非饱和土水力特性测试理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和土水力特性包括土水特征曲线和渗透函数。其中,土水特征曲线描述的是基质吸力与含水量(如:饱和度、体积含水量等)之间的关系;渗透函数描述的是渗透系数与基质吸力或含水量之间的关系。它们在分析有关非饱和土力学行为及污染物地下迁移等问题中起到关键的作用。因此,确定非饱和土水力特性在非饱和土研究及工程实践中具有十分重要的意义。
     本文围绕非饱和土水力特性的确定问题,开展了测试理论及其方法的研究,具体进行了以下四个方面的工作:
     1)在利用压力板仪测定非饱和土的土水特征曲线时,常用的取样称量法、溢出水称量法分别存在实测试样质量与实际试样质量不相等、实测排水量与实际排水量不相等问题,从而造成试验结果失真。为此,提出了以溢出水称量法为基础,通过施加修正气压力及校正手段来测量非饱和土水力特性的新方法-溢出水校正称量法。通过取样称量法、溢出水称量法、溢出水校正称量法的对比分析,探讨了它们的适应性。
     2)针对同一试样的土水特征曲线和水相渗透系数需分开测量及在测量水相渗透系数时采用常水头技术存在的问题,本文介绍了一台能够同时测量非饱和土土水特征曲线和渗透函数的试验装置-非饱和土水力特性联合测试系统,并利用它对两种土样的水力特性进行了测量。通过其测量结果与Tempe仪和VGM模型预测结果的比较,验证了该仪器的适用性。
     3)基于多孔介质热动力学理论并考虑交界面上各相动态相容条件,建立了一个能描述静态土水特征曲线与动态土水特征曲线间关系的线性粘弹性模型。在此模型的基础上,结合多步流动试验特点,建立了非饱和土的饱和度演化方程,该方程能描述非饱和土流动过程中饱和度的动态变化规律。基于此方程,提出了一种利用非平衡多步流动试验的溢出量试验结果计算非饱和土水力特性的方法,并对该方法的适用性进行了验证。此外,还对该方法应用的相关问题进行了探讨。
     4)以非饱和土的饱和度演化方程为基础,提出了一种计算试样达到平衡状态所需时间的预估方法,并就时间间隔、容水率及特征时间这几个因素对试样达到平衡状态所需时间的影响进行了研究。
The hydraulic properties of unsaturated soils include the soil-water characteristic curve, a relationship between matric suction and water content, and the hydraulic conductivity function, a relationship between hydraulic conductivity and water content or matric suction. These properties play a crucial role in solving the issues related to the unsaturated soils, such as analysis of the mechanical behavior of unsaturated soils, prediction of subsurface flow and transportation, and so on.
     This research is concerned with the theory and methods that can be effectively applied to determine the unsaturated soil hydraulic properties, and it is summarized as follows:
     1) In using the pressure plate extractor to measure the soil water characteristic curve, the soil water content is usually determined by weighing the soil sample or weighing the outflow. Due to their intrinsic drawbacks, however, both methods can induce errors in the measurement. To resolve the problem, a new testing method, the adjusted method of weighing outflow, is proposed that can be used to determine the soil water characteristic curve by using the modified air pressure and the adjusted method. By comparing the method of weighing soil and the method of weighing outflow to the adjusted method of weighing outflow, the applicabilities of these three methods are discussed.
     2) Conventionally, the soil water characteristic curve and the hydraulic conductivity function are not concurrently measured in the same sample, and in measuring the hydraulic conductivity function, the constant head method is usually applied, which is not applicable when the conductivity is very low. To resolve this issue, a combined testing system, which can concurrently measuring the soil-water characteristic curve and hydraulic conductivity function of unsaturated soils, is developed. Comparisons between the testing results using the combined system and those using the conventional methods show that the newly developed testing system works well.
     3) Based on the theory of multiphase porous media, a linear visco-elastic model is proposed, which can be used to derive the static soil water characteristic curve from the non-equilibrium outflow testing data. Based on this model, a method is proposed to effectively determine the hydraulic properties of unsaturated soils.
     4) Based on the above model, a novel method is proposed to determine the time for the soil sample to attain the equilibrium. We discuss the effects of the adopted time intervals, the size of suction step, the water capacity and the characteristic time on the equilibrium.
引文
[1]Stannard D I. Tensiometers-Theory, Construction and Use[J]. Geotechnical Testing Journal,1992,15(1):48-58.
    [2]Hilf J W. An investigation of pore water pressure in compacted cohesive soils[M]. Technical Memorandum No.654, United States Department of the Interior, Bureau of Reclamation, Design and Construction Division, Denver, CO.,1995.
    [3]Bocking K A, Fredlund D G. Limitations of the axis translation technique[A]. Proceedings of the 4th International Conference on Expansive Soils[C], Denver, CO, 1980, pp.117-135.
    [4]Fredlund D G, Wong D K H. Calibration of thermal conductivity sensors for measuring soil suction[J]. Geotechnical Testing Journal,1989,12(3):188-194.
    [5]Houston S L, Houston W N, Wagner A. Laboratory filter paper suction measurements[J]. Geotechnical Testing Journal,1994,17(2):185-194.
    [6]Corey A T. Measurement of water and air permeability in unsaturated soil[J]. Proceedings Soil Science Society of America,1957,21(1):7-10.
    [7]Klute A, Dirksen C. Hydraulic conductivity and diffusivity:laboratory methods[M]. Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Soil Science Society of America, Monograph No.9, Madison, WI,1986, pp.687-734.
    [8]Klute A. The determination of the hydraulic conductivity and diffusivity of unsaturated soils[J]. Soil Science,1972,113(4):264-276.
    [9]Olsen H W, Nichols R W, Rice T L. Low gradient permeability methods in a triaxial system[J]. Geotechnique,1985,35(2):145-157.
    [10]Olsen H W, Morin R H, Nichols R. W. Flow pump applications in triaxial testing[M]. Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, ASTM, Philadelphia,1988, pp.68-81.
    [11]Olsen H W, Willden A T, Kiusalaas N J, Nelson K R, Poeter E P. Volume-controlled hydrologic property measurements in triaxial systems[M]. Hydraulic Conductivity and Waste Contaminant Transport in Soils, ASTM STP 1142, ASTM, Philadelphia,1994, pp.482-504.
    [12]Nimmo J R, Rubin J, Hammermeister D P. Unsaturated flow in a centrifugal field: Measurement of hydraulic conductivity and testing of Darcy's law[J]. Water Resources Research,1987,23(1):124-134.
    [13]Lu Ning, William J L. Unsaturated soil mechanics[M]. John Wiley& Sons, Inc., Hoboken, New Jersey,2004, pp.476-477.
    [14]Bruce R, Klute A. The measurement of soil moisture diffusivity[J]. Soil Science Society of America Proceedings,1956,20:458-462.
    [15]Cassel D, Warrick A, Nielson D, Biggar J. Soil-water diffusivity values based upon time dependent soil water content distributions[J]. Soil Science Society of America Proceedings,1968,32:774-777.
    [16]Gardner W R. Calculation of capillary conductivity from pressure plate outflow data[J]. Soil Science Society of America Proceedings,1956,20:317-320.
    [17]Benson C H, Gribb M. Measuring unsaturated hydraulic conductivity in the laboratory and field[M]. Unsaturated Soil Engineering Practice, American Society of Civil Engineers Special Technical Publication No.68, Reston, VA,1997, pp. 113-168.
    [18]Richards L A and Weeks L. Capillary conductivity values from moisture yield and tension measurements on soil columns[J]. Soil Science Society of America Proceedings,1953,55:206-209.
    [19]Waston K. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials[J]. Water Resources Research,1966, 2(4):709-715.
    [20]Topp G C, Davis J L and Annan A P. Electromagnetic determination of soil water content:Measurement in coaxial transmission lines[J]. Water Resources Research,1980,16(3):574-582.
    [21]程先军.根据TDR原理测量土壤含水量[J].水利水电技术,1995,11:36-38.
    [22]陈家宙,陈明亮,何圆球.各具特色的当代土壤水分测量技术[J].湖北农业科学,2001,3:25-28.
    [23]Rose C W, Stern W R, Drummond J E. Determination of hydraulic conductivity as a function of depth and water content for soil in situ[J]. Australia Journal of Soil Research,1965,3:1-9.
    [24]Schultze B, Durner W. Onestep, multistep and continuous transient flow experiments for the determination of soil hydraulic properties[A]. Bayreuther Forum Okologie 28[C], Universitat Bayreuth, Germany,1996, pp.194-197.
    [25]Zhang Jun, Xu Shao-hui, Liu Jian-li, Zhang Jia-bao. Inverse method to determine soil hydraulic properties from transient outflow experiments [J]. Journal of Hydrologynamics, Ser. B.2004,16(6):675-680.
    [26]Wind G P. Capillary conductivity data estimated by a simple method[A]. Water in the unsaturated zone[C]. IASH Gentbrugge/UNESCO Paris,1968, pp.181-191.
    [27]Bouma J, Belmans C, Dekker L W, Jeurissen W J M. Assessing the suitability of soils with macropores for subsurface liquid waste disposal [J]. Journal of Environment Quality,1983,12:305-311.
    [28]Dirken C. Unsaturated hydraulic conductivity [A]. Soil Analysis:Physical Methods [C], New York:Marcel Dekker,1991, pp.209-269.
    [29]张俊,徐绍辉.数值反演方法在确定土壤水力性质中的研究进展[J].土壤,2003,35(3):211-215.
    [30]徐绍辉,刘建立.土壤水力性质确定方法研究进展[J].水科学进展,2004,14(4),494-501.
    [31]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展[J].水利学报,2004,2:68-76.
    [32]Hopmans J W, Simunek J, Romano N, Durner W. Simultaneous determination of water transmission and retention properties:Inverse methods [M]. In Dane J H and Topp G C(ed.), Methods of soil analysis. Part 4. Physical methods. SSSA Book Ser.5. SSSA, Madison, WI.,2002, pp.963-1008.
    [33]van Genuchten M Th, Leiji F J. Indirect methods for estimating the hydraulic properties of unsaturated soils[M]. California:University of California Press,1992, pp:1-14.
    [34]Brooks R H, Corey A T. Hydraulic properties of porous media[J]. Hydrology Paper no.3, Ciyil Engineering Dep., Colorado State Univ., Fort Collins, Colo.,1964.
    [35]Campbell G S. A simple method for determining unsaturated hydraulic conductivity from moisture retention data[J]. Soil Science,1974,117:311-314.
    [36]Van Genuchten M TH. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980, 44:892-898.
    [37]Burdine N T. Relative permeability calculations from pore-size distribution data[J]. Petr. Trans., Am. Inst. Mining Metall. Eng.,1953,198:71-77.
    [38]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resource Research,1976,12:513-522.
    [38]Demond A H, Robert P V. Estimation of two-phase relative permeability relationships for organic liquid contaminants[J]. Water Resource Research,1993,29, 1081-1090.
    [39]徐绍辉,张佳宝.求土壤水力特征的一种迭代法[J].土壤学报,2000,37(2):271-274.
    [40]邵明安.根据土壤水分再分布过程确定土壤导水参数[J].中国科学院/水利部水土保持所集刊,1985,2:45-53.
    [41]Shao M A. Integral method for estimating soil hydraulic properties [J]. Soil Science Society of America Journal,1998,62(3):585-592.
    [42]李春友,任理,李保国.利用优化方法求算Van Genuchten方程参数[J].水科学进展,2001,12(4):473-477.
    [43]徐绍辉,张佳宝,刘建立,陈德立.表征土壤水分持留曲线的几种模型的适应性研究[J].土壤学报,2002,39(4):498-504.
    [44]Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal,1981,45:1023-1030.
    [45]Arya L M, Leij F J, van Genuchten M Th, Shouse P J. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Science Society of Americal Journal,1999,63:510-519.
    [46]Zhuang J, Yan J, Miyazaki T. Estimating water retention characteristic from soil particle-size distribution using a nonsimilar media concept[J]. Soil Science,2001,166: 308-321.
    [47]Miyazaki T. Bulk density dependence of air entry suctions and saturated hydraulic conductivities of soils[J]. Soil Science,1996,161:484-490.
    [48]刘建立,徐绍辉.非相似介质方法在估计土壤水分特征曲线中的应用[J].水利学报,2003,4:80-84.
    [49]Paydar Z, Cresswell H P. Water retention in Australian soils:Ⅱ. Prediction using particle size, bulk density and other properties [J]. Australian Journal of Soil Research, 1996,34:679-693.
    [50]Bouma J. Using soil survey data for quantitative land evaluation [J]. Advances in Soil Science,1989,9:177-233.
    [51]Tietje O, Tapkenhinrichs M. Evaluation of pedotransfer functions[J]. Soil Science Society of Americal Journal,1993,57:1088-1095.
    [52]Gupta S C, Larson W E. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density [J]. Water Resources Research,1979,15:1633-1635.
    [53]Rawls W J, Brakensiek D L, Saxton K E. Estimation of soil water properties[J]. Trans. ASAE,1982,25:1316-1320,1328.
    [54]Cosby B J, Hornberger G M, Clapp R B, Ginn T R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research,1984,20:682-690.
    [55]Saxton K E, Rawls W J, Romberger J S, Papendick R I. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal, 1986,50:1031-1036.
    [56]Wosten J H M, van Genuchten M Th. Using texture and other soil properties to predict the unsaturated soil hydraulic functions[J]. Soil Science Society of America Journal,1988,52:1762-1770.
    [57]Vereecken H, Maes J, Feyen J, Darius P. Estimating the soil water moisture retention characteristic from texture, bulk densityand carbon content[J]. Soil Science, 1989,148:389-403.
    [58]Kern J S. Evaluation of soil water retention models based on basic soil physical properties[J]. Soil Science Society of America Journal,1995,59:1134-1141.
    [59]Wosten J H M, Pachepsky Y A, Rawls W J. Pedotransfer functions:bridging the gap between available basic soil data and missing soil hydraulic characteristics[J]. Journal of Hydrology,2001,251:123-150.
    [60]Schaap M G, Leij F J, van Genuchten M Th. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity [J]. Soil Science Society of Americal Journal,1998,62:847-855.
    [61]Minasny B, McBratney A B, Bristow K L. Comparison of different approaches to the development of pedotransfer functions for water2retention curves[J]. Geoderma, 1999,93:225-253.
    [62]Pachepsky Y A, Timlin D, Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data[J]. Soil Science Society of America Journal,1996,60:727-733.
    [63]Minasny B, McBratney A B, Bristow K L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves[J]. Geoderma, 1999,93:225-253.
    [64]Rawls W J, Brakensiek D L, Saxton K E, et al. Estimating soil water retention from soil physical properties and characteristics [J]. Advances in Soil Science,1991, 16:213-235.
    [65]Lark R M, Bishop T F A, Webster R. Using expert knowledge with control of false discovery rate to select repressors for prediction of soil properties [J]. Geoderma, 2007,138(1-2):65-78
    [66]Schaap M G, Leiji F J, van Genuchten M Th. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity[J]. Soil Science Society of America Journal,1998,62:847-855.
    [67]Mandelbrot B B. The fractal geometry of nature[M]. San Francisco:W H Freeman,1983.468.
    [68]刘建国,聂永丰.非饱和土壤水力参数预测的分形模型[J].水科学进展,2001,12(1):99-106.
    [69]Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation [J]. Soil Science Society of America Journal,1989,53:987-996.
    [70]Tyler S W, Wheatcraft S W. Fractal processes in soil water retention[J]. Water Resources Research,1990,26:1047-1056.
    [71]Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water properties. Ⅰ. Theory[J]. Soil Science Society of America Journal,1991,55:1231-1238.
    [72]Crawford J W, Matsui N, Young I M. The relation between the moisture release curve and the sturcture of soil[J]. European Journal of Soil Science,1995,46: 369-375.
    [73]Perfect E, McLaughlin N B, Kay B D, Topp G C. An improved fractal equation for the soil water retention curve[J]. Water Resources Research,1996,32:281-287.
    [74]Perfect E. Estimating soil mass fractal dimensions fromwater retention curves[J]. Geoderma,1999,88:221-231.
    [75]Kravchenko A, Zhang R D. Estimating the soil water retention from particle2size distributions:A fractal approach [J]. Soil Science,1998,163:171-179.
    [76]Perrier E, Rieu M, Sposito G, de Marsily G. Models of water retention curve for soils with a fractal pore size distribution[J]. Water Resources Research,1996,32: 3025-3031.
    [77]de Gennes P G. Partial filling of a fractal structure by a wetting fluid[M]. Physics of Disordered Materials. New York:Plenum Press,1985,227-241.
    [78]Toledo P G, et al. Hydraulic conductivity of porous media at low water content[J]. Soil Science Society of America Journal,1990,54:673-679.
    [79]Shepard S J. Using a fractal model to compute the hydraulic conductivity function[J]. Soil Science Society of America Journal,1993,57:300-306.
    [80]刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用[J].土壤学报,2003,40(1):46-52.
    [81]Fatt I. The network model of porous media. Ⅰ. Capillary characteristics[J]. Petroleum Transactions, AIME,1956a,207:144-159.
    [82]Fatt I. The network model of porous media. Ⅱ. Dynamic properties of a single size tube network[J]. Petroleum Transactions, AIME,1956b,207:160-163.
    [83]Fatt I. The network model of porous media. Ⅲ. Dynamic properties of networks with tube radius distribution[J]. Petroleum Transactions, AIME,1956b,207:164-181.
    [84]Mohanty K K. Fluids in porous media:Two phase distribution and flow[Ph. D. thesis]. Univ. of Minn., Minneapolis,1981.
    [85]Ewing R P, Gupta S C. Modeling percolation properties of random using a domain network[J]. Water Resources Research,1993,29:3169-3178.
    [86]Wise W R. A new insight on pore structure and permeability[J]. Water Resources Research,1992,28:189-198.
    [87]Rajarama H, Ferrand L A, Celia M A. Prediction of relative permeabilities for unconsolidated soils using pore-scale network models[J]. Water Resources Research, 1997,33:43-52.
    [88]Vogel H J, Kretzschmar A. Topological characterization of pore space in soil2sample preparation and digital image processing[J]. Geoderma,1996,73:23-28.
    [89]Vogel H J. Morphological determination of pore connectivity as a function of pore size using serial sections[J]. European Journal Soil Science,1997,48:365-377.
    [90]Vogel H J, Roth K. A new approach for determining effective soil hydraulic functions[J]. European Journal Soil Science,1998,49:547-556.
    [91]Vogel H J, Roth K. Quantitative morphology and network representation of soil pore structure[J]. Advances in Water Resources,2001,24:233-242.
    [92]Brown J M, Fonteno W C, Cassel D K, Johnson G A. Computed tomographic analyses of water distribution in three porous foam media[J]. Soil Science Society of America Journal,1987,51(5):1121-1125.
    [93]Zeng Y, Payton R L, Gantzer C J, Anderson S H. Fractal dimension and lacunarity of bulk density determined with x-ray computed tomography [J]. Soil Science Society of America Journal,1996,60(6):1718-1724.
    [94]Hainsworth J M, Aylmore L A G. The use of computer-assisted tomography to determine spatial distribution of soil water content[J]. Australian Journal of Soil Research,1983,21(4):435-443.
    [95]Perret J S, Prasher S O, Kantzas A, et al.3-D visualization of soil macroporosity using x-ray CAT scanning[J]. Canadian Agricultural Engineering,1997,39(4): 249-261
    [96]Phogat V K, Aylmore L A G, Schuller R D. Simultaneous measurement of the spatial distribution of soil water content and bulk density [J]. Soil Science Society of America Journal,1991,55:908-915.
    [97]吕菲,刘建立,张家宝等.利用随机网络模型和CT数字图像预测近饱和土壤水分特征曲线[J].灌溉排水学报,2009,28(6):18-21.
    [98]薛毅.最优化原理与方法[M].北京:北京工业出版社,2000,pp.226-233.
    [99]Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly Journal of Applied Mathmatics,1944,2:164-168.
    [100]Marquardt D W. An algorithm for least squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics,1963, 11:431-441.
    [101]Gardner W R. Calculation of capillary conductivity from pressure plate outflow data[J]. Soil Science Society of America Proceedings,1956,20:317-320.
    [102]Doering E J. Soil water diffusivity by the one-step method[J]. Soil Science,1965, 99:322-326.
    [103]Whisler F D, Watson K K. One-dimensional gravity drainage of uniform columns of porous materials[J]. J. Hydrol.,1968,6:277-296.
    [104]Zachmann D W, P.C. Duchateau P C, Klute A. The calibration of Richards flow equation for a draining column by parameter identification[J]. Soil Science Society of America Journal,1981,45:1012-1015.
    [105]Zachmann D W, Duchateau P C, Klute A. Simultaneous Approximation of Water Capacity and Soil Hydraulic Conductivity by Parameter Identification[J]. Soil Science,1982,134:157-163.
    [106]Kool J B, Parker J C, van Genuchten M T. Determining soil hydraulic propertied for one-step outflow experiments by parameter estimation. Ⅰ. Theory and numerical studies[J]. Soil Science Society of America Journal,1985,49:1348-1354.
    [107]Parker J C, Kool J B, van Genuchten MT. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation.Ⅱ. Experimental studies[J]. Soil Science Society of America Journal,1985,49:1354-1359.
    [108]Kool J B, Parker JC. Analysis of the inverse problem for transient unsaturated flow[J]. Water Resource Research,1988,24(6):817-830.
    [109]Russo D. Determining soil hydraulic properties by parameter estimation:On the selection of a model for the hydraulic properties[J]. Water Resource Research,1988, 24:453-459.
    [110]Russo D, Bresler E, Shani U, Parker J C. Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology [J]. Water Resource Research,1991,27:1361-1373.
    [111]van Dam J C, Stricker J N M, Droogers P. Inverse method to determine soil hydraulic functions from multistep outflow experiments[J]. Soil Science Society of America Journal,1994,58:647-652
    [112]Toorman A F, Wierenga P J, Hills R G. Parameter estimation of soil hydraulic properties from one-step outflow data[J]. Water Resource Research,1992,28: 3021-3028.
    [113]Eching S O and Hopmans J W. Optimization of hydraulic functions from transient outflow and soil water pressure data[J]. Soil Science Society of America Journal,1993,57:1167-1175.
    [114]Eching S O, Hopmans J W and Wendroth O. Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure data[J]. Soil Science Society of America Journal,1994,58:687-695.
    [115]Vereecken H, Kaiser R, Dust M, Putz T. Evaluation of the multistep outflow method for the determination of unsaturated hydraulic properties of soils[J]. Soil Science,1997,162:618-631.
    [116]Chen J, Hopmans J W, Grismer M E. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions[J]. Advances in Water Resource,1999,22:479-493.
    [117]Topp G C, Klute A, Peters D B. Comparison of water content-pressure head data obtained by equilibrium, steady state and unsteady state methods[J]. Soil Science Society of American Proceeding,1967,31:312-314.
    [118]Smiles D, Vachaud G, Vaulin M. A test of the uniqueness of the soil moisture characteristic during transient non hysteretic flow of water in a rigid soil[J]. Soil Science Society of American Proceeding,1971,35:534-539.
    [119]Vachaud G, Vauclin M, Wakil M. A study of the unique ness of the soil moisture characteristic during desorption by vertical drainage[J]. Soil Science Society of American Proceeding,1972,36:531-532.
    [120]Wildenschild D, Hopmans J W, Simunek J. Flow rate dependence of hydraulic characteristics[J]. Soil Science Society of America Journal,2001,65:35-48.
    [121]Hassanizadeh S M, Gray W G. Thermodynamic basis of capillary pressure in porous media[J]. Water Resource Research,1993,29(10):3389-3405.
    [122]OCarroll D M, Phelan T J, Abriola L M. Exploring dynamic effects in capillary pressure in multistep outflow experiments[J]. Water Resource Research,2005,41: W11419, doi:10.1029/2005WR004010.
    [123]Dane J H, Hruska S. In-situ determination of soil hydraulic properties during drainage[J]. Soil Science Society of America Journal,1983,47:619-624.
    [124]Nunzio romano. Use of an inverse method and geostatistics to estimate soil hydraulic conductivity for spatial variability analysis[J]. Geoderma,1993,60: 169-186
    [125]Simunek J, van Genuchten M T. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion [J]. Water Resource Research,1996,9:2683-2696.
    [126]Simunek J, and van Genuchten M T. Estimating unsaturated soil hydraulic properties from mutiple tension disc infiltrometer date[J]. Soil Science,1997,162: 383-398.
    [127]Fredlund D G, XING A, Fredlund M D, Barbour S L. The relationship of the unsaturated soil shear strength fuction to the soil water characteristic curve[J]. Canadian Geotechnical Journal,1995,32:440-448.
    [128]Vanapalli S K, Fredlund D G, Pufahi D E. The relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till[J]. Geotechnical Testing Journal,1996,19(3):259-268.
    [129]黄润秋,吴礼舟.非饱和土抗剪强度的研究[J].成都理工大学学报(自然科学版),2007,34(3):221-224.
    [130]Babu G L S, Rao R S, Peter J. Evaluation of shear strength functions based on soil water characteristic curves[J]. Jounal of Testing and Evaluation,2005,33(6): 461-465.
    [131]汪东林.非饱和土体变试验研究及其在地面沉降中的应用[博士学位论文D].大连:大连理工大学.2007.
    [132]刘汉乐,周启友,徐速.非饱和带中非均质条件下LNAPL运移与分布特性实验研究[J].水文地质工程地质,2006,5:52-57.
    [133]林琳,杨金忠,史良胜等.区域饱和—非饱和地下水流运动数值模拟[J].武汉大学学报(工学版),2005,38(6):53-57.
    [134]弗雷德隆德D G,拉哈尔佐H合著,陈仲颐等译.非饱和土土力学[M].北京:中国建筑出版社,1997.
    [135]Zapata C Z, Houston W N, Houston S L, Walsh K D. Soil water characteristic curve variability [A]. Proceedings of Sessions of Geo-Denver 2000:Advance in Unsaturated Geotechnics[C]. Dewer:American Society of Civil Engineers, Special Publication,2000.
    [136]Lu N, Wayllance A, Carrera L, Likos W J. A Constant flow for concurrently measuring soil water characteristic curve and hydraulic conductivity function[J]. Geotechnical Testing Journal,2006,29(3):230-241.
    [137]Wei C,.Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅰ. Linear poroelasticity[J]. International Journal of Engineering Science,2002,40:1807-1833.
    [138]Wei C, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅱ. Lagrangian description and variational structure[J]. International Journal of Engineering Science,2002,40:1835-1854.
    [139]Whitaker S. Advances in theory of fluid motion in porous media[J]. Industrial and Engineering Chemistry,1969,61(12):14-28.
    [140]Wilmanski K. Lagrangean model of two-phase porous material[J]. Journal of Nonequilibrium Thermodynamics,1995,20,50-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700