stochastic Processes and their Applications.1995,60(1):19-47.
    [91]Park K, Willinger W. Self-similar network traffic and performance evaluation [M]. New York, Wiley,2000.
    [92]You C, Chandr A K. Time series models for Internet data traffic [C]. In Proceedings of 24 Conference on Local Computer Networks (LCN 1999), Hawaii, USA,1999:164-171.
    [93]Jiang M, Wu C M, Zhang M. Research on the comparison of time series models for network traffic prediction [J]. Acta Electronica Sinica,2009,37(11): 2353-2358.
    [94]王建新,肖雪峰,高文宇.小时间粒度网络流量自回归预测分析.计算机工程与应用,2005,41(26):129-132.
    [95]Choi B Y, Park J, Zhang Z K. Adaptive random sampling for traffic load measurement in communications[C]. IEEE International Conference on Communications (ICC 2003), Anchorage, AK, United states,2003:1552-1556.
    [96]Gottman J M. Time-series analysis [M]. Cambridge University Press,1981.
    [97]Lu S F, Wang J X, Liu Y. Modeling and simulation of power saving mechanism for IEEE 802.16e mobile WiMAX [J]. International Journal of Advancements in Computing Technology,2011,3(11):418-425.
    [98]Chen J, Wang C C, Tsai F C D, et al. The design and implementation of WiMAX module for ns-2 simulator [C], In Proceeding from the 2006 workshop on ns-2:the IP network simulator, Pisa, Italy,2006.
    [99]Rouil R. The network simulator NS-2 NIST add-on:IEEE 802.16 model (MAC+PHY) [EB/OL].2007, www.antd.nist.gov.
    [100]WiMAX Forum. The network simulator NS-2 MAC+PHY add-on for WiMAX [EB/OL],2008, http://www.wimaxforum.org.
    [101]Freitag J, Da F, Nelson L S. Wimax module for the ns-2 simulator [C]. In Proceedings of 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (PMRC 2007), Athens, Greece,2007:1-6.
    [102]Lei K, Tsang D H K. Optimal selection of power saving classes in IEEE 802.16e [C]. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2007), Kowloon, China,2006:1838-1843.
    [103]Lu S F, Wang J X, Kuang Y J, et al. An efficient power saving mechanism for sleep mode in IEEE 802.16e networks [C]. In Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC 2010). Caen, France,2010:916-920.
    [104]Chen You-Lin, Tsao Shiao-Li. Energy-efficient sleep-mode operations for broadband wireless access systems [C]. In Proceedings of 64th Vehicular Technology Conference (VTC-2006), Montreal, QC, Canada,2006:1112-1116.
    [105]OPNET Technologies. OPNET Modeler documentation [EB/OL].2011, http://www. opnet. com.
    [106]李笑歌,宇伟,高尚伟.基于OPNET软件的数据网络建模与仿真研究[J].系统仿真学报,2006,18(9):2653-2656.
    [107]李献昌,刘凯,张军.S-TDMA协议点到点通信的仿真研究[J].系统仿真学报,2007,19(13):3076-3079.
    [108]张铭,窦赫蕾,常春藤等.OPNET Modeler与网络仿真[M].北京:人民邮电出版社,2007.
    [109]张有志,裴廷睿,王亚兰,郭德智.UMTS中WWW无线业务建模[C].第26届中国控制会议,2007,553-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700