利用重组DNA技术检测MJD1基因CAG三核苷酸重复及SCA3/MJD产前诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景遗传性脊髓小脑性共济失调(spinocerebellar ataxias,SCAs)是一组具有高度临床和遗传异质性的神经系统退行性疾病。患者多于中青年发病,临床上以小脑性共济失调为主要特征,还可伴有眼球运动障碍、视神经萎缩、视网膜色素变性、锥体束征、锥体外系表现、肌萎缩等表现,多呈常染色体显性遗传(autosomal dominant,AD)。目前常染色体显性SCA至少有28种基因型,其中18种亚型的致病基因已被克隆,包括SCA1、SCA2、MJD1、PLEKHG4、SPTBN2、CACNA1A、SCA7、ATXN8OS、ATXN10、TTBK2、PPP2R2B、KCNC3、PRKCG、ITPR1、CNTN4、TBP、FGF14及DRPLA。在已克隆的基因中,MJD1基因是SCA3/MJD的致病基因,其4号外显子区存在一段CAG重复序列,正常人重复12-40次,患者常见的异常重复为51-86次。因此准确、直观确定其CAG三核苷酸重复次数是从分子遗传学方面确诊SCA3/MJD的关键。
     目的运用重组DNA技术建立准确、直观检测MJD1基因CAG三核苷酸重复的技术平台;运用该技术进行35例SCA3/MJD患者的基因诊断和中国大陆地区首例SCA3/MJD产前诊断。
     方法运用重组DNA技术完成中国大陆地区35例SCA3/MJD患者和10例正常人的MJD1基因CAG三核苷酸重复进行检测及中国大陆地区首例SCA3/MJD产前诊断。
     结果运用重组DNA技术对35例SCA3/MJD患者和10例正常人的MJD1基因CAG三核苷酸重复进行检测,准确直观的检测出患者MJD1基因CAG三核苷酸重复,重复范围为65-81次,平均重复次数为73次。在SCA3/MJD患者MJD1基因CAG三核苷酸重复序列中发现CAG/CAA及CAG/TAG的多态变化。在产前诊断研究中,成功检测出该SCA家系先证者、先证者父亲及先证者所孕之胎儿的MJD1基因CAG三核苷酸重复次数分别为81次、74次、79次,完成产前诊断并证明MJD1基因CAG三核苷酸重复代间传递的不稳定性在父系遗传比母系遗传显著。
     结论
     ①.建立了准确、直观检测MJD1基因CAG三核苷酸重复次数的技术平台。
     ②.完成了中国大陆地区首例SCA3/MJD产前诊断研究。
Background Hereditary spinocerebellar ataxias(SCAs)are a group of neurodegenerative disease,which shares high clinical and genetic heterogeneity and is characterized by a wide range of clinical manifestations,including cerebellar ataxia,pyramidal and extrapyramidal signs,progressive external ophthalmoplegia and dystonia with rigidity, and distal muscular atrophies.Most of the patients are of an autosomal dominant inheritance trait.There're at least 28 genotypes of SCAs which display autosomal dominant inheritance.Among them,18 genes responsible for the disease have been identified,including SCA1,SCA2, MJD1,PLEKHG4,SPTBN2,CACNA1A,SCA7,SCAB,SCAIO,TTBK2. PPP2R2B,KCNC3,PRKCG,ITPR1,CNIN4,TBP,FGF14 and DRPLA. The mutation of MJD1 gene cause SCA3/MJD.There are CAG repeats in exon 4 of MJD1.The normal and abnormal range of CAG repeats is 12-40 and 51-86 respectively.So the key to diagnosis SCA3/MJD is to detect the CAG repeats exactly and directly.
     Objective To establish exact and direct-viewing detection platform for CAG trinucleotide repeats of MJD1 gene by Recombinant DNA Technology;To perform the diagnosis of 35 SCA3/MJD patients and the first prenatal diagnosis of SCA3/MJD in mainland China.
     Methods Applying Recombinant DNA Technology to detect the CAG repeats of MJD1 gene in 35 SCA3/MJD patients and 10 healthy volunteers in mainland china and performing the first prenatal diagnosis of SCA3/MJD in mainland China.
     Results we detected the CAG trinucleotide repeats size of MJD1 gene exactly and directly in 35 SCA3/MJD patients and 10 healthy controls.In these patients,the range of CAG repeats of MJD1 gene is 65-81 and we identified CAG/CAA and CAG/TAG polymorphisms in the CAG repeats of MJD1 gene in Chinese SCA3 /MJD patients.In the prenatal diagnosis,the CAG repeats ofMJD1 gene of the proband and the proband's father and the proband's fetal were 81 repeats,74 repeats and 79 repeats respectively.We notified that intergenerational instability of the expanded CAG repeats is more significant in patemal transmission than in maternal transmission.
     Conclusions
     ①.Establish the mutation detection platform for CAG trinucleotide repeat ofMJD1 gene by Recombinant DNA Technology.
     ②.Perform the first prenatal diagnosis of SCA3/MJD in mainland China.
引文
[1] Yakura H, Wakisaka A, Fujimoto S, Itakura K. Letter: Hereditary ataxia and HL-A. N Engl J Med, 1974,291(3):154-155.
    [2] Gispert S, Twells R, Orozco G, et.al.Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23—24.1. Nat Genet, 1993,4(3): 295-299.
    [3] Takiyama Y, Nishizawa M, Tanaka H, et.al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet, 1993,4(3): 300-304.
    [4] Flanigan K, Gardner K, Alderson K, et.al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1.Am J Hum Genet, 1996, 59(2): 392-399.
    [5] Ranum LP, Schut LJ, Lundgren JK, et.al. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet, 1994, 8(3): 280-284.
    [6] Zhuchenko O, Bailey J, Bonnen P et.al.Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1 A-vo!tage-dependent calcium channel. Nat Genet. 1997.15(1): 62-69.
    [7] David G, Giunti P, Abbas N, et.al. The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3pl2-pl3: genetic and physical mapping of the SCA7 locus. Am J Hum Genet, 1996; 59(6): 1328-1236.
    [8] Koob MD, Moseley ML, Schut LJ, et.al.An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet, 1999,21(4): 379-384.
    [9] Matsuura T, Achari M, Khajavi M, et.al. Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol, 1999:45(3): 407-411.
    [10] Worth PF, Giunti P, Gardner-Thorpe C, et.al. Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region (SCA 11) on chromosome 15q14-21.3. Am J Hum Genet, 1999,65(2): 420-426.
    
    [11] Holmes SE, Hearn EO, McInnis MG, et.al. Expansion of a novel CAG repeat in the 5' region of gene encoding a subunit of protein phosphatase 2a is associated with spinocerebellar ataxia type 12 (SCA 12). Am J Hum Genet, 1999, 65 (Suppl): Abstract 14.
    
    [12] Herman-Bert A, Stevanin G, Netter JC, et.al. Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Is J Hum Genet, 2000, 67(1): 229-235.
    [13] Yamashita I, Sasaki H, Yabe I, et.al.A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol, 2000, 48(2): 156-163.
    [14] Knight MA, Kennerson ML, Anney RJ, et.al. Spinocerebellar ataxia type 15 (scal 5) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis, 2003, 13(2): 147-157.
    [15] Miyoshi Y, Yamada T, Tanimura M, et.al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology, 2001, 57(1): 96-100.
    [16] Nakamura K, Jeong S, Uchihara T, et.al.SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet, 2001, 10(14): 1441-1448.
    [17] Brkanac Z, Fernandez M, Matsushita M, et.al. Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet, 2002, 114(4):450-457.
    [18] Verbeek DS, Schelhaas JH, Ippel EF, et.al. Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet, 2002,111(4-5): 388-393.
    [19] Knight MA, Gardner RJ, Bahlo M, et.al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain, 2004, 127 (Pt5): 1172-1181.
    [20] Vuillaume I, Devos D, Schraen-Maschke S, et.al. A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-pl5.lAnn Neurol, 2002, 52(5):666-670.
    [21] Chung MY, Lu YC, Cheng NC, et.al. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain, 2003,126: 1293-1299.
    [22] Verbeek DS, van de Warrenburg BP, Wesseling P, et.al. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20pl3-12.3.Brain, 2004, 127(pt11), 2551-2557.
    [23] Stevanin G, Bouslam N, Thobois S, et.al. Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol, 2004, 55(1): 97-104.
    [24] Yu G-Y, Howell MJ, Roller MJ, et.al. Spinocerebellar ataxia type 26 maps to chromosome 19pl3.3 adjacent to SCA6. Ann Neurol, 2005, 57(3): 349-354.
    [25] Brusse E, de Koning I, Maat-Kievit A et.al. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype Mov Disord,2006,21(3):396-401.
    [26] Cagnoli C, Mariotti C, Taroni F, et.al.SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2.Brain, 2006,129(1):235-242.
    [27] Nagafuchi S, Yanagisawa H, Sato K, et.al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet, 1994,6(1):14-18.
    [28] Ishikawa K, Toru S, Tsunemi T, et.al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and rho guanine-nucleotide exchange-factor domains. Am J Hum Genet, 2005, 77(2):280-296.
    [29] Orr HT, Chung MY, Banfi S, et.al. Expansion of an unstable trinucleotide CAG repeats in spinocerebellar ataxia type 1. Nat Genet, 1993,4(3): 221-222.
    [30] Imbert G, Saudou F, Yvert G, et.al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet, 1996; 14(3): 285-291.
    [31] Kawaguchi Y, Okamoto T, Taniwaki M, et.al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet, 1994, 8(3): 221-228.
    [32] David G, Abbas N, Stevanin G, et.al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet, 1997,17(1): 65-70.
    [33] Matsuura T, Yamagata T, Burgess DL, et.al.Large expansion of the ATTCT pent nucleotide repeat in spinocerebellar ataxia type 10. Nat Genet, 2000, 26(2): 191-194.
    [34] Yabe I, Sasaki H, Chen DH, et.al.Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol, 2003; 60(12): 1749-1751.
    [35] Ikeda Y, Dick KA, Weatherspoon MR, et.al. Spectrin mutations cause spinocerebellar ataxia 5. Nat Genet, 2006, 380(7): 184-190.
    [36] Worth PF, Giunti P, Gardner-Thorpe C, et.al.Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3.Am J Hum Genet, 1999, 65(2):420-6.
    [37] Knight MA, Kennerson ML, Anney RJ, et.al. Spinocerebellar ataxia type 15 (scal 5) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis, 2003,13(2): 147-57.
    [38] Hellenbroich Y, Pawlack H, Rub U, etal. Spinocerebellar ataxia type 4. Investigation of 34 candidate genes. J Neurol, 2005, 252(12): 1472-5.
    [39] Ishikawa K, Toru S, Tsunemi T, etal. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains.Am J Hum Genet,2005,77(2):280-96.
    [40]Trott A,Jardim LB.Ludwig HT.Spinocerebellar ataxias in 114 Brazilian families:clinical and molecular findings.(Letter)Clin.Genet,2006,70(2):173-176.
    [41]Jiang H,Tang B,Xu B,et.al.Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6.Chin Med J,2005,118(10):837-843.
    [42]江泓,唐北沙,许波等.中国大陆汉族人群SCA各亚型的突变频率分析及SCA6的临床和分子特征.中华医学遗传学杂志,2005,22(1):1-4.
    [43]Tang BS,Liu CY,and Shen LU.et.al.Frequency of SCA1,SCA2,SCA3/MJD,SCA6,SCA7,and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.Arch Neurol,2000,57(4):540-544.
    [44]唐北沙,夏家辉,王德安,等.遗传性脊髓小脑型共济失调的CAG三核苷酸突变检测.中华医学遗传学杂志,1999,16:282-284.
    [45]Kawaguchi Y,Okamoto T,Taniwaki M,et.al.CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.Nat Genet,1994,8(3):222-228
    [46]Van Alfen N,Sinke RJ,Zwarts MJ,et.al.Intermediate CAG repeat lengths(53,54)for MJD/SCA3 are associated with an abnormal phenotype.Ann Neurol,2001,49(6):805-807.
    [47]Tang BS,Liu CY,Shen LU,et.al.Frequency of SCA1,SCA2,SCA3/MJD,SCA6,SCA7,and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.Arch Neurol,2000,57(4):540-544.
    [48]J.萨姆布鲁克 D.W.拉塞尔著 黄培堂等译 《分子克隆实验指南》(第三版)96-98.
    [49]Yamada M,Sato T,Tsuji S,Takahashi H.CAG repeat disorder models and human neuropathology:similarities and differences.Acta Neuropathol.2008,115(1):71-86.
    [50]Ru"b U,Seidel K,Ozerden I,et.al.Consistent affection of the central somatosensory System in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy.Brain Res Rev.2007,53(2):235-49.
    [51]Riess O,Rüb U,Pastore A,Bauer P,Schols L.SCA3:Neurological features,pathogenesis and animal models.Cerebellum.2007,30:1-13.
    [52]Alluri RV,Komandur S,Wagheray A,et.al.Molecular analysis of CAG repeats at five different spinocerebellar ataxia loci:correlation and alternative explanations for disease pathogenesis.Mol Cells.2007,24(3):338-42.
    [53]Paulson HL.Dominantly inherited ataxias:lessons learned from Machado-Joseph disease/spinocerebellar ataxia type 3.Semin Neurol.2007,27(2):133-42.Review.
    [54]Ru¨b U,de Vos RA,Brunt ER,et.al.Spinocerebellar ataxia type 3(SCA3):thalamic neurodegeneration occurs independently fromthalamic ataxin-3 immunopositive neuronal intranuclear inclusions.Brain Pathol.2006,16(3):218-27.
    [55]Ru¨b U,Brunt ER,Petrasch-Parwez E,et.al.Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2,3,6 and 7.Neuropathol Appl Neurobiol.2006,32(6):635-49.
    [56]H.L.Paulson,M.K.Perez,et.al Intranuclear Inclusions of Expanded Polyglutamine Protein in Spinocerebellar Ataxia Type 3.Neuron,1997,19(2):333-344.
    [57]Gwinn-Hardy K,Singleton A,O'SuilleabhainP,et.al.Spinocerebellar ataxia type 3phenotypically resembling Parkinson disease in a black family.Arch Neurol,2001,58(2):296-299.
    [58]Schols L,Haan J,Riess O,et.al.Sleep disturbance in spinocerebellar ataxias:is the SCA3 mutation a cause of restless legs syndrome? Neurology,1998,51(6):1603-1607.
    [59]Rosenberg RN.Machado-Joseph disease:an autosomal dominant motor system degeneration.Mov Disord,1992,7(3):193-203.
    [60]Sequeiros J,Maciel P,Taborda F,et.al.Prenatal diagnosis of Machado-Joseph disease by direct mutation analysis.Prenat Diagn 1998,18(6):611-617.
    [61]Hui-Fang Tsai,Chin-San Liu,Gin-Den Chen,et.al.Prenatal diagnosis of Machado-Joseph disease/spinocerebellar ataxia Type 3 in Taiwan:Early detection of expanded ataxin-3.Journal of Clinical Laboratory Analysis,2003,17(5):195-200.
    [62]Mingli Hsieh,Hui-Fang Tsai,Tsong-Ming Lu,et.al.Studies of the CAG repeat in the Machado-Joseph disease gene in Taiwan.Hum Genet,1997,100(2)155-162.
    [63]Michael O,Dorschner,DeborahBarden,Karen Stephens.Diagnosis of Five Spinocerebellar Ataxia Disorders by Multiplex Amplification and Capillary Electrophoresis.Journal of Molecular Diagnostics,2002,4(2):108-113.
    [64]姜淼,金春莲,林长坤等.东北地区正常汉族人群SCA 1及SCA3/MJD基因内CAG重复变异研究.中华医学遗传学杂志2004,21(1):83-85.
    [65]王晓工,杜皓萍,郝莹等.基于毛细管电泳片段分析的MJD/SCA3基因诊断.中日友好医院学报.2007,21(1):32-36.
    [66]徐祖元,包其郁,牛宇欣.PCR产物直接测序技术中影响因素的研究.遗传,2002,24(5):548-550.
    [67]Yoshiya Kawaguchi,Toshihro Okamoto,Masatumi Taniwaki,et.al.CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.Nat Genet,1994,8(3):221-8.
    [68]Igarashi S,Takiyama Y,Cancel,G.et al.Intergenerational instability of the CAG repeat of the gene for Machado-Joseph disease(MJD1)is affected by the genotype of the normal chromosome:implications for the molecular mechanisms of the instability of the CAG repeat.Hum Mol Genet,1996,5(7):923-932,
    [69]Brock GJ,Anderson NH,Monckton DG.Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability:associations with flanking GC content and proximity to CpG islands.Hum Mol Genet,1999,8(6):1061-1067.
    [70]Benomar A,Krols L,Stevanin G,et al.The gene for autosomal dominant cerebellar ataxia with pigmentary macularystrophy maps to chromosome 3p12-21.1.Nat Genet,1995,10(1):84-88.
    [71]Harding AE.Clinical features and classification of inherited ataxias.Adv Neurol,1993,61:1-14.
    [72]Sambrook J,Fritsch E.F,Maniatis T,(1989).Molecular cloning-A Laboratory Manual,ColdSpring Harbor,NY:Cold Spring Harbor Laboratory Press.
    [73]Trouillas P,Takayanagi T,Hallett M.et.al.International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebella syndrome.J NeurolSci.1997,145(2):205-211.
    [74]Weyer A,Abele M,Schmitz-Hübsch T.et.al.Reliability and validity of the scale for the assessment and rating of ataxia:A study in 64 ataxia patients.Mov Disord.2007,22(11):1633-1637.
    [75]Sequeiros J,Oliveira J,Teixeira C.M,et al.Anticipation of age-at-onset in Machado-Joseph disease(Abstract).Am.J.Hum.Genet,1994,55:A339.
    [76]Sequeiros J.Machado-Joseph disease:epidemiology,genetics and genetic epidemiology.In:Lechtenberg,R.Handbook of Cerebella Diseases,1993:345-351.
    [1] Campuzano V, Montermini L, Molto M.D, et al. FriedReich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 1996, 271(5254):1423-1427.
    [2] Delatycki MB, Knight M, Koenig M, et.al. G130V, a common FRDA point mutation, appears to have arisen from a common founder. Hum. Genet. 1999, 105(4) :343-346,
    [3] Ristow M, Pfister MF, Yee AJ. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc Natl Acad Sci USA, 2000, 97(22): 12239-12243.
    [4] Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and associated with mitochondrial membranes. Hum Molec Genet, 1997, 6(11):1771-1780
    [5] Arita M, Sato Y, Miyata A, et al. Human alpha-tocopherol transfer protein. cDNA cloning, expression and chromosomal localization. Biochem J, 1995(306):437-443.
    [6] Ouahchi K, Arita M, Kayden H, et al. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet, 1995(9):141-145.
    [7] Cavalier L, Ouahchi K, Kayden HJ, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet, 1998, 62 (2):301-310.
    [8] Koenig M: Ataxia with isolated vitamin E deficiency. In Handbook of Ataxia Disorders Edited by: Klockgether T. New York: Marcel Dekker, Inc, 2000:223-234.
    [9] Hentati A, Deng HX, Hung WY, et al. Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol, 1996, 39(3):295-300.
    [10]Gatti RA, Berkel I, Boder E, et al.: Localization of an ataxia-telangiectasia gene to chromosome llq22-23. Nature, 1988(336): 577-580.
    [11]Gatti RA, Lange E, Rotman G, et al.: Genetic haplotyping of ataxia-telangiectasia families localizes the major gene to an approximately 850 kb region on chromosome 11q23.1.Int J Radiat Biol,1994(66):S57-62.
    [12]Savitsky K,Bar-Shira A,Gilad S,et al.A single ataxia telangiectasia gene with a product similar to PI-3 kinase.Science,1995,268(5218):1749-1753.
    [13]Chen G,Lee E.The product of the ATM gene is a 370-kDa nuclear phosphoprotein.J Biol Chem,1996(271):33693-33697.
    [14]Becker-Catania SG,Chen G,Hwang MJ,et al.Ataxia-telangiectasia:phenotype/genotype studies of ATM protein expression,mutations,and radiosensitivity.Mol Genet Metab,2000(70):122-133.
    [15]Chowdhury MR,Singh G,Shukla A,et al.Cytogenetic studies in ataxia telangiectasia & their use in prenatal diagnosis.Indian J Med Res,1996,103(3):155-158.
    [16]Nikali K,Saharinen J,Peltonen L.cDNA cloning,expression profile,and genomic structure of a novel human transcript on chromosome 10q24,and its analyses as a candidate gene for infantile onset spinocerebellar ataxia.Gene,2002.,299(1-2):111-115,
    [17]Spelbrink JN,Li FY,Tiranti V,et al.Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle,a phage T7 gene 4-like protein localized in mitochondria.Nature Genet,2001(28):223-231
    [18]Pennacchio LA,Lehesjoki AE,Stone NE,et al.Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy(EPM1).Science,1996,271(5256):1731-1734
    [19]Turk V,Bode W.The cystatins:protein inhibitors of cysteine proteinases.FEBSLett,1991(285):213-219,
    [20]Di Giaimo R,Riccio M,Sant S,et al.New insights into the molecular basis of progressive myoclonus epilepsy:a multiprotein complex with cystatinB.Hum Molec Genet,2002,11(23):2941-2950.
    [21]Lagier-Tourenne C,Tranebjaerg L,Chaigne D,et al.Homozygosity mapping of Marinesco-Sjogren syndrome to 5q31.Europ J Hum Genet,2003,11(10):770- 778.
    [22] Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem, 2002, 277(49):47557-47563.
    [23] Bouchard JP, Barbeau A, Bouchard R, Bouchard RW. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Canad.J.Neurol. Sci, 1978(5): 61-69.
    [24]Richter A, Rioux JD, Bouchard JP, et al. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay in chromosome region 13q11. Am J Hum Genet, 1999, 64(3):768-775.
    [25]Engert JC, Dore C, Mercier J Ge B, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS): high-resolution physical and transcript map of the candidate region in chromosome region 13q11.Genomics ,1999(62): 156-164.
    [26]Engert JC, Berube P, Mercier J, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nature Genet, 200024(2): 120-125.
    [27] Johnson WG, Murphy M, Murphy WI, et al. Recessive congenital cerebellar disorder in a genetic isolate: CPD type VII? Neurology (Abstract), 1978(28): 352-353.
    [28]Nystuen A, Benke PJ, Merren J, et al. A cerebellar ataxia locus identified by DNA pooling to search for linkage disequilibrium in an isolated population from the Cayman Islands. Hum Molec Genet, 1996, 5(4):525-531.
    [29]Bomar JM, Benke PJ, Slattery EL, et al. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet, 2003, 35(3):264-269.
    [30]Tranchant C, Fleury M, Moreira MC, et al. Phenotypic variability of aprataxin gene mutations. Neurology, 2003(60):868-870.
    [31]Le Ber I, Moreira MC, Rivaud-Pechoux S, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain, 2003,126(12): 2761-2772.
    [32] Shimazaki H, Takiyama Y, Sakoe K, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology, 2002, 59 (4):590-595.
    [33]Tranchant C, Fleury M, Moreira MC, et al. Phenotypic variability of aprataxin gene mutations. Neurology, 2003, 60 (5):868-870.
    [34]Whitehouse CJ, Taylor RM, Thistlethwaite A, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 2001,104(1): 107-117.
    [35]Mosesso P, Piane M, Palitti F, et al. The novel human gene aprataxin is directly involved in DNA single strand-break repair. Cell Mol Life Sci, 2005(62): 485-91.
    [36] Le Ber I, Bouslam N, Rivaud-Pechoux S, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain, 2004,127(4):759 -767.
    [37]Moreira MC, Klur S, Watanabe M, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet, 2004, 36(3):225-227.
    [38]Date H, Onodera O, Tanaka H, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet, 2001,29(2): 184-188.
    [39]Gueven N, Becherel OJ, Kijas AW, et al. Aprataxin, a novel protein that protects against genotoxic stress. Hum Molec Genet, 2004,13(10):1081-1093.
    [40]Breedveld GJ, van Wetten B, te Raa GD, et.al. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J Med Genet, 2004,41(11):858-866.
    [41]Bomont P, Watanabe M, Gershoni-Barush R, et al. Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Europ J Hum Genet, 2000, 8(12):986-990.
    [42]Schleutker J, Laine AP, Haataja L, et al. Linkage disequilibrium utilized to establish a refined genetic position of the Salla disease locus on 6q14-q15. Genomics, 1995, 27(2):286-292.
    [43]Mubaidin A, Roberts E, Hampshire D, et al. Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet, 2003,40 (7):543-546.
    [44]Gros-Louis F, Dupre N, Dion P, et al. Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet, 2007, 23 (3):261-262.
    [45]Gribaa M, Salih M, Anheim M, et al. A new form of childhood onset, autosomal recessive spinocerebellar ataxia and epilepsy is localized at 16q21-q23. Brain, 2007, 130(7):1921-1928.
    [46]Petrini JHJ, Walsh ME, DiMare C, et al. Isolation and characterization of the human MRE11 homologue. Genomics, 1995, 29(1):80-86.
    [47]Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell, 1995, 82(4):555-564.
    [48]48. Miyauchi H, Horio T, Akaeda T, et al. Cockayne syndrome in two adult siblings. J Am Acad Derm, 1994, 30 (2Pt2):329-335.
    [49]Fryns JP, Bulcke J, Verdu P, et al. Apparent late-onset Cockayne syndrome and interstitial deletion of the long arm of chromosome 10 del(10)(q11.23q21.2). Am J Med Genet, 1991,40 (3):343-344.
    [50]Takashima H, Boerkoel CF, John J, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet, 2002, 32(2):267-272.
    [51]Megarbane A, Delague V, Salem N, et al. Autosomal recessive congenital cerebellar hypoplasia and short stature in a large inbred family. Am J Med Genet, 1999, 87(1):88-90.
    [52] Tranebjaerg L, Teslovich TM, Jones M, et al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11-q13. Hum Genet, 2003,113(3):293-295.
    [53] Swartz BE, Burmeister M, Somers JT, et al. A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann N Y Acad Sci, 2002, 956(1):441-444.
    [54]Burmeister M,Li S,Leigh RJ,et al.A new recessive syndrome of cerebellar a taxia with saccadic intrusions maps to 1p36.Am J Hum Genet,2002,71(suppl.):A528.
    [55]Hong Jiang,Beisha Tang,BoXu,et al.Frequency analysis of autosomal dominant spinocerebellar ataxias in Mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6.Chinese medical journal,2005,118(10):837-843.
    [56]Hong Jiang,Beisha Tang,Kun Xia,et al.Mutation analysis of the ATM gene in two Chinese patients with ataxia telangiectasia.J Neurol Sci,2006,241(1-2):1-6.
    [57]刘长云,姜萍,季加芬等.共济失调毛细血管扩张症伴马凡综合征一例.中华医学遗传学杂志,2004,21(6):569.
    [58]宋宝辰,周培兰.Friedreich共济失调一家系11例.中华医学遗传学杂志,2002,19(5):392.
    [59]唐北沙,夏家辉,王德安等.遗传性脊髓小脑型共济失调的CAG三核苷酸突变检测.中华医学遗传学杂志,1999,16(5):281-284.
    [60]江泓,唐北沙,张美集等.遗传性脊髓小脑型共济失调6型两个家系的临床特征及基因突变研究.中华神经科杂志,2003,36(2):98-101.
    [61]江泓,唐北沙,许波等.中国大陆汉族人群SCA各亚型的突变频率分析及SCA6的临床和分子特征.中华医学遗传学杂志,2005,22(1):1-4.
    [62]江泓,唐北沙,李清华.遗传性脊髓小脑型共济失调7型一家系的临床及基因突变分析.国际神经病学神经外科学杂志,2005,32(6):495-497.
    [63]宋兴旺,唐北沙,江泓等.遗传性脊髓小脑型共济失调7型三家系临床特征及分子生物学研究.中华医学杂志,2006,86(25):1755-1758.
    [64]Tang BS,Liu CY,and Shen LU.et.al.Frequency of SCA1,SCA2,SCA3/ MJD,SCA6,SCA7,and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds.Arch Neurol,2000,57(4):540-544.
    [65]许波,江泓,唐北沙,等.Friedreich共济失调的临床特征及GAA三核苷酸重复突变分析.卒中与神经疾病,2005,12(3):172-174.
    [66]江泓,唐北沙,夏昆等.中国人共济失调毛细血管扩张症ATM基因突变研究. 中华医学遗传学杂志,2005,22(2):98-100.
    [67]江泓,唐北沙,夏昆等.共济失调毛细血管扩张症两例患者临床与ATM基因突变研究.中华医学杂志,2005,85(16):1117-1120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700