无线网络MAC层接入控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线网络的飞速发展和多媒体业务的广泛应用,彻底改变了人们的生活和社会形态,同时人们对无线网络服务质量的要求也越来越高,因此对无线网络的研究具有挑战性和实用性。MAC层是实现无线网络信道稳定、高效共享的基础,对网络整体性能起着决定性的影响,因此对无线网络MAC层的研究具有实际意义和应用前景。本文围绕无线网络MAC层接入进行展开,主要从无线局域网和认知无线电网络MAC层的性能特征,拥塞控制,模型分析及跨层设计等几个方面进行了深入的研究。
     本文的主要贡献如下:
     1.对现有DCF和EDCA协议的性能仿真和模型分析
     针对现有无线基站瓶颈带宽的问题,在不改变现有IEEE802.11DCF协议前提下,本文提出基于无线网络MAC层参数的TCP/AQM跨层流体模型,并通过2-DLaplace-z变换进行时滞系统的稳定性分析,得到了系统稳定的充分条件。通过稳定条件计算网络稳定时的最佳用户数范围。仿真结果表明根据本文所给定理可计算出最佳用户数范围,保证了TCP流的稳定性和公平性,提高了网络性能。
     针对参数设置所导致的现有EDCA机制失效问题,本文深入研究了IEEE802.11e EDCA机制重要参数及性能模型,主要从CFB模式、能量及混合流等性能对现有EDCA机制进行了模型分析与仿真,通过实验验证了网络参数对不同优先级用户流的影响,合理的网络参数取值才能保障不同优先级业务的服务质量。
     2.对DCF协议混合流接入的改进设计方案
     针对IEEE802.11DCF协议混合流接入时出现的转发延迟和系统缓存开销较大问题,本文提出一种TCP/UDP混合流的IEEE802.11DCF协议改进方案及理论模型。改进的DCF协议根据TCP/UDP包长调整MAC帧大小为包长的整数倍,避免TCP/UDP混合流转发时因丢包重发而导致的延迟增加问题。仿真结果表明改进的DCF协议可提高无线基站对TCP/UDP混合流的接入吞吐量,减小TCP/UDP混合流转发的延时。
     3.对认知无线电网络MAC层接入协议的研究
     针对带宽频繁变化导致的认知用户性能低下问题,本文提出了认知退避算法,即认知用户可根据信道繁忙率实时调整退避窗口。首先给出了基于信道繁忙率的认知无线电网络MAC层数学模型,再通过网络吞吐量最大值计算最佳退避窗口,最后每个认知用户可根据信道拥塞状态自适应调整退避窗口。该方法大大减少了因二进制指数退避带来的等待和碰撞问题,提高了认知用户性能。NS2仿真结果证明该方法可明显提高认知用户性能。
     针对信道切换或中断引起的认知用户性能低下问题,本文基于DCF机制提出在链路切换或中断时采用冻结缓存机制,即冻结节点当前退避计时器并缓存当前状态信息。当认知用户重新获得信道接入机会时,可直接读取缓存的信息继续之前的操作,减少因重新竞争信道所带来的碰撞和延时问题,并提高系统吞吐量。NS2仿真结果验证了该方法的有效性。
     4.基于认知无线电网络MAC层的跨层设计
     针对有线网络不支持认知功能、授权用户的端到端QoS得不到保证问题,本文首先结合认知无线电网络的特点,提出认知无线电网络的网络架构及MAC层接入控制协议(CRMAC);然后匹配CRMAC与DiffServ的优先级及相关参数,所提出的认知缘路由器采用授权用户和认知用户区分丢包机制。这种跨层设计的系统结构为认知无线电网络提供端到端的分级服务,保护授权用户及其实时业务的同时,提高网络整体性能。NS2仿真结果表明该方法能够真正保证认知无线电网络的端到端QoS。
With the rapid development of wireless network and wide applications of multimedia business, people's lives and social patterns have been changed completely, at the same time, people have increasingly demand for high Quality of Service (QoS) of wireless network, so it makes research of wireless network more challenging and useful. The MAC layer is the basis of achieving the stability and the efficient of the channel in the wireless network, and it have a decisive impact on the overall network performance, so it has a practical significance and application prospects for the research on the MAC layer in wireless network. This paper focuses on the wireless network MAC layer access, and it expands from the performance characteristics, congestion control, model analysis and the cross-layer design etc. aspects for further research between the MAC layer in the Wireless Local Area Networks (WLAN) and the Cognitive Radio Network (CRN).
     The main contribution of this paper is as follows:
     1. Performance simulation and model analysis for DCF and EDCA protocol
     Study on the bottleneck bandwidth of current wireless base station, premise without changing the existing IEEE802.11DCF protocol, this paper proposes TCP/AQM fluid model based on MAC parameters of wireless network, and uses the2-D Laplace-z transform for the stability analysis of the time-delay system, which obtains the sufficient condition of system stability, and through the stability conditions we can get the best range of users. The simulation results show that the given theorem of this paper can calculat the best range of users, which ensures the stability and fairness of TCP, and improves the network performance.
     Against the problem that existing EDCA mechanism failurs causing by the parameter settings, this paper further researches the important parameters and performance model of the IEEE802.11e EDCA mechanism, the model analysis and simulation of the existing EDCA mechanism mainly from CFB mode, energy and mixed flow performance, and we verifies the effect of different priority user flows by network parameters, reasonable network parameter values can protect the QoS of different priority business.
     2. Improved design for the DCF protocol with hybrid flows
     Study on the problem that forwarding delay and the system cache overhead are larger when hybrid flows access channel with IEEE802.11DCF protocol, this paper proposes the improved scheme and theoretical model of the IEEE802.11DCF protocol with TCP/UDP hybrid flows. The improved DCF protocol can adjust the MAC frame size to an integer multiple of the packet length based on TCP/UDP packet length, that can avoid the increasing delay of TCP/UDP hybrid flow triggered retransmission. The simulation results show that the the improved DCF protocol can improve the access throughput of the wireless base station and reduce the forwarded delay of TCP/UDP hybrid flows.
     3. Research on the MAC layer access protocol for the cognitive radio network
     For the low performance problem of Cognitive Radio User (CRU) that leaded by bandwidth changed frequently, this paper proposes the cognitive backoff algorithm that CRUs can adjust the backoff window according to the channel busy rate. We gives the mathematical analysis model of CRN MAC layer based on the channel busy radio firstly, then we can compute the optimal value of backoff window through the maximum throughput value, each coginitive radio user can adjust the backoff window according by the channel busy state lastly. The method can decrease the wait and collision problem bring by BEB,which can improve the performance of CRU. Simulation results of NS2show that the method can protect improve the performance of CRU greatly.
     For the poor performance problem of CRU caused by channel switching or channel interruption. This paper proposes that uses freezing and buffer mechanism based on DCF protocol when the channel is switched and interrupted, that is freezing the backoff timer of node and caching the current state of information. Once the CRU regains the access opportunity, the CRU node will read the cache information and continue operation, which can reduce the delay and collision of reaccess channel and improve the throughput of the system. The NS2simulation results prove the effectiveness of the method.
     4. The cross-layer design Based on the MAC layer in CRN
     For existing wired network can't support cognitive function, and the end-to-end QoS of primary users can not be guaranteed, this paper proposes the network architecture and MAC access control protocol (CRMAC) combining with the characteristics of CRN firstly; then matching the priority and related parameters between CRMAC and DiffServ, the proposed cognitive edge router uses distinguished packet loss mechanism between the primary user and CRU. This system structure of cross-layer design provides end-to-end grading service for CRN, it protects primary users and its realtime business, and it improves the overall network performance simultaneously. NS2simulation results show that the method can really guarantee the end-to-end QoS of CRN.
引文
[1]R. antacci, M. cardi. Performance Evaluation of Preemptive Polling Schemes and ARQ Techniques for Indoor Wireless Networks. IEEE Transactions on Vehicular Technology.1996, 45(2):248-257.
    [2]J. Lansford, A. Stephens, R. Nevo. Wi-Fi (802.11b) and Bluetooth:Enabling Coexistence. IEEE Network.2001,15(5):20-27.
    [3]J. Martin, Li Bo, W. Pressly, J. Westall. WiMAX Performance at 4.9 GHz. IEEE International Conference on Aerospace.2010, pp:1-8.
    [4]A.H. Khan, M.A. Qadeer, J.A. Ansari, S. Waheed.4G as a Next Generation Wireless Network. IEEE International Conference on Future Computer and Communication (ICFCC 2009).2009, pp:334-338.
    [5]William Stallings. Wireless Communication & Networks (2th Edition). PrenticeHall, Cambridge University Press,2005.
    [6]Dharma Prakash Agrawal, QingAn Zeng. Introduction to Wireless and Mobile Systems. Thomson Learning.2003.
    [7]Brian P. Crow, In dra Widjaja, Jeong G Kim, Prescott T. Sakai. IEEE802.11 Wireless Local Area Network. IEEE Communications Magazine.1997, pp:116-126.
    [8]Bruce A. Fette. Cognitive Radio Technology (Second Edition). Academic Press.2009.
    [9]郭彩丽,冯春燕,曾志民.认知无线电网络技术及应用.电子工业出版社,2010.
    [10]Peter Steenkiste, Douglas Sicker, Gary Minden, Gipankar Raychaudhuri. Future Directions in Cognitive Radio Network Research. NSF Workshop Report.2009.
    [11]Zhang Yan, Zheng Jun and Chen Hsiao-Hwa. Cognitive Radio Networks:Architectures, Protocols and Standards (Wireless Network and Mobile Communication). CRC Press,2010.
    [12]D. Niyato, E. Hossain. Competitive Spectrum Sharing in Cognitive Radio Networks:A Dynamic Game Approach. Wireless Communications, IEEE Transactions on.2008,7(7): 2651-2660.
    [13]F. Baccelli, B. Blaszczyszyn, P. Muhlethaler. An Aloha Protocol for Multihop Mobile Wireless Networks. IEEE Transactions on Information Theory.2006, pp:421-436.
    [14]G Bianchi, L. Fratta, M. Oliveri. Performance Evaluation and Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LANs. Seventh IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'96).1996, pp:392-396.
    [15]G.M. Hyung, L. Junsung, J.G David. FDMA for Uplink Wireless Transmission. Vehicular Technology Magazine, IEEE.2006,1(3):30-38.
    [16]E Cameron, M. Zukerman. Disaster Scenarios for Hybrid TDMA Wireless MAC Protocols with Contention based Signaling. Global Telecommunications Conference (GLOBECOM 1999) 1999, pp:369-373.
    [17]V. Huang, Z. Weihua. QoS-oriented Packet Scheduling for Wireless Multimedia CDMA Communications. IEEE Transactions on Mobile Computing.2004, pp:73-85.
    [18]Xin Wang, K. Kar. Throughput Modelling and Fairness Issues in CSMA/CA based Ad-hoc Networks. Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM 2005).2005, pp:23-34.
    [19]A. ChiaChun Hsu, D.S.L. Weit, C.C.J. Kuo. A Cognitive MAC Protocol Using Statistical Channel Allocation for Wireless Ad-Hoc Networks. Wireless Communications and Networking Conference (WCNC 2007).2007, pp:105-110.
    [20]Dong Fang, Yu Li, Haining Huang, Li Yin. A CSMA/CA-Based MAC Protocol for Underwater Acoustic Networks.6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM 2010).2010, pp:1-4.
    [21]Yu Wanrong, Cao Jiannong, Zhou Xingming, Wang Xiaodong etc. A High-Throughput MAC Protocol for Wireless Ad Hoc Networks. IEEE Transactions on Wireless Communications. 2008, pp:135-145.
    [22]Hui Jie, M. Devetsikiotis. A Unified Model for the Performance Analysis of IEEE 802.lle EDCA. IEEE Transactions on Communications.2005,53(9):1498-1510.
    [23]Huang Ching-Ling, Liao Wanjiun. Throughput and Delay Performance of IEEE 802.1 le Enhanced Distributed Channel Access (EDCA) under Saturation Condition. IEEE Transactions on Wireless Communications.2007,6(1):136-145.
    [24]Xu Dongxia, T. Sakurai, H.L. Vu, T. Sakurai. An Access Delay Model for IEEE 802.lle EDCA. IEEE Transactions on Mobile Computing.2009,8(2):261-275.
    [25]P. Rajmic, D. Komosny, K. Molnar. Theoretical Analysis of EDCA Medium Access-Control Method in Simplified Network Environment. Eighth International Conference on Networks (ICN 2009).2009, pp:197-201.
    [26]Ho Young Hwang, Seong Joon Kim, Dan Keun Sung, Nah-Oak Song. Performance Analysis of IEEE 802.1 le EDCA with a Virtual Collision Handler. IEEE Transactions on Vehicular Technology.2008,57(2):1293-1297.
    [27]T. Nilsson, J. Farooq. A Novel MAC Scheme for Solving the QoS Parameter Adjustment Problem in IEEE 802. lle EDCA.2008 International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM 2008).2008, pp:1-9.
    [28]H. Mukaidani, Cai Lin, Shen Xuemin. Stable Queue Management for Supporting TCP Flows over Wireless Networks. IEEE International Conference on Communications (ICC 2011).2011, pp:1-6.
    [29]Li Xiaolong, H. Yousefi'zadeh. Analysis, Simulation, and Implementation of VCP:A Wireless Profiling. IEEE/ACM Transactions on Networking.2010,18(5):1345-1358.
    [30]王磊,肖扬,周晓.基于2-D稳定条件的混合流王磊参数设置.电路与系统学报.2012,17(2):27-33.
    [31]Cao Zhenzhen, Xiao Yang, Chicaixia. A Novel Markov Analytical Model for the TCP-UDP/AQM Systems. Journal of Electronic (China).2010,27(1):15-23.
    [32]I.F. Akyildiz, Lee Won-Yeol, M.C. Vuran, S. Mohanty. A Survey on Spectrum Management in Cognitive Radio Networks. IEEE Communications Magazine.2008,46(4):40-48.
    [33]Yan Chen, Guanding Yu, Zhaoyang Zhang, Hsiao-hwa Chen, Peiliang Qiu. On Cognitive Radio Networks with Opportunistic Power Control Strategies in Fading Channels. IEEE Transactions on Wireless Communications.2008,7(7):2752-2761.
    [34]Chung Goochul, S. Sridharan, S. Vishwanath, Hwang Chan Soo. On the Capacity of Overlay Cognitive Radios with Partial Cognition. IEEE Transactions on Information Theory.2012, 58(5):2935-2949.
    [35]Le Long Bao, E. Hossain. Resource Allocation for Spectrum Underlay in Cognitive Radio Networks. IEEE Transactions on Wireless Communications.2008,7(12):5306-5315.
    [36]C. Cordeiro, K. Challapali, D. Birru, N. Sai Shankar. IEEE 802.22:the First Worldwide Wireless Standard based on Cognitive Radios. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005).2005, pp:328-337.
    [37]Ko Gwangzeen, A.A. Franklin, You Sung-Jin, Pak Jin-Suk, Song Myung-Sun, Kim Chang-Joo. Channel Management in IEEE 802.22 WRAN Systems. IEEE Communications Magazine. 2010,48(9):88-94.
    [38]C. Cordeiro, K. Challapali. C-MAC:A Cognitive MAC Protocol for Multi-Channel Wireless Networks. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2007).2007, pp:147-157.
    [39]Jia Juncheng, Zhang Qian, Shen Xuemin. HC-MAC:A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management. IEEE Journal on Selected Areas in Communications.2008, 26(1):106-117.
    [40]Lien Shao-Yu, Tseng Chih-Cheng, Chen Kwang-Cheng. Carrier Sensing Based Multiple Access Protocols for Cognitive Radio Networks. IEEE International Conference on Communications (ICC 2008).2008, pp:3208-3214.
    [41]Zhao Qing, Tong Lang, Swami Ananthram, Chen Yunxia. Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad hoc Networks:A POMDP Framework. IEEE Journal on Selected Areas in Communications.2007,25(3):589-600.
    [42]Filipe A, and Manuel R. XCP for Shared-Access Multi-Rate Media. ACM SIGCOMM Computer Communication Review,2006,36(3):29-38.
    [43]Jianxin W, Jing L, Liang R, et al. ARROW-WTCP:A Fast Transport Protocol Based on Explicit Congestion Notification over Wired/Wireless Networks. IEEE Global Telecommunications Conference (GLOBECOM 2010).2010,10(1):1-5.
    [44]Lei W, Shaohai H, Yang X, et al. A New MAC Scheme in Cognitive Network for Different Priority of Secondary Users, IET 3nd International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN 2010).2010, pp:191-195.
    [45]张南,肖扬.非饱和状态下TCP/UDP混合流的EDCA模型分析.计算机科学.2011,38(6):64.69.
    [46]Pengxuan M, Shaohai H, Xiao Y, et al. Stable Parameter Settings for PI Router Mixing TCP and UDP Traffic.20102nd International Conference on Signal Processing Systems (ICSP 2010).2010, pp:2547-2550.
    [47]Zhang N, Mao P, Xiao Y, et al. The QoS of the Edge Router based on DiffServ. China Communications.2009,6(3):156-162.
    [48]Mao P, Xiao Y, Kiseon Kim. Parameter Conditions for TCP AQM Routers Based on 2-D s-z Domain Stability Analysis. IEEE Communications Letters.2010,14(9):869-871.
    [49]Khan. S, Saastamoinen. J, Majanen. M, et al. Analyzing Transport and MAC Layer in System-level Performance Simulation[C]. System on Chip (SoC).2011, pp:1-8.
    [50]Changqing L, Yu F R, Hong J, et al. Cross-layer Design for TCP Performance Improvement in Cognitive Radio Networks. IEEE Transaction on Vehicular Technology.2010,59(5): 2485-2495.
    [51]Dan C, Hong H, Leung V.C.M. Distributed Best-Relay Selection for Improving TCP Performance Over Cognitive Radio Networks:A Cross-layer Design Approach. IEEE. Selected Areas in Communication.2012,30(2):315-322.
    [52]Fethi F.. Link-Layer Fragmentation and Retransmission Impact on TCP Performance in 802.11-based Networks.7th IFIP International Conference on Mobile and Wireless Communications Networks (MWCN 2005).2005, pp:3-7.
    [53]J.Yeo, A. Agrawala. Packet Error Model for the IEEE 802.11 MAC Protocol.14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications (PIMRC 2003).2003, pp: 1722-1726.
    [54]D. Clark, W. Fang. Explicit Allocation of Best Effort Packet Delivery Service. IEEE/ACM Transactions on Networking.1998,6(4):362-373.
    [55]CISCO SYSTEM, Congestion Avoidance Overview, http://www.cisco.com/en/US/docs/ios/12 2/qos/configuration/guide/qcfconav ps1835_TSD Products Configuration Guide Chapter.
    [56]Y. Xiao, K. Kim. Cogestion Control of Differented Service Network. Chinese Journal of Electronics.2010,19(1):113-118.
    [57]Y. Xiao.2D Algebraic Test for Stability of Interval Time-delay Systems. In IEEE ICARCV, 2004, pp:1620-1625.
    [58]Y. Xiao.2-D Algebraic Test for Stability of Time-delay Systems. Proceeding of the American Control Conference.2002, pp:3351-3356.
    [59]Y. Xiao.2-D Algebraic Test for Roubust Stability of Interval Time-delay Systems. Proc. Of 8th International Conference on Control. Automation. Robotics and Vision.2004, pp:1620-1625.
    [60]Y. Xiao.2-D Algebraic Test for Robust Stability of Quasi Polynomials with Interval Parameters. Asian Journal of Control.2006,8(2):174-179.
    [61]Y. Xiao, M H Lee.2-D Laplace-Z Transformation. IEICE Transctions on Fundamentals of Electronics.2006,89(5):1500-1504.
    [62]IEEE standard 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.1999.
    [63]IEEE standard 802.1le/D8.0. Part 11:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Medium Access Control (MAC) Enhancements for Quality of Service (QoS).2004.
    [64]J. W. Robinson, T. S. Randhawa. Saturation throughput Analysis of IEEE 802.11 e Enhanced Distributed Coordination Function. IEEE Journal on Selected Areas in Commuications.2004, 22(5):917-928.
    [65]Z. Kong, D. H.K. Tsang, B. Bensaou, D. Gao. Performance Analysis of IEEE 802.11e Contention-Based Channel Access [J]. IEEE Journal on Selected Areas in Communications. 2004,22(10):2095-2106.
    [66]Z. Tao, S. Panwar. An Analytical Model for the IEEE 802.1le Enhanced Distributed Coordination Function.2004 IEEE International Conference on Communications.2004, pp: 4111-4117.
    [67]H. Zhu, I. Chlamtac. An analytical model for IEEE 802.11e EDCF differential services.12th International Conference on Computer Communications and Networks (ICCCN 2003).2003, pp:16-168.
    [68]Jia Hu, Geyong Min, Mike E Woodward. Analysis and Comparison of Burst Transmission Schemes in Unsaturated 802.1 le WLANs. IEEE Global Telecommunications Conference (GLOBECOM 2007).2007, pp:5133-5137.
    [69]黄志昊,李珊君.IEEE 802.1 le EDCA在CFB模式下的性能分析.电子测量技术.2007,30(5):133-135.
    [70]伍智超,王婷,贺昕,周正. IEEE802.11e EDCA和CFB下饱和吞吐量分析.无线电通信技术.2006,32(6):27-29.
    [71]The Network Simulator-ns-2[CP/DK].http://www. isi.edu/nsnam/ns/.
    [72]R.Bruno, M.Conti, E. Gregori. Design of An Enhanced Access Point to Optimize TCP Performance in Wi-Fi Hotspot Networks. Wireless Networks.2007,13(2):259-274.
    [73]Ping Wang, Hai Jang, Weihua Zhuang. Capacity Improvement and Analysis for Voice/Data Traffic over WLAN. IEEE Transactions on Wireless Communications.2007,6(4):1530-1541.
    [74]T.S.Randhawa J.W.Robinson. Saturation Throughput Analysis of IEEE 802.1 le Ehchanced Distributed Coordination Function. In IEEE Journal on Selected Areas in Communications. 2004,22(5):917-928.
    [75]Yang Xiao. Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE 802.1 le Wireless LANs. IEEE trasactions on Wireless Communication.2005,4(4):1506-1515.
    [76]Haitao Wu, Xin Wang Qian Zhang, Xuemin Shen. IEEE 802.1 le Enhanced Distributed Channel Access (EDCA)Throughput Analysis. IEEE International Conference on Communications (ICC 2006).2006, pp:223-228.
    [77]Peter Clifford, Ken Duffy, John Foy, Douglas J.Leith, David Malone. Modeling 802.1 le for data traffic parameter design.4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.2006, pp:l-10.
    [78]Kejie Lu, Dapeng Wu, Yuguang Fang, R.C. Qiu. Performance of A Burst-Frame-Based MAC Protocol for Ultra-Wideband Ad hoc Networks. IEEE International Conference on Communications (ICC 2005).2005, pp:2937-2941.
    [79]S.kuppa, G.R.Dattatreya. Modeling and Analysis of Frame Aggregatio in Unsaturated WLAN with Finite Buffer Station. IEEE International Conference on Communications (ICC 2006), 2006, pp:967-972.
    [80]Tianji Li, Qiang Ni, Thierry Turletti, Yang Xiao. Performance Analysis of the IEEE 802.1 le Block ACK Scheme in a Noisy Channel. International Conference on Broadband Networks. 2005, pp:511-517.
    [81]Ilenia Tinnirello, Sunghyun Choi. Efficiency Analysis of Burst Transmissions with Block ACK in Contention-Based 802.1 le WLANs. IEEE International Conference on Communications (ICC 2005).2005, pp:3455-3460.
    [82]Gion Reto Cantieni, Qiang Ni, Chadi Barakat, Thierry Turletti. Performance Analysis under Finite Load and Improvements for Multirate 802.11. Elsevier Computer Communications Journal.2005,28 (10):1095-1109.
    [83]David Malone, Ken Duffy, Douglas J.Leith. Modeling the 802.11 Distributed Coordination Function with Heterogenous Finite Load. IEEE/ACM Transactions on Networking.2007, 15(1):159-172.
    [84]Ping Wang, Hai Jang, Weihua Zhuang, Capacity Improvement and Analysis for Voice/Data Traffic over WLAN. IEEE Transactions on Wireless Communication.2007,6(4):1530-1541.
    [85]F. Cali, M. Conti, E. Gregori. IEEE 802.11 wireless LAN:Capacity analysis and protocol enhancement. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 1998).1998, pp:142-149.
    [86]IEEE 802.11 WG, Part 11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications. ANSI IEEE Std 802.11-1999.
    [87]M. Garetto, C. F. Chiasserini. Performance Analysis of 802.11 WLANs under Sporadic Traffic. NETWORKING'05 Proceedings of the 4th IFIP-TC6 International Conference on Networking Technologies,Services and Protocols.2005, pp:1343-1347.
    [88]G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications.2000,18(3):535-547.
    [89]Hongyuan Chen, Yanda Li. Performance model of IEEE 802.11 DCF with variable packet length. IEEE Communications Letters.2004,8(3):186-188.
    [90]N. Blefari-Melazzi, A. Detti, I. Habib, A. Ordine, S. Salsano. TCP Fairness Issues in IEEE 802.11 Networks:Problem Analysis and Solutions Based on Rate Control. IEEE Transactions on Wireless Communications.2007,6(4):1346-1355.
    [91]O. Tickoo, B. Sikdar. Modeling Queueing and Channel Access Delay in Unsaturated IEEE 802.11 Random Access MAC Based Wireless Networks. IEEE/ACM Transactions on Networking.2008,16(4):878-891.
    [92]Y. Xiao, H. Du, Z. Cao, M. H. Lee. Active Queue Management for Differentiated Network. IET International Conference on Wireless Mobile and Multimedia Networks (ICWMMN 2006),2006, pp:357-361.
    [93]Y. Xiao, K. Kim. Congestion control of Differentiated service network. Chinese Journal of Electronics.2010,19(1):113-118.
    [94]P.X. Mao, N. Zhang, Y. Xiao, K. Kim. The QoS of the Edge Router Based on Diffserv/MPLS. 5th International Conference on Wireless Communications, Networking and Mobile Computing(WiCom 2009).2009, pp:l-4.
    [95]L. Y. Lu, Yang Xiao, S. Woo, K. Kim. Network Congestion Control Algorithm with Cooperation Between Edge and Core Routers.11th International Conference on Advanced Communication Technology (ICACT2009).2009, pp:621-625.
    [96]Lin Yuxia, V.W.S.Wong. Saturation Throughput of IEEE 802.1 le EDCA Based on Mean Value Analysis. Wireless Communications and Networking Conference (WCNC 2006).2006, pp:475-480.
    [97]B. Bellalta, C. Cano, M. Oliver, M. Meo. Modeling the IEEE 802.1 le EDCA for MAC parameter optimization. Proc. Of the performance Modelling and Evaluation of Heterogeneous Networks Conference (Het-Nets 2006).2006, pp:1-10.
    [98]Z. Wei, S. Jun, L. Jing, Z.Hai-bin. Performance analysis of IEEE 802.1 le EDCA in wireless LAN. Journal of Zhejiang University SCIENCE.2007, pp:18-23.
    [99]V.A. Siris, C.Courcoubetis. Resource Control for the EDCA and HCCA Mechanisms in IEEE 802.1 le Networks.4th international Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks.2006, pp:1-6.
    [100]L. Jeng Farn, L. Wanjiun, C.Meng Chang. A Differentiated Service Model for Enhanced Distributed Channel Access (EDCA) of IEEE 802.1 le WLANs. Mobile Networks and Applications.2007,12(1):69-77.
    [101]徐雷鸣,庞博,赵程.NS2与网络模拟.人民邮电出版社.2003.
    [102]J. Choi, K. Park,C. K. Kim. Cross-Layer Analysis of rate adaptation, DCF and TCP in Multi-Rate WLANs.26th IEEE International Conference on Computer Communications (INFOCOM 2007).2007, pp:1055-1063.
    [103]J. G. Yu, S. H. Choi, D. J. Qiao. TCP dynamics over IEEE 802.1 IE WLANs:Modeling and throughput enhancement. Fourth International Conference on Broadband Communications, Networks and Systems (BROADNETS 2007).2007, pp:66-75.
    [104]Ping Wang, Hai Jang, Weihua Zhuang. Capacity improvement and analysis for voice/data traffic over WLAN. IEEE Transactions on Wireless Communication.2007,6(4):1530-1541.
    [105]李云,陈前斌,隆克平,吴诗其.无线自组织网络中TCP稳定性的分析及改进.软件学报,2003,14(6):1178-1186.
    [106]B. Bellalta, M. Oliver, M. Meo, M. Guerrero. A Simple Model of the IEEE 802.11 MAC Protocol with Heterogeneous Traffic Flows. International Conference on Computer as a TooL (EUROCON 2005).2005, pp:1830-1833.
    [107]郭振清,肖扬.CDMA系统粒子群多用户检测算法.信号处理.2007,23(6):806-809.
    [108]Kaharaman B. and Buzluca F. A Mathematical model for Distributed Channel Access in Cognitive Radio Networks. Wireless Communications and Mobile Computing Conference (IWCMC'2011),2011:1158-1163.
    [109]Nekovee, Maziar. Dynamic Spectrum Access with Cognitive Radios:Future Architectures and Research Challenges.1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWMCOM 2006).2006, pp:1-5.
    [110]Song Min, Xin Chunsheng, Zhao Yanxiao, Cheng Xiuzhen. Dynamic Spectrum Access: from Cognitive Radio to Network Radio. IEEE Wireless Communications.2012,19(1):23-29.
    [111]J.D. Poston, W.D. Home. Discontiguous OFDM Consideraions for Dynamic Spectrum Access in Idle TV Channels. New Frontiers in Dynamic Spectrum Access Networks.2005, pp: 607-610.
    [112]Cheng Yu-Chun, Wu Eric Hsiaokuang, Chen Gen-Huery. A New Wireless TCP Issue in Cognitive Radio Networks. First International Conference on Networking and Computing (ICNC 2010).2010, pp:49-54.
    [113]Hong Kunho, Lee SuKyoung, Kim Kyungsoo, Kim YoonHyuk. Channel Condition Based Contention Window Adaptation in IEEE 802.11 WLANs. IEEE Transactions on Communications.2012,60(2):469-478.
    [114]D.J. Deng, C.H. Ke, H.H. Chen, Y.M. huang. Contention Window Optimization for IEEE 802.11 DCF Access Control. IEEE Transactions on Wireless Communication.2008,7(12): 5129-5135.
    [115]Liu Yanchang, Hu Shaohai, Xiao Yang, Liu Xiaoli, Qu Guangzhi, Kim Kiseon. CSMA/CA-based MAC protocol in Cognitive Radio network. IET 3rd International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN 2010).2010, pp: 163-167.
    [116]Liu Xiaoli, Hu Shaohai, Xiao Yang, Liu Yanchang, Qu Guangzhi, Kim Kiseon. The multiple prioritized access mechanism of Cognitive Networks. IET 3rd International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN 2010).2010, pp:168-172.
    [117]Yun Han Bae, Alfa A. S., Bong Dae Choi. Performance Analysis of Modified IEEE; 802.11-Based Cognitive Radio Networks. IEEE Communications Letters.2010,14(10): 975-977.
    [118]Anh Tuan Hoang, David Tung Chong Wong, Ying-Chang Liang. Design and Analysis for an 802.11-based Cognitive Radio Network. Wireless Communications and Networking Conference (WCNC 2009).2009, pp:1-6.
    [119]Athanassios V.Adamis, Kongstantinos N.Maliatsos, Philip Constantinou. Throughput Analysis of Overlay CSMA/CA for Secondary Networks. Wireless and Mobile Computing Networking and Communications (WIMO 2008).2008, pp:75-81.
    [120]Krzysztof Szczypiorski, Jozef Lubacz. Performance Evaluation of IEEE 802.11 DCF Networks. Lecture Notes in Computer Science.2007, pp:1084-1095.
    [121]Yang Xiao, Frank Haizhon Li, Kui Wu, Leung, Qiang Ni. On Optimizing Backoff Counter Reservation and Classifying Stations for the IEEE 802.11 Distributed Wireless LANs. IEEE Transactions on Parallel and Distributied Systems.2006,17(7):713-722.
    [122]Chuan Heng Foh, Juki Wirawan Tantra. Comments on IEEE 802.11 Saturation Throughput Analysis with Freezing of Backoff Counters. IEEE Communication Letters.2005,9(2): 130-132.
    [123]P.Venkata Krishna, Sudip Misra, Mohammad S.Obaidat. Virtual Backoff Algorithm:An Enhancement to 802.11 Mediaum-Access Control to Improve the Performance of Wireless Networks. IEEE Transactions on Vehicular Technology.2010,59(3):1068-1075.
    [124]Hongyuan Chen. Revisit of the Markov Model of IEEE 802.11 DCF for an Error-Prone Channel. IEEE Communication Letters.2011,15(12):1278-1280.
    [125]Ilenia Tinnirello, Giuseppe Bianchi. Rethinking the IEEE 802.lle EDCA Performance Modeling Methodology. IEEE/ACM Transactions on Networking.2010,18(2):540-553.
    [126]Niwas Maskey, Gitanjali Sachdeva. Analysis of 802.11 Based Cognitive Networks and Cognitive Based 802.11 Networks. Recent Trends In Network Security And Applications. 2010,89(2):314-322.
    [127]Luo Changqing, Yu F.Richard, Ji Hong, CM. Leung. Cross-Layer Design for TCP Performance Improvement in Cognitive Radio Networks. IEEE Transactions on Vehicular Technology.2010,59(5):2485-2495.
    [128]阚保强,范建华,王建业.认知无线网络信道接入协议.软件学报.2012,23(7):1824-1837.
    [129]刘威,程文青,何建华,乐春晖.区分服务网络中主动队列管理算法.软件学报.2005,16(6):1120-1130.
    [130]Zhang Wei, Sun Jun, Liu Jing, Zhang Haibin. Performance Analysis of IEEE 802. lle EDCA. IEICE Transactions on Communications Letters.2007,90(1):181-183.
    [131]H. Zhu, I. Chlamtac. Performance Analysis for IEEE 802.1 le EDCF Service Differentiation. IEEE Transactions on Wireless Commununications.2005,4(4):1779-1788.
    [132]G.Bianchi. IEEE 802.11:Saturation Throughput Analysis. IEEE Communication Letters. 1998,2(12):318-320.
    [133]YE Xiaoguo, WANG Ruchuan, WANG Shaodi. A congestion Control Algorithm for Layered Multicast Based on Differentiated Services. Joural of Software.2006,17(7): 1609-1616.
    [134]Nan Zhang, Yang Xiao, Lei Wang, Kim Kiseon. The Important Impact of Energy in 802.1 le EDCA Network,5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2009).2009, pp:1-4.
    [135]张南,肖扬.基于IEEE802.ll的TCP稳定性与公平性研究.铁道学报,已录用.(EI)
    [136]张南,肖扬,安永丽.TCP/UDP混合流的IEEE 802.11 DCF协议改进.应用科学学报,已录用.(EI)
    [137]张南,肖扬.认知无线电网络MAC接入性能分析.北京交通大学学报.2012,36(5):129-133.
    [138]张南,肖扬,殷慧文,卫婧.基于CFB模式的802.1 le EDCA网络研究.辽宁大学学报.2012,39(1):64-68.
    [139]张南,肖扬.基于信道繁忙率的认知用户退避算法.铁道学报,在审.(EI)
    [140]张南,肖扬.基于MAC跨层的认知无线电网络端到端QoS.系统工程与电子技术,在审.(EI)
    [141]Yang Xiao, Nan Zhang, Zhaowei Wang and Kiseon Kim. Particle Swarm Optimization for MIMO Receivers,2008 IET International Conference on Wireless Mobile & Multimedia Networks (ICWMMN 2008),2008, pp:255-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700