飞秒激光脉冲整形与测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对飞秒脉冲整形技术、飞秒脉冲测量技术、飞秒脉冲研究进展综述的基础上,提出高能量、周期量级脉冲产生的方案,并围绕这个课题展开研究。论文的主要内容包括:
     1利用充惰性气体中空光纤、惰性气体电离成丝对放大系统输出的脉冲进行光谱展宽实验研究,并利用低压惰性气体电离成丝获得可支持周期量级脉冲的高能量、超宽带光谱。
     2研究液晶空间光调制器(LC-SLM)的脉冲整形原理;数值模拟LC-SLM的色散补偿效果;设计超宽带光谱范围内的色散补偿实验;搭建LC-SLM脉冲整形系统;以实验测量的方式校正LC-SLM的电压控制位相关系;编制LC-SLM的自动化控制软件;实验上实现了LC-SLM位相的精确控制。
     3根据飞秒脉冲测量仪器原理编写相干条纹分辨自相关、频率分辨光学开关法(FROG)仿真软件;分析光谱相位相干直接电场重建法(SPIDER)测量误差的来源,在算法上采用小波变换和傅立叶变换两种方法互校的方式实现位相的精确还原;编制在线的SPIDER位相还原软件和辅助测量程序,实验上实现SPIDER的精确测量;采用SPIDER测量和LC-SLM位相控制相结合的反馈方式,实现色散补偿。
     4设计、搭建包含LC-SLM的啁啾脉冲放大系统光路;采用解析的方法,对放大系统的展宽器和压缩器参数进行设计;对LC-SLM在放大系统中的色散补偿效果进行仿真;完成放大系统种子脉冲振幅整形。
     此外,对LC-SLM的脉冲整形算法进行研究,并编制相应软件;采用反复傅立叶方法对位相整形滤波函数进行计算;采用模拟退火算法和遗传算法进行自适应的反馈实验仿真;设计利用LC-SLM脉冲整形的自适应反馈研究光子晶体光纤光谱展宽的实验方案。
The method of generating intense monocycle laser pulses was given based on the overview of femtosecond pulses shapings、femtosescond pulses measurement and femtosecond pulses development. The main contents are summarized as follows:
     1 Broading amplifier spetrum with hollow fiber filled with noble gas or filamentation in noble gas, and high energy ultrobroadband optical pulses is achieved.
     2 The principle of LC-SLM pulses shaping is described; The efforts of dispersion compensation is simulated; The ultrobroadband dispersion compensation experiment is designed; 4f pulses shaping system is constructed; The relation of voltage and phase is Calibrated by experiment; Phase control software is compiled; and accuracy control of phase is realized.
     3 The simulation of FRAC and FROG is compiled based on the principle of measuring principle.. Exact phase retrieval arithmetic is realized with the combination of wavelet transform and Fourier transform, corresponding phase retrieval software online is compiled; Exact measurement si realiazed; Dispersion is compensated by the combination with phase controlling LC-SLM and phase measuring of SPIDER.
     4 Chirped pulses amplifier system with LC-SLM is designed and constructed. Parameters in stretcher and compression systems is designed by resolution; Dispersion compensation effort with LC-SLM is simulated; Amplitude shaping of laser is completed.
     In addition, pulses shaping algorithms of LC-SLM is studied, and corresponding software is programmed; phase shaping filter function is calculated by iterative fourier algorithm; Adaptive feedback simulation result by simulative anneal、genetics algorithm is given. Experiment project of PCF spectrum broading with LC-SLM adaptive feedback is designed.
引文
[1] R. L. Fork, B. I. Greene, C. V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,Appl. Phys. Lett,1981,38:671-672
    [2] D. E. Spence, P. N. Kean,W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,Opt. Lett,1991,16:42-44
    [3] F. Krausz, M. E. Fermann, T. Brabec,et al, A. J. Schmidt, Femtosecond solid-state lasers,IEEE J. Quantum Electron, 1992,28:2097-2122
    [4] Zenghu Chang, A. Rundquist, Haiwen Wang,et al, Generation of coherent, femtosecond X-ray pulses in the water window, IEEE Journal of Selected Topics in Quantum Electronics, 1998,4(2):266–270
    [5] R. Bartels, S. Backus, E. Zeek, et al,Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,Nature, 2000,406(6792):164–166
    [6] C. G. Durfee III, A. R. Rundquist, S. Backus,et al,Phase matching of high-order harmonics in hollow waveguides,Physical Review Letters, 1999,83(11):2187–2190
    [7] A. Sullivan, H. Hamster, S. P. Gordon, et al, Ultrashort laser pulses in plasmas, Optics Letters, 1994,19(19):1544–1446
    [8] B. Quesnel, P. Mora, J. C. Adam, et al, Electron parametric instabilities of ultraintense short laser pulses propagating in plasmas. Physical Review Letters,, 1997,78(11):2132–2135
    [9] A. B. Borisov, X. Shi, V. B. Karpov, et al, Stable self-channeling of intense ultraviolet pulses in underdense plasma, producing channels exceeding 100 rayleigh lengths,Journal of the Optical Society of America B (Optical Physics), 1994,11(10):1941–1947
    [10] B. Rau, C. W. Siders, S. P. Le Blanc, et al, Spectroscopy of short intense laser pulses due to gas ionization effects. Journal of the Optical Society of America B (Optical Physics), 1997,14(3):643–649
    [11]倪晓昌,飞秒激光微精细加工理论与实验研究:博士学位论文,天津大学,2003
    [12] A.M.Weiner, Heritage, J.P.Kirschner, et al, High-resolution femtosecondpulse shaping, J.Opt,Soc,Am.B,1988,5,1563-1571
    [13] A.M.Weiner, D.E.Leaird, J.S.Patel,et al, Proggrammable femtosecond pulse shaping by use of multielement liquid-crystal phase odulator, Optics letters,1990, 15(6):326-328
    [14] A. M. Weiner, D. E. Leaird, J. S. Patel, et al, Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator, IEEE Journal of Quantum Electronics, 1992,28:908
    [15]A.M.Weiner, Fentosecond optical pulse shaping and processing, Prog.Quant.Electr,1995,19:161-237
    [16] A.M.Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum,2000,71(5):1920-1960
    [17] M.M.Wefers, K.A.Nelson, Programmable phase and amplitude femtosecond pulse shaping, Opt.Lett,1993,18:2032-2034
    [18] M.M.Wefers, K.A.Nelson, Analysis of programmable ultrashort waveform generation using Liquid-crystal sptial light modulators, J.Opt.Soc.A,1995,12:1343-1362
    [19] R. S. Judson , H. Rabitz, Teaching lasers to control molecules, Physical Review Letters, 1992,68(10):1500–1503
    [20] A. Efimov ,D. H. Reitze, Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier, Optics Letters,1998, 23(20):1612–1614
    [21] A. Efimov, M. D. Moores, N. M. Beach, et al, Adaptive control of pulse phase in a chirped-pulse amplifier, Optics Letters, 1998,23(24):1915–1917
    [22] A. Efimov, M.D. Moores, B. Mei, et al, Minimization of phase distortion in an ultrafast chirped pulse amplifier using adaptive learning, Applied Physics B, 2000,70:S133–S141
    [23] T. Brixner, M. Strehle, G. Gerber, Feedback-controlled optimization of amplified femtosecond laser pulses, Applied Physics B (Lasers and Optics), 1999,B68(2):281–284
    [24] P.Tournois, Acousto-optic, Programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems, Optics Communications, 1997, 140: 245-249
    [25] F. Verluise, V. Laude, Z.Cheng, et al, Amplitude and Phase Control of Ultrashort Pulses by use of an acousto-optic programmable dispersive filter : pulse compression and shaping , Optics Letters,2000, 25(8):575-577
    [26] E. Zeek, R. Bartels, M. M. Murnane, et al,Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation.Optics Letters, 2000, 25(8):587–589
    [27] E. Zeek, K. Maginnis, S. Backus, et al, Pulse compression by use of deformable mirrors. Optics Letters, 1999 ,24(7):493–5
    [28] R. L. Fork, O. E. Martinez, J. P. Gordon, Negative dispersion using pairs of prisms, Opt. Let. 1984, 9:180~182
    [29] Edmond B. Treacy, Optical pulse compression with diffraction gratings, IEEE J. Quant. Electron. , 1969,QE 5(9): 454-458
    [30] O. E. Martinez, 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in the 1.3-1.6μm region, IEEE J. Quantum Electron, 1987, QE23: 59-64
    [31] M. Yamashita, M. Ishikawa, K. Torizuka, et al, Femtosecond-pulse laser chirped compensated by cavity-mirror dispersion, Opt. Let, 1986,11:504~506
    [32] R. Szipocs , A. Kohazi-Kis, Theory and design of chirped dielectric laser mirrors, Appl. Phys. B, 1997, 65:115~135
    [33] R. Szipocs, K. Ferencz, Ch. Spielmann, et al, Chirped multilayer coatings for broadband dispersion control in femtosecond laser, Opt. Let, 1994, 19:201~203
    [34]A. Stingl, M. Lenzner, Ch. Spielmann, et al, Sub-10-fs mirror dispersion-contrilled Ti:Sapphire laser, Opt. Let. 1995, 20: 602~604
    [35] L. Zhu, P.C. Sun, D.U. Bartsch, et al, Control of a Micromachined Continous-Membrane Deformable active Mirror for Aberration Compensation, App. Opt,1999, 38 (1): 168一176
    [36]张志刚,飞秒激光脉冲技术及应用,北京:科学出版社, 2006
    [37] F. Verluse, B. Laude, J. P. Huignard, Arbitrary Dispersion Control of Ultrashort Optical Pulses with Acoustic Waves, J. Opt. Soc,Am. B,2000,17(1):138-145
    [38] J.CM, Diels, J. J. Fontaine, et al, Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy, Applied Optics, 1985, 24(9):1270–1282
    [39] J. K. Ranka, A. L. Gaeta, A. Baltuska,et al, Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a gaasp photodiode, Optics Letters, 1997,22(17):1344–1346
    [40] J. Peatross, A. Rundquist, Temporal decorrelation of short laser pulses,Journal of the Optical Society of America B (Optical Physics), 1998,15(1):216–22
    [41] J. W. Nicholson, J. Jasapara, W. Rudolph,et al, Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements,Optics Letters,1999, 24(23):1774–1776
    [42]韩英魁,飞秒激光脉冲宽度测量的研究,硕士学位论文,天津大学,2002
    [43] J. Paye, M. Ramaswamy, J. G. Fujimoto,et al, Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation,Optics Letters,1993, 18(22):1946–1948
    [44] Rick Trebino , Daniel J. Kane, Using phase retrieval to measure the intensity and phase of ultrashort pulses: Frequency-resolved optical gating, Journal of the Optical Society of America B, 1993,10(5):1101–1111
    [45] Daniel J, Kane, Rick Trebino, Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating, Optics Letters, 1993,18(10):823–825
    [46] R. Trebino, K. W. DeLong, D. N. Fittinghoff,et al, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Review of Scientific Instruments,1997,68(9):3277–3295,1997
    [47] R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses, Kluwer academic publishers, Boston, 2002
    [48] C. Iaconis,I. A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses , Opt. Lett.1998 ,23:792-794
    [49]C.Iaconis, A. Walmsley, Self-referencing spectral interferometry for measuring ultrashort optical pulses,IEEE J. Quantum Electron.1999,35: 501-509
    [50] M. Hirasawa, N. Nakagawa, K. Yamamoto,et al, Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses, Appl. Phys,2002, B74: S225–S229
    [51] R. Morita, M. Hirasawa, N. Karasawa, et al, Sub-5 fs optical pulse characterization, Meas. Sci. Technol, 2002,13:1710-1720
    [52]高峰,光谱位相相干直接电场重建法测量超短脉冲的研究,硕士学位论文,天津大学, 2002
    [53]何铁英,光谱位相相干干涉仪的理论与实验研究,硕士学位论文,天津大学,2004
    [54]邓玉强,小波变换在飞秒激光技术中的应用,博士学位论文,天津大学,2005
    [55]邓玉强,吴祖斌,陈盛华等,自参考光谱相干法的小波相位重建,物理学报,2005,54(8):3716-3721
    [56] C-P. Huang, H. C. Kapteyn, J. W. Mclntosh, et al, Generation of transform-limited 32-fs pulses from a self-mode-locked Ti:sapphire laser,1992,Opt. Lett. 17:139-141
    [57] C-P. Huang, M. T. Asaki, S. Backus, et al,17-fs pulses from a self-mode-locked Ti:sapphire laser,Opt. Lett,1992,17:1289-1291
    [58] M. T. Asaki, C-P. Huang, D. Garvey, et al, Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser, Opt. Lett,1993,18:977-979
    [59] J. Zhou, G. Taft, C-P, Pulse evolution in a board-bandwidth Ti:sapphire laser,Opt. Lett. 1994,19:1149-1151
    [60] A. Stingl, M. Lenzner, Ch. Spielmann, et al, Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser, Opt. Lett,1995, 20:602-604
    [60] L. Xu, Ch. Spielmann, F. Krausz,et al, Ultrabroadband ring oscillator for sub-10-fs pulse generation,Opt. Lett,1996,21:1259-1261
    [61] I. D. Jung, F. X. K?rtner, N. Matuschek,et al, Self-starting 6.5-fs pulses from a Ti:sapphire laser, Opt. Lett,1997,22:1009-1011
    [62] U. Morgner, F. X. K?rtner, S. H. et al, Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser, Opt. Lett. 1999, 24:411-413
    [63] D. H. Sutter, G. Steinmeyer, L. Gallmann, et al, Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,Opt. Lett,1999,24:631-633
    [64] R. Ell, U. Morgner, F. X. K?rtner, et al, Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser, Opt. Lett,2001,26:373-375
    [65] R. R. Alfano, S, L. Shapiro, Emission in the region 4000 to 7000? via four-photon coupling in glass, Phys. Rev. Lett., 1970,24 (11):584~587
    [66] P. B. Corkum, Claude Rolland, T. Srinivasan-Rao, Supercontiuum generation in gases, Phys,Rev. Lett, 1986, 57 (18):2268~2271
    [67] E. Mével, O. Tcherbakoff, F. Salin, et al, Extracavity compression technique for high-energy femtosecond pulses, Journal of the Optical Society of America B: Optical Physics, 2003, 20(1): 105-108
    [68] C. V. Shank, R. L. Fork, R. Yen, et al, Compression of femtosecond optical pulses, Applied Physics Letters, 1982, 40(9): 761-763
    [69]R. L. Fork, C. H. B. Cruz, P. C. Becker, et al, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Lett., 1987, 12(7): 483-485
    [70]A. Baltu?ka, Z. Wei, M. S. Pshenichnikov, et al, Optical pulse compression to 5 fs at a 1-MHz repetition rate, Optics Letters, 1997, 22(2): 102-104
    [71]J. G. Fujimoto, A. M. Weiner, and E. P. Ippen, Generation and measurement of optical pulses as short as 16 fs, Applied Physics Letters, 1984, 44(9): 832-834
    [72]J.-M. Halbout ,D. Grischkowsky, 12-fs ultrashort optical pulse compression at a high repetition rate, Applied Physics Letters, 1984, 45(12): 1281-1283
    [73]W. H. Knox, R. L. Fork, M. C. Downer,et al, Optical pulse compression to 8 fs at a 5-kHz repetition rate, Applied Physics Letters, 1985, 46(12): 1120-1121
    [74] P. Russell, Photonic Crystal Fibers, Science, 2003, 299: 358-362
    [75] J. C. Knight, T. A. Birks, P. S. J. Russell, et al, All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, 1996, 21(19): 1547-1549
    [76] J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Optics Letters, 2000, 25(1): 25-27
    [77] J. M. Dudley, L. Provino, N. Grossard, et al, Supercontinimm generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, Journal of the Optical Society of America B: Optical Physics, 2002, 19(4): 765-771
    [78] A. L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers, Optics Letters, 2002, 27(11): 924-926
    [79] G. Chang, T. B. Norris, H. G. Winful, Optimization of supercontinuum generation in photonic crystal fibers for pulse compression, Optics Letters, 2003, 28(7): 546-548
    [80] M. Adachi, K. Yamane, R. Morita, et al, Adaptive pulse compression for photonic crystal fiber by direct feedback of spectral phase, OSA Trends in Optics and Photonics Series, 2004, 96 A: 783-785
    [81] M. Adachi, K. Yamane, R. Morita,et al, Pulse compression using direct feedback of the spectral phase from photonic crystal fiber output without the need for the Taylor expansion method, IEEE Photonics Technology Letters, 2004, 16(8):1951-1953
    [82] M. Yamashita, K. Yamane, R. Morita, Quasi-automatic phase-control technique for chirp compensation of pulses with over-one-octave bandwidth - Generation of few- to mono-cycle optical pulses, IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(2): 213-222
    [83] B. Schenkel, R. Paschotta, and U. Keller, Pulse compression with supercontinuum generation in microstructure fibers, Journal of the Optical Society of America B: Optical Physics, 2005, 22(3): 687-693
    [84] M. Nisoli, S. De Silvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique, Applied Physics Letters, 1996, 68(20): 2793-2795
    [85] M. Nisoli, S. Stagira, S. De Silvestri, A novel-high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses, Applied Physics B: Lasers and Optics, 1997, 65(2): 189-196
    [86] M. Nisoli, S. De Silvestri, O. Svelto, Compression of high-energy laser pulses below 5 fs, Optics Letters, 1997, 22(8): 522-524
    [87] M. Nisoli, G. Sansone, S. Stagira, Ultra-broadband continuum generation by hollow-fiber cascading, Applied Physics B: Lasers and Optics, 2002, 75(6-7): 601-604
    [88] G. Sansone, G. Steinmeyer, C. Vozzi, et al, Mirror dispersion control of a hollow fiber supercontinuum, Applied Physics B: Lasers and Optics, 2004, 78(5): 551-555
    [89] C. Vozzi, M. Nisoli, G. Sansone, et al, Optimal spectral broadening in hollow-fiber compressor systems, Applied Physics B: Lasers and Optics, 2005, 80(3): 285-289
    [90] M. Yamashita, H. Sone, R. Morita, et al, Generation of monocycle-like optical pulses using induced-phase modulation between two-color femtosecond pulses with carrier phase locking, IEEE Journal of Quantum Electronics, 1998, 34(11): 2145-2149
    [91] L. Xu, N. Karasawa, N. Nakagawa, et al, Experimental generation of an ultra-broad spectrum based on induced-phase modulation in a single-mode glass fiber, Optics Communications, 1999, 162(4): 256-260
    [92] N. Karasawa, R. Morita, H. Shigekawa, Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollowwaveguide, Optics Letters, 2000, 25(3): 183-185
    [93] R. Morita, M. Hirasawa, N. Karasawa, Sub-5 fs optical pulse characterization, Measurement Science and Technology, 2002, 13(11): 1710-1720
    [94] K. Yamane, T. Kito, R. Morita, et al, 2.8-fs transform-limited optical-pulse generation in the monocycle region, in Conf. Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2004), post deadline paper PDC2, 2004
    [95] K. Yamane, T. Kito, R. Morita, 2.8-fs clean single transform-limited optical-pulse generation and characterization, Springer Series in Chemical Physics, 2004, 79: 13-15
    [96] B. Schenkel, J. Biegert, U. Keller, et al, Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum, Optics Letters, 2003, 28(20): 1987-1989
    [97] W. Kornelis, M. Bruck, F. W. Helbing,et al, Single-shot dynamics of pulses from a gas-filled hollow fiber, Applied Physics B: Lasers and Optics, 2004, 79(8): 1033-1039
    [98] E. Seres, R. Herzog, J. Seres, et al, Generation of intense 8 fs laser pulses, Optics Express, 2003, 11(3): 240-247
    [99] G. Steinmeyer ,G. Stibenz, Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors, Applied Physics B: Lasers and Optics, 2006, 82(2): 175-181
    [100]B. F. Mansour, H. Anis, D. Zeidler, et al, Generation of 11 fs pulses by using hollow-core gas-filled fibers at a 100 kHz repetition rate, Optics Letters, 2006, 31(21): 3185-3187
    [101] A. J. Verhoef, J. Seres, K. Schmid, et al, Compression of the pulses of a Ti:sapphire laser system to 5 femtoseconds at 0.2 terawatt level, Applied Physics B: Lasers and Optics, 2006, 82(4): 513-517
    [102] C. P. Hauri, W. Kornelis, F. W. Helbing, et al, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Applied Physics B: Lasers and Optics, 2004, 79(6): 673-677
    [103] M. Mohebbi ,R. Fedosejevs, High-efficiency optical compression of Ti: Sapphire laser pulses at 800 nm using a silver-coated hollow fiber, Applied Physics B: Lasers and Optics, 2003, 76(4): 345-350
    [104] K. Yamane, Z. Zhang, K. Oka, et al, Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation, Optics Letters, 2003,28(22): 2258-2260
    [105] N. L. Wanger, E. A. Gibson, T. Popmintchev, et al., Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping, Phys. Rev. Lett., 2004, 93(17):173902
    [106]C. P. Hauri, W. Kornelis, F. W. Helbing, et al, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Applied Physics B: Lasers and Optics, 2004, 79(6): 673-677
    [107] C. P. Hauri, A. Guandalini, P. Eckle, et al, Generation of intense few-cycle laser pulses through filamentation Parameter dependence, Optics Express, 2005, 13(19): 7541-7547
    [108] T. Wilhelm, J. Piel, E. Riedle, Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter, Opt. Lett., 1997, 22 (19): 1494~1496
    [109] A. Baltu?ka, T. Fuji, T. Kobayashi, Visible pulse compression to 4-fs by optical parametric amplification and programmable dispersion control, Opt. Lett., 2002, 27(5): 306~308
    [110]贾东方,余震虹,谈斌等译,非线性光纤光学原理与应用,电子工业出版社,北京
    [111] K.H.Lu ,E.Bahaa,A.Saleh, Theory and design of the liquid crystal TV as an optical satial phase modulator, Optical engineering , 1990 ,29 (3):240~246
    [112]赵晓凤,李大海,陈祯培,利用径向剪切干涉法测量液晶空间光调制器的位相调制特性,四川大学学报(自然科学版),2002,39(4):675~679.
    [113]王治华,俞信,液晶空间光调制器相位调制测量及波前校正,光学技术,2005,31(2):196~201
    [114]陈怀新,隋展,陈祯培等,液晶电视(LCTV)的光学调制特性及其应用,中国激光,2000 ,27 :741~745
    [115] M.E.Anderson,L.E.E.De Araujo,E.M.Kosik,et al,The effects of noise on ultrashort-optical-pulse measurement using SPIDER, Appl.phys.B 2000,85-93
    [116] D. Strickland and G. Mourou,Compression of amplified chirped optical pulses, Opt. Commun. 1985, 56: 219-221.
    [117]孙大睿,宋晏容,张志刚,用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能的比较,物理学报,2003,52:870-874
    [118] Zhigang Zhang, Takashi Yagi, and Takashi Arisawa, Ray-tracing model for stretcher dispersion calculation, Applied Optics, 1997, 36(5): 3393- 3399.
    [119]张志刚,孙虹,飞秒脉冲放大器中色散的计算和平均方法,物理学报,2001, 50:1080-1085
    [120] Jie Jiang, Zhigang Zhang, Toshifumi Hasama, Numerical Evaluation if chirped-pulse-amplification systems with Offner triplet telescope stretcher, J. Opt. Soc. Am. B, 2001, 19: 678-687
    [121]A.M.Weiner,Y.Silberberg,H.Fouckhardt,et al,IEEE J.Quantum Electron , 1989,25:2648
    [122] W. S. Warren, H. Rabitz, M. Dahleh, Coherent Contral of Chemical Reactious: The Dream is Alive, Science,1993, 259: 1581
    [122] A. Assion, et al, Control of chemical reactions by feedback-optimized phase-shaped femtosecond pulses, Science, 1998, 282(5390):919-922
    [123]袁亚湘,孙文瑜,最优化理论与方法,科学出版社,1999
    [124]周明,孙树栋,遗传算法原理及应用,国防工业出版社,1999
    [125] A. J. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers, Opt. Lett.,2002,27:924–926
    [126] X. Gu, L. Xu, M. Kimmel,et al, Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,Opt. Lett,2002,27:1174–1176
    [127] K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, et al Initial steps of supercontinuum generation in photonic crystal fibers, J. Opt. Soc. B ,2003,20: 1887–1893

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700