几种典型手性三唑类杀菌剂对映体的分析、环境行为及其生物毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三唑类杀菌剂是农业生产中应用最广泛的一类杀菌剂,而绝大多数该类杀菌剂都是手性农药。实践证明,当外消旋体手性农药进入生态环境后,其对靶标生物的活性或非靶标生物的毒性及其在生态环境中的降解代谢都可能存在着明显的立体选择性差异。在传统的安全评价研究中,通常不区分手性农药的对映体之间的这种差别,正因如此,目前对手性农药的风险评估的数据往往是不准确的,给人类和环境带来了诸多安全隐患。研究表明手性三唑类杀菌剂的对映体活性往往差异很大,然而绝大多数该类手性农药目前仍以外消旋体形式大量销售和使用。
     首先,本文首次以高效液相色谱串联质谱与反相手性固定相结合为基础,建立了一系列手性三唑类杀菌剂及其手性代谢产物(戊唑醇、四氟醚唑、氟环唑、烯唑醇、己唑醇、多效唑、腈菌唑、三唑酮及其代谢产物三唑醇、腈苯唑及其手性代谢产物)在植物和(或)环境样品中的残留分析方法。方法的准确度、精密度及灵敏度均符合农药残留分析的要求。该方法的优点是很好的解决了传统分析方法的灵敏度低、基质干扰大、很难实现多个对映体同时分离的难题。
     然后,利用所建立的手性残留分析方法,探讨了几种典型手性三唑类杀菌剂的立体选择性环境行为。首先,研究了己唑醇和三唑酮在设施环境下的选择性降解行为。结果表明:(1)己唑醇在设施黄瓜果实、番茄果实内和土壤中均存在着明显的立体选择性降解行为,且对映体选择降解规律与其所在基质有关:(+)-己唑醇在黄瓜和番茄果实中被优先降解,而在土壤中则是(-)-己唑醇降解速率较快,造成了相应的对映体被相对累积。(2)无论是在茎叶喷雾施药还是土壤灌根施药条件下,三唑酮在黄瓜、番茄和土壤中均存在着一致的选择性降解规律,即S-(+)-三唑酮被优先降解,造成R-(-)-三唑酮被累积;三唑酮转化成其手性代谢产物三唑醇4对映体规律为:叶面喷雾施药条件下,RS-(+)-三唑醇在番茄中转化累积量最大,而在黄瓜和土壤中RR-(+)-三唑醇的累积最多;在土壤灌根施药的条件下,三唑醇对映体在黄瓜和番茄中生成的浓度大小顺序与其在茎叶喷雾施药条件下结果一致,而在番茄中的生成规律则不相同。
     此外,还研究了腈苯唑及其手性代谢产物(RH-9129和RH-9130)在室内有氧和无氧条件下两种不同土壤中的降解代谢规律。结果表明无论是有氧还是无氧条件下,(-)-腈苯唑均被优先降解。腈苯唑转化成其手性代谢产物RH-9129和RH-9130的基本规律为:在廊坊碱性土中,转化成4个对映体浓度的大小顺序依次为(-)-RH-9129>(+)-RH-9129>(-)-RH-9130>(+)-RH-9130;而在长沙酸性土中,其浓度大小顺序则为(-)-RH-9129>(+)-RH-9129>(+)-RH-9130>(-)-RH-9130。RH-9129和RH-9130对映体在两种不同性质土壤中也存在着明显的立体选择性降解规律,(+)-RH-9130和(+)-RH-9129被优先降解,导致(-)-RH-9130和(-)-RH-9129在土壤中被累积。
     最后,进行了三唑酮、三唑醇、戊唑醇和腈菌唑及其对映体对三种水生生物(斜生栅藻、大型溞和斑马鱼)的急性毒性的研究。结果显示,供试手性三唑类杀菌剂对映体之间的毒性均存在差异:对于斜生栅藻来说,SR-(-)-三唑醇的毒性约为SS-(-)-三唑醇的8.2倍;R-(-)-戊唑醇的毒性约为S-(+)-戊唑醇的5.9倍;外消旋体腈菌唑的毒性分别是两个对映体的(+)-腈菌唑的7.3倍和(-)-腈菌唑6.1倍。对于大型溞来说,RS-(-)-三唑醇的毒性约为SS-(-)-三唑醇的3.2倍;R-(-)-戊唑醇的毒性约为S-(+)-戊唑醇的1.6倍;外消旋体腈菌唑的毒性分别是两个对映体的(+)-腈菌唑的2.5倍和(-)-腈菌唑2.1倍。而对于斑马鱼来说,对映体之间的毒性差别非常微小:R-(-)-戊唑醇的毒性仅约为S-(+)-戊唑醇的1.4倍;外消旋体腈菌唑的毒性分别是两个对映体的(+)-腈菌唑的1.4倍和(-)-腈菌唑1.3倍。实验数据表明,沿着水生食物链由低到高,供试手性三唑类杀菌剂对映体之间的急性毒性差异也越来越小,说明低营养级水生生物对三唑类杀菌剂手性结构的差异更敏感。
Triazole fungicides is one of the most widely used in the agricultural crops, and most of themhave stereogenic centers and they consist of one or two pairs of enantiomers. Once introduced inthe ecological environmet, chiral pesticide enantiomers often show different bioactivity to thetarget organisms and toxicity non-target organisms; however, this property is usually ignoredwhen evaluating their environmental and public health risks in the traditional studies. Thus, whentraditional risk assessment are unreliable if the enantioselective behaviors occur. The establisheddata indicated that the enantiomers of chiral triazol fungicides often different bioactivity, however,most triazole pesticides still sold and widely used in the racemic form.
     In this study, a series of novel and sensitive single or multi-residue methods for enantiomericanalysis of triazole fungicides and their chiral metabolites (tebuconazole, tetraconazole,epoxiconazole, diniconazole, hexaconazole, paclobutrazol, myclobutanil, triadimefon andtriadimenol, fenbuconazole and its chiral metabolites) in plants and (or) environmental samplesusing chiral liquid chromatography coupled with tandem mass spectrometry combined withreversed chiral columns. Validation of the methods included precisions, linearity and limit ofdetection (LOD). The results indicated that the developed methods were effective enough fordetecting the residual enantiomers in the matrix and could be used for studying theenantioselective environmental behaviors.
     Based on the established chiral analytical methods, Stereoselective environmental behaviors ofthe some triazole fungicides enantiomers were investigated. Firstly, the proposed method wassuccessfully applied to investigate the possible enantioselective environmental behaviors ofrac-hexaconazole and rac-triadimefon in plants (tomato and cucumber) and soil under greenhouseconditions. The results shows that:(1) The degradation of the two enantiomers of hexaconazoleproved to be enantioselective and dependent on the media: The (+)-enantiomer showed a fasterdegradation in plants, while the (-)-enantiomer dissipated faster than the (+)-form in field soil,resulting in relative enrichment of the opposite enantiomer.(2) Under foliage application or soilirrigation application, the S-(+)-triadimefon was preferentially degraded, resulting in relativeenrichment of the more toxic R-(-)-enantiomer in two vegetables and soil. Further enantioselectiveanalysis of converted triadimenol showed that the composition of four product stereoisomers weredifferent from each other and closely depend on environmental conditions as well as applicationmodes: the most toxic RS-(+)-triadimenol was the most preferentially produced isomer in tomatounder foliage treatment, while the RR-(+)-triadimenol was proved to be the highest amount ofmetabolite isomer in cucumber and soil under both treatment modes and in tomato under soiltreatment.
     Secondly, the enantioselective degradation of fenbuconazole and its chiral metabolites,RH-9129and RH-9130, in two soils under aerobic and anaerobic conditions were investigated.Under aerobic or anaerobic conditions, the results showed the occurrence of enantioselectivity with (-)-fenbuconazole preferentially degraded in both soils. Further enantioselective analysis ofconverted products showed that the concentrations of four RH-9129and RH-9130stereoisomerswere different from each other under both aerobic and anaerobic conditions. The four stereoisomerconcentrations followed the order (-)-RH-9129>(+)-RH-9129>(-)-RH-9130>(+)-RH-9130inLangfang alkaline soil. However, in the case of Changsha acidic soil, different RH-9129and RH-9130stereoisomer patterns were produced in the order (-)-RH-9129>(+)-RH-9129>(+)-RH-9130>(-)-RH-9130. The degradation of RH-9129and RH-9130in the two soils is alsostereoselective under both aerobic and anaerobic conditions, the results indicating that the(+)-RH-9130enantiomer degraded faster than the (-)-RH-9130enantiomer and the (+)-RH-9129enantiomer degraded faster than the (-)-RH-9129enantiomer.
     Lastly, in present study, triadimefon, triadimenol, tebuconazole, and myclobutanil as well astheir enantiomers in acute toxicity to three aquatic organisms (S. obliquus, D. magna and Daniorerio) were studied. The results indicated there were significant differences between (among)stereoisomers of the same compound: as for the S. obliquus, the SR-(-)-triadimenol was about8.2times more toxic than the SS-(+)-form, the R-(-)-tebuconazole was about5.9times more toxicthan the S-(+)-form, and the rac-myclobutanil about7.3and6.1times more toxic than the(+)-myclobutanil and (-)-myclobutanil, respectively; for the D. magna, the RS-(-)-triadimenol wasabout3.2times more toxic than the SS-(+)-form, the R-(-)-tebuconazole was about1.6times moretoxic than the S-(+)-form, and the rac-myclobutanil about2.5and2.1times more toxic than the(+)-myclobutanil and (-)-myclobutanil, respectively. However, in the case of Danio rerio, thedifferences between the enantiomers were slightly: the R-(-)-tebuconazole was about1.4timesmore toxic than the S-(+)-form, and the rac-myclobutanil about1.4and1.3times more toxic thanthe (+)-myclobutanil and (-)-myclobutanil, respectively. The results show that the distancebetween (among) the stereoisomers of chiral fungicides to aquatic organism gets shorter at highernutrition level.
引文
[1]曹巧,董丰收,刘新刚,等.戊唑醇对映体在直链淀粉衍生物手性固定相上的拆分[J].农药,2008,(03):182-183.
    [2]褚华东.氰戊菊酯的手性拆分及其对映体的水生毒理学研究[D].浙江大学,2006.
    [3]邓朱波,胡继业.农用杀菌剂腈菌唑光学对映体的生物活性[J].农药,2011,(05):371-373.
    [4]董丰收,曹巧,刘新刚,等.硅氟唑对映体在直链淀粉手性固定相HPLC上的拆分[J].应用化学,2008,(10):1237-1239.
    [5]董丰收,刘新刚,曹巧,等. Chiralpak AS-H手性柱分离三唑醇对映体[J].环境化学,2008,(06):810-813.
    [6]董丰收.手性农药三唑醇对映体在黄瓜植株和土壤中立体选择性行为研究[D].中国农业大学博士学位论文,2008.
    [7]胡建华.二种有机磷农药的手性拆分及其水生生物毒性研究[D].浙江工业大学,2009.
    [8]蒋木庚,杨红,杨春龙,等.21世纪手性农药发展展望[J].世界农药,2001,(04):14-16+41.
    [9]金丽霞.手性三唑类杀菌剂和芳氧苯氧丙酸类除草剂高效液相色谱对映体分离[D].浙江工业大学,2012.
    [10]李朝阳,武彤,李景印,等.手性农药对映体选择性环境行为的研究进展[J].生态环境,2008,(03):1268-1275.
    [11]刘昌盛,穆宇,杜久林.斑马鱼在生命科学研究中的应用[J].生命科学,2007,(04):382-386.
    [12]刘国光,王徐郑.水生生物毒性试验研究进展[J].环境与健康杂志,2004,(06):419-421.
    [13]刘惠君,刘维屏.农药污染土壤的生物修复技术[J].环境污染治理技术与设备,2001,(02):74-80.
    [14]刘维屏,张颖.手性农药毒性评价进展[J].浙江大学学报(农业与生命科学版),2012,(01):63-70.
    [15]刘伟成,李明云.斑马鱼及其人工繁殖[J].水利渔业,2006,(01):31+39.
    [16]刘永霞,戈扬,李岩,等.苯醚甲环唑原药的亚慢性毒性研究[J].中国职业医学,2007,34(1):67-68.
    [17]孙智慧,贾顺姬,孟安明.斑马鱼:在生命科学中畅游[J].生命科学,2006,(05):431-436.
    [18]唐梦龄,王丹,傅柳松,等.手性农药毒性机制的对映体选择性[J].农药学学报,2011,(04):335-340.
    [19]唐明德.环境毒理研究方法中的水生生物毒性试验[J].环境与健康杂志,1984,(04):43-45+42.
    [20]唐学玺,李李董.有机磷农药对海洋微藻致毒性的生物学研究——Ⅲ.久效磷对叉鞭金藻自由基伤害的研究[J].海洋通报,1995,(02):29-34.
    [21]王鹏,江树人,刘晶,等.纤维素-三(3,5-二甲基苯基氨基甲酸酯)对烯唑醇对映体的直接拆分[J].农药,2004a,(01):34-35.
    [22]王鹏,江树人,张宏军,等.戊唑醇和三唑酮对映体的手性拆分[J].分析化学,2004b,(05):625-627.
    [23]王鹏.手性农药对映体分析及土壤中选择性降解行为研究[D].中国,2006.
    [24]王新全.六种手性农药对映体的立体选择性环境行为研究[D].中国,2007.
    [25]吴再坤,钟宏,王微宏,等.手性药物的活性分析与生物转化[J].化工技术与开发,2006,(09):24-27.
    [26]谢显传,张少华,王冬生,等.露地和大棚条件下阿维菌素在蔬菜作物上的残留消解动态比较[J].2008,41(10):3399-3404.
    [27]杨光富,袁继伟,刘召杰.合成农用化学品的手性——生物活性及安全性的思考[J].农药译丛,1999,(02):1-12.
    [28]杨丽萍,李树正,李煜昶,等.三种三唑类杀菌剂对映体生物活性的研究[J].农药学学报,2002,(02):67-70.
    [29]杨丽萍,王立新,徐艳丽,等.纤维素类手性固定相高效液相色谱法拆分三唑类手性化合物[J].分析测试学报,2004,(05):25-28.
    [30]尹国,刘曾朱.手性异构体拆分方法的研究进展[J].中国药物化学杂志,2001,(01):58-63.
    [31]张智超,戴朱吴.海河河口水和新港港湾水中α-六六六对映体选择性降解及α、β、γ、δ-六六六浓度[J].中国环境科学,1998,(03):6-10.
    [32]张智超,李朝阳,张玲,等.环境样品中手性农药对映体浓度测定方法研究进展[J].农药科学与管理,2004,(02):4-7.
    [33]周炳,赵美蓉,黄海凤.4种农药对斑马鱼胚胎的毒理研究[J].浙江工业大学学报,2008,(02):136-140.
    [34]邹苏琪,殷梧,杨昱鹏,等.斑马鱼行为学实验在神经科学中的应用[J].生物化学与生物物理进展,2009,(01):5-12.
    [35] Aguilera-del Real A, Valverde-Garcia A, Camacho-Ferre F. Behavior of methamidophosresidues in peppers, cucumbers, and cherry tomatoes grown in a greenhouse: Evaluation bydecline curves [J]. Journal of Agricultural and Food Chemistry,1999,47(8):3355-3358.
    [36] Aigner EJ, Leone AD, Falconer RL. Concentrations and enantiomeric ratios of organochlorinepesticides in soil from the US Corn Belt [J]. Environmental Science&Technology,1998,32(9):1162-1168.
    [37] Ali I, Gupta V, Aboul-Enein HY. Chirality: a challenge for the environmental scientists [J].Current Science,2003,84(2):152-156.
    [38] Allahyari R, Hollingshaus JG, Lapp RL, et al. Resolution, absolute configuration, and acute anddelayed neurotoxicity of the chiral isomers of O-aryl O-methyl phenylphosphonothioateanalogs related to leptophos [J]. Journal of Agricultural and Food Chemistry,1980,28(3):594-599.
    [39] Berendsen B, Zuidema T, de Jong J, et al. Discrimination of eight chloramphenicol isomers byliquid chromatography tandem mass spectrometry in order to investigate the natural occurrenceof chloramphenicol [J]. Analytica Chimica Acta,2011,700(1-2):78.
    [40] Berkman CE, Quinn DA, Thompson CM. Interaction of acetylcholinesterase with theenantiomers of malaoxon and isomalathion [J]. Chemical Research in Toxicology,1993,6(5):724-730.
    [41] Buerge IJ, B chli A, De Joffrey J-P, et al. The Chiral Herbicide Beflubutamid (I): Isolation ofPure Enantiomers by HPLC, Herbicidal Activity of Enantiomers, and Analysis byEnantioselective GC-MS [J]. Environmental Science&Technology,2013, DOI:10.1021/es301876d.
    [42] Buerge IJ, Müller MD, Poiger T. The Chiral Herbicide Beflubutamid (II): EnantioselectiveDegradation and Enantiomerization in Soil, and Formation/Degradation of Chiral Metabolites[J]. Environmental Science&Technology,2013, DOI:10.1021/es301877n.
    [43] Buerge IJ, Poiger T, Mueller MD, et al. Influence of pH on the stereoselective degradation ofthe fungicides epoxiconazole and cyproconazole in soils [J]. Environmental Science&Technology,2006a,40(17):5443-5450.
    [44] Buerge IJ, Poiger T, Muller MD, et al. Enantioselective degradation of metalaxyl in soils:Chiral preference changes with soil pH [J]. Environmental Science&Technology,2003,37(12):2668-2674.
    [45] Buerge IJ, Poiger T, Muller MD, et al. Influence of pH on the stereoselective degradation of thefungicides epoxiconazole and cyproconazole in soils [J]. Environmental Science&Technology,2006b,40(17):5443-5450.
    [46] Burden RS, Carter GA, Clark T, et al. Comparative activity of the enantiomers of triadimenoland paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis[J]. Pesticide Science,1987,21(4):253-267.
    [47] Buser HR, Mueller MD, Rappe C. Enantioselective determination of chlordane componentsusing chiral high-resolution gas chromatography-mass spectrometry with application toenvironmental samples [J]. Environmental Science&Technology,1992,26(8):1533-1540.
    [48] Buser HR, Mueller MD. Environmental behavior of acetamide pesticide stereoisomers.1.Stereo-and enantioselective determination using chiral high-resolution gas chromatography andchiral HPLC [J]. Environmental Science&Technology,1995,29(8):2023-2030.
    [49] Buser HR, Muller MD, Poiger T, et al. Environmental behavior of the chiral acetamidepesticide metalaxyl: Enantioselective degradation and chiral stability in soil [J]. EnvironmentalScience&Technology,2002,36(2):221-226.
    [50] Buser HR, Muller MD. Enantioselective determination of chlordane components, metabolites,and photoconversion in products in environmental samples using chiral high-resolution gaschromatography and mass spectrometry [J]. Environmental Science&Technology,1993,27(6):1211-1220.
    [51] Buser HR, Muller MD. Occurrence and transformation reactions of chiral and achiralphenoxyalkanoic acid herbicides in lakes and rivers in Switzerland [J]. Environmental Science&Technology,1998,32(5):626-633.
    [52] Buser HR, Poiger T, Muller MD. Changed enantiomer composition of metolachlor in surfacewater following the introduction of the enantiomerically enriched product to the market [J].Environmental Science&Technology,2000,34(13):2690-2696.
    [53] Cai XY, Liu WP, Sheng GY. Enantioselective degradation and ecotoxicity of the chiralherbicide diclofop in three freshwater alga cultures [J]. Journal of Agricultural and FoodChemistry,2008,56(6):2139-2146.
    [54] Cartwright D. The synthesis, stability and biological activity of the enantiomers ofpyridyloxyphenoxypropionates [M].1989.
    [55] Clark T, Wong WWC, Vogeler K. Comparative fate in soil of the enantiomers of triadimenolwhen applied individually to barley seed [J]. Pesticide Science,1991,33(4):447-453.
    [56] Covaci A, Gheorghe A, Schepens P. Distribution of organochlorine pesticides, polychlorinatedbiphenyls and α-HCH enantiomers in pork tissues [J]. Chemosphere,2004,56(8):757-766.
    [57] Crowell SR, Henderson WM, Kenneke JF, et al. Development and application of aphysiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol inrats and humans [J]. Toxicology Letters,2011,205(2):154-162.
    [58] Ding F, Song WH, Guo J, et al. Oxidative stress and structure-activity relationship in thezebrafish (Danio rerio) under exposure to paclobutrazol [J]. Journal of Environmental Scienceand Health Part B-Pesticides Food Contaminants and Agricultural Wastes,2009,44(1):44-50.
    [59] Dogheim SM, Alla SAG, El-Marsafy AM. Monitoring of pesticide residues in Egyptian fruitsand vegetables during1996[J]. Journal of Aoac International,2001,84(2):519-531.
    [60] Dong FS, Cheng L, Liu XG, et al. Enantioselective analysis of triazole fungicide myclobutanilin cucumber and soil under different application modes by chiral liquidchromatography/tandem mass spectrometry [J]. Journal of Agricultural and Food Chemistry,2012,60(8):1929-1936.
    [61] Dong FS, Liu XG, Zheng YQ, et al. Stereoselective Degradation of Fungicide Triadimenol inCucumber Plants [J]. Chirality,2010,22(2):292-298.
    [62] Falconer RL, Bidleman TF, Gregor DJ, et al. Enantioselective Breakdown of.alpha.-Hexachlorocyclohexane in a Small Arctic Lake and its Watershed [J]. EnvironmentalScience&Technology,1995,29(5):1297-1302.
    [63] Faller J, Huehnerfuss H, Koenig WA, et al. Do marine bacteria degrade.alpha.-hexachlorocyclohexane stereoselectively?[J]. Environmental science&technology,1991,25(4):676-678.
    [64] Faller J, Hühnerfuss H, K nig WA, et al. Gas chromatographic separation of the enantiomers ofmarine organic pollutants: Distribution of α-HCH enantiomers in the North Sea [J]. MarinePollution Bulletin,1991,22(2):82-86.
    [65] Fisk AT, Moisey J, Hobson KA, et al. Chlordane components and metabolites in seven speciesof Arctic seabirds from the Northwater Polynya: relationships with stable isotopes of nitrogenand enantiomeric fractions of chiral components [J]. Environmental Pollution,2001,113(2):225-238.
    [66] Furuta R, Doi T. Chiral separation of diniconazole, uniconazole and structurally relatedcompounds by cyclodextrin-modified micellar electrokinetic chromatography [J].Electrophoresis,1994a,15(1):1322-1325.
    [67] Furuta R, Doi T. Enantiomeric separation of diniconazole and uniconazole bycyclodextrin-modified micellar electrokinetic chromatography [J]. Journal of ChromatographyA,1994b,676(2):431-436.
    [68] Furuta R, Nakazawa H. Liquid Chromatographic Separation of the Enantiomers ofDiniconazole Using a β-cyclodextrin-bonded Column [J]. Journal of Chromatography A,1992,625(2):231-235.
    [69] Furuta R, Nakazawa H. Optical resolution mechanisms of uniconazole and structurally relatedcompounds on cyclodextrin-bonded columns [J]. Chromatographia,1993,35(9-12):555-559.
    [70] Gajbhiye VT, Gupta S, Gupta RK. Persistence of imidacloprid in/on cabbage and cauliflower[J]. Bulletin of Environmental Contamination and Toxicology,2004,72(2):283-288.
    [71] Galera MM, Garcia MDG, Lallena JAR, et al. Dissipation of pyrethroid residues in peppers,zucchinis, and green beans exposed to field treatments in greenhouses: Evaluation by declinecurves [J]. Journal of Agricultural and Food Chemistry,2003,51(19):5745-5751.
    [72] Garrison AW, Avants JK, Jones WJ. Microbial Transformation of triadimefon to triadimenol insoils: Selective production rates of triadimenol stereoisomers affect exposure and risk [J].Environmental Science&Technology,2011,45(6):2186-2193.
    [73] Garrison AW, Schmitt P, Martens D, et al. Enantiomeric selectivity in the environmentaldegradation of dichlorprop as determined by high performance capillary electrophoresis [J].Environmental Science&Technology,1996,30(8):2449-2455.
    [74] Garrison AW. Probing the enantioselectivity of chiral pesticides [J]. Environmental Science&Technology,2006,40(1):16-23.
    [75] Goetz AK, Ren HZ, Schmid JE, et al. Disruption of testosterone homeostasis as a mode ofaction for the reproductive toxicity of triazole fungicides in the male rat [J]. ToxicologicalSciences,2007,95(1):227-239.
    [76] Goetz AK, Rockett JC, Ren HZ, et al. Inhibition of Rat and Human Steroidogenesis by TriazoleAntifungals [J]. Systems Biology in Reproductive Medicine,2009,55(5-6):214-226.
    [77] Gu X, Lu YL, Wang P, et al. Enantioselective degradation of diclofop-methyl in cole (Brassicachinensis L.)[J]. Food Chemistry,2010,121(1):264-267.
    [78] Gu X, Wang P, Liu D, et al. Stereoselective degradation of benalaxyl in tomato, tobacco, sugarbeet, capsicum, and soil [J]. Chirality,2008,20(2):125-129.
    [79] Gu X, Wang P, Liu DH, et al. Stereoselective degradation of diclofop-methyl in soil andChinese cabbage [J]. Pesticide Biochemistry and Physiology,2008,92(1):1-7.
    [80] Hallahan BJ, Camilleri P, Smith A, et al. Mode of action studies on a chiral diphenyl etherperoxidizing herbicide. Correlation between differential inhibition of protoporphyrinogen IXoxidase activity and induction of tetrapyrrole accumulation by the enantiomers [J]. PlantPhysiology,1992,100(3):1211-1216.
    [81] Harner T, Kylin H, Bidleman TF, et al. Removal of α-and γ-hexachlorocyclohexane andenantiomers of α-hexachlorocyclohexane in the eastern Arctic Ocean [J]. EnvironmentalScience&Technology,1999,33(8):1157-1164.
    [82] Harner T, Wiberg K, Norstrom R. Enantiomer fractions are preferred to enantiomer ratios fordescribing chiral signatures in environmental analysis [J]. Environmental Science&Technology,2000,34(1):218-220.
    [83] Hegeman WJM, Laane R. Enantiomeric enrichment of chiral pesticides in the environment [J].Reviews of Environmental Contamination and Toxicology,2002,173:85-116.
    [84] Hou SC, Zhou ZQ, Qiao Z, et al. Separation of the enantiomers of tebuconazole and itspotential impurities by high-performance liquid chromatography with a cellulosederivative-based chiral stationary phase [J]. Chromatographia,2003,57(3-4):177-180.
    [85] Huang L, Lu D, Zhang P, et al. Enantioselective toxic effects of hexaconazole enantiomersagainst Scenedesmus Obliquus [J]. Chirality,2012,24(8):610-614.
    [86] Hutta M, Rybar I, Chalanyova M. Liquid chromatographic method development fordetermination of fungicide epoxiconazole enantiomers by achiral and chiral column switchingtechnique in water and soil [J]. Journal of Chromatography A,2002,959(1-2):143-152.
    [87] Itoh K. Characteristics of microflora degrading insecticide salithion in soil [J]. Journal ofPesticide Science,1991a,16:77-83.
    [88] Itoh K. Stereoselective degradation of organophosphorus insecticide salithion in upland soils [J].Journal of Pesticide Science,1991b,16:35-40.
    [89] Jantunen LM, Bidleman T. Air-water gas exchange of hexachlorocyclohexanes (HCHs) and theenantiomers of alpha-HCN in arctic regions (vol101, pg28837,1996)[J]. Journal ofGeophysical Research-Atmospheres,1997,102(D15):19279-19282.
    [90] Jarman JL, Jones WJ, Howell LA, et al. Application of capillary electrophoresis to study theenantioselective transformation of five chiral pesticides in aerobic soil slurries [J]. Journal ofAgricultural and Food Chemistry,2005,53(16):6175-6182.
    [91] Jin Y, Chen R, Sun L, et al. Enantioselective induction of estrogen-responsive gene expressionby permethrin enantiomers in embryo-larval zebrafish [J]. Chemosphere,2009,74(9):1238-1244.
    [92] Jin Y, Wang W, Xu C, et al. Induction of hepatic estrogen-responsive gene transcription bypermethrin enantiomers in male adult zebrafish [J]. Aquatic Toxicology,2008,88(2):146-152.
    [93] Johnson MK. Sensitivity and selectivity of compounds interacting with neuropathy targetesterase: Further structure-activity studies [J]. Biochemical Pharmacology,1988,37(21):4095-4104.
    [94] Kahle M, Buerge IJ, Hauser A, et al. Azole fungicides: Occurrence and fate in wastewater andsurface waters [J]. Environmental Science&Technology,2008,42(19):7193-7200.
    [95] Kallenborn R, Hühnerfuss H, K nig WA. Enantioselective Metabolism of (±)‐α‐l,2,3,4,5,6-Hexachlorocyclohexane in Organs of the Eider Duck [J]. Angewandte Chemie InternationalEdition in English,1991,30(3):320-321.
    [96] Karlsson H, Oehme M, Skopp S, et al. Enantiomer ratios of chlordane congeners are genderspecific in cod (Gadus morhua) from the Barents Sea [J]. Environmental Science&Technology,2000,34(11):2126-2130.
    [97] Kasprzyk-Hordern B, Kondakal VVR, Baker DR. Enantiomeric analysis of drugs of abuse inwastewater by chiral liquid chromatography coupled with tandem mass spectrometry [J].Journal of Chromatography A,2010,1217(27):4575-4586.
    [98] Kenneke JF, Ekman DR, Mazur CS, et al. Integration of metabolomics and In Vitro metabolismassays for investigating the stereoselective transformation of triadimefon in Rainbow Trout [J].Chirality,2010a,22(2):183-192.
    [99] Kenneke JF, Mazur CS, Garrison AW, et al. Stereoselective metabolism of1,2,4-triazolefungicides in hepatic microsomes and implications for risk assessment [J]. Abstracts of Papersof the American Chemical Society,2010b,239.
    [100] Kenneke JF, Mazur CS, Ritger SE, et al. Mechanistic investigation of the noncytochromeP450-mediated metabolism of triadimefon to triadimenol in Hepatic Microsomes [J]. ChemicalResearch in Toxicology,2008,21(10):1997-2004.
    [101] Kjaerstad MB, Taxvig C, Nellemann C, et al. Do azole fungicides possess an endocrinedisrupting hazard?[J]. Toxicology Letters,2008,180S: S108-S108.
    [102] Kodama S, Yamamoto A, Ohura T, et al. Enantioseparation of imazalil residue in orange bycapillary electrophoresis with2-hydroxypropyl-β-cyclodextrin as a chiral selector [J]. Journalof Agricultural and Food Chemistry,2003,51(21):6128-6131.
    [103] Koesukwiwat U, Lehotay SJ, Miao S, et al. High throughput analysis of150pesticides in fruitsand vegetables using QuEChERS and low-pressure gas chromatography-time-of-flight massspectrometry [J]. Journal of Chromatography A,2010,1217(43):6692-6703.
    [104] Konwick BJ, Fisk AT, Garrison AW, et al. Acute enantioselective toxicity of fipronil and itsdesulfinyl photoproduct to Ceriodaphnia dubia [J]. Environmental Toxicology and Chemistry,2005,24(9):2350-2355.
    [105] Konwick BJ, Garrison AW, Avants JK, et al. Bioaccumulation and biotransformation of chiraltriazole fungicides in rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology,2006,80(4):372-381.
    [106] Kurihara N, Miyamoto J, Paulson GD, et al. Pesticides report.37. Chirality in syntheticagrochemicals: Bioactivity and safety consideration (Technical report)(vol69, pg1335,1997)[J]. Pure And Applied Chemistry,1997,69(9):2007-2025.
    [107] Kurt-Karakus PB, Bidleman TF, Jones KC. Chiral organochlorine pesticide signatures in globalbackground soils [J]. Environmental Science&Technology,2005,39(22):8671-8677.
    [108] Kurt-Karakus PB, Bidleman TF, Muir DCG, et al. Chiral Current-Use Herbicides in OntarioStreams [J]. Environmental Science&Technology,2008,42(22):8452-8458.
    [109] Kurt-Karakus PB, Stroud JL, Bidleman T, et al. Enantioselective degradation of organochlorinepesticides in background soils: Variability in field and laboratory studies [J]. EnvironmentalScience&Technology,2007,41(14):4965-4971.
    [110] La Farre M, Perez S, Kantiani L, et al. Fate and toxicity of emerging pollutants, theirmetabolites and transformation products in the aquatic environment [J]. Trac-Trends inAnalytical Chemistry,2008,27(11):991-1007.
    [111] Law SA, Diamond ML, Helm PA, et al. Factors affecting the occurrence and enantiomericdegradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems [J].Environmental Toxicology and Chemistry,2001,20(12):2690-2698.
    [112] Leader H, Casida JE. Resolution and biological activity of the chiral isomers ofO-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide)[J].Journal of Agricultural and Food Chemistry,1982,30(3):546-551.
    [113] Lee J, Huang BX, Yuan Z, et al. Simultaneous determination of salsolinol enantiomers anddopamine in human plasma and cerebrospinal fluid by chemical derivatization coupled to chiralliquid chromatography/electrospray ionization-tandem mass spectrometry [J]. AnalyticalChemistry,2007,79(23):9166-9173.
    [114] Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon:II.In vitro metabolism [J]. Pesticide Biochemistry and Physiology,1978a,8(2):158-169.
    [115] Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon: III.In vivo metabolism [J]. Pesticide Biochemistry and Physiology,1978b,9(1):23-32.
    [116] Lee PW, Allahyari R, Fukuto TR. Studies on the chiral isomers of fonofos and fonofos oxon: I.Toxicity and antiesterase activities [J]. Pesticide Biochemistry and Physiology,1978c,8(2):146-157.
    [117] Lewis DL, Garrison AW, Wommack KE, et al. Influence of environmental changes ondegradation of chiral pollutants in soils [J]. Nature,1999,401(6756):898-901.
    [118] Li J, Dong FS, Xu J, et al. Enantioselective determination of triazole fungice tetraconazole bychiral high-performance liquid chromatography and its application to pharmacokinetic study incucumber, muskmelon, and soils [J]. Chirality,2012,24(4):294-302.
    [119] Li YB, Dong FS, Liu XG, et al. Enantioselective determination of triazole fungicidetebuconazole in vegetables, fruits, soil and water by chiral liquid chromatography/tandem massspectrometry [J]. Journal of Separation Science,2012,35(2):206-215.
    [120] Li YB, Dong FS, Liu XG, et al. Simultaneous enantioselective determination of fenbuconazoleand its main metabolites in soil and water by chiral liquid chromatography/tandem massspectrometry [J]. Journal of Chromatography A,2011a,1218(38):6667-6674.
    [121] Li YB, Dong FS, Liu XG, et al. Enantioselective separation of the carfentrazone-ethylenantiomers in soil, water and wheat by HPLC [J]. Journal of Separation Science,2010,33(13):1973-1979.
    [122] Li ZY, Wu T, Li QL, et al. Characterization of racemization of chiral pesticides in organicsolvents and water [J]. Journal of Chromatography A,2010,1217(36):5718-5723.
    [123] Li ZY, Zhang YC, Li QL, et al. Chiral Separation and Enantiomerization of Triazole Pesticides[J]. Chinese Journal of Analytical Chemistry,2010,38(2):237-240.
    [124] Li ZY, Zhang YC, Li QL, et al. Enantioselective Degradation, Abiotic Racemization, and ChiralTransformation of Triadimefon in Soils [J]. Environmental Science&Technology,2011b,45(7):2797-2803.
    [125] Li ZY, Zhang ZC, Zhou QL, et al. Fast and precise determination of phenthoate and itsenantiomeric ratio in soil by the matrix solid-phase dispersion method and liquidchromatography [J]. Journal of Chromatography A,2002,977(1):17-25.
    [126] Liang HW, Qiu J, Li L, et al. Stereoselective dissipation of epoxiconazole in grape (Vitisviniferacv. Kyoho) and soil under field conditions [J]. Chemosphere,2012,87(8):982-987.
    [127] Lin K, Liu W, Li L, et al. Single and joint acute toxicity of isocarbophos. enantiomers toDaphnia magna [J]. Journal of Agricultural and Food Chemistry,2008,56(11):4273-4277.
    [128] Lin K, Zhang F, Zhou S, et al. Stereoisomeric separation and toxicity of the nematicidefosthiazate [J]. Environmental Toxicology and Chemistry,2007,26(11):2339-2344.
    [129] Liu DH, Wang P, Zhu WD, et al. Enantioselective degradation of fipronil in Chinese cabbage(Brassiea pekinensis)[J]. Food Chemistry,2008,110(2):399-405.
    [130] Liu H, Ye W, Zhan X, et al. A comparative study of rac-and S-metolachlor toxicity to Daphniamagna [J]. Ecotoxicology and Environmental Safety,2006,63(3):451-455.
    [131] Liu WP, Gan J, Schlenk D, et al. Enantioselectivity in environmental safety of current chiralinsecticides [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2005a,102(3):701-706.
    [132] Liu W, Ye J, Jin M. Enantioselective phytoeffects of chiral pesticides [J]. Journal ofAgricultural and Food Chemistry,2009,57(6):2087-2095.
    [133] Liu WP, Gan JJ, Qin S. Separation and aquatic toxicity of enantiomers of synthetic pyrethroidinsecticides [J]. Chirality,2005b,17(S1): S127-S133.
    [134] Liu WP, Gan JJ. Determination of enantiomers of synthetic pyrethroids in water by solid phasemicroextraction-Enantioselective gas chromatography [J]. Journal of Agricultural and FoodChemistry,2004,52(4):736-741.
    [135] Ludwig P, Gunkel W, Hühnerfuss H. Chromatographic separation of the enantiomers of marinepollutants. Part5: Enantioselective degradation of phenoxycarboxylic acid herbicides bymarine microorganisms [J]. Chemosphere,1992,24(10):1423-1429.
    [136] Ludwig P, Hühnerfuss H, K nig WA, et al. Gas chromatographic separation of the enantiomersof marine pollutants. Part3. Enantioselective degradation of α-hexachlorocyclohexane andγ-hexachlorocyclohexane by marine microorganisms [J]. Marine Chemistry,1992,38(1):13-23.
    [137] Lv CG, Jia GF, Zhu WT, et al. Enantiomeric resolution of new triazolle compounds byhigh-performance liquid chromatography [J]. Journal of Separation Science,2007,30(3):344-351.
    [138] Maier NM, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives [J].Journal of Chromatography A,2001,906(1-2):3-33.
    [139] Marucchini C, Zadra C. Stereoselective degradation of metalaxyl and metalaxyl-m in soil andsunflower plants [J]. Chirality,2002,14(1):32-38.
    [140] Mattina MI, White J, Eitzer B, et al. Cycling of weathered chlordane residues in theenvironment: Compositional and chiral profiles in contiguous soil, vegetation, and aircompartments [J]. Environmental Toxicology and Chemistry,2002,21(2):281-288.
    [141] Miyazaki A, Nakamura T, Kawaradani M, et al. Resolution and biological activity of bothenantiomers of methamidophos and acephate [J]. Journal of Agricultural and Food Chemistry,1988,36(4):835-837.
    [142] Monkiedje A, Spiteller M, Bester K. Degradation of racemic and enantiopure metalaxyl intropical and temperate soils [J]. Environmental Science&Technology,2003,37(4):707-712.
    [143] Mossner S, Spraker T, Becker P, et al. Ratios of enantiomers of alpha-HCH and determinationof alpha-, beta-, and gamma-HCH isomers in brain and other tissues of neonatal northern furseals (Callorhinus ursinus)[J]. Chemosphere,1992,24(9):1171-1180.
    [144] Mueller MD, Buser HR. Environmental behavior of acetamide pesticide stereoisomers.2.Stereo-and enantioselective degradation in sewage sludge and soil [J]. Environmental Science&Technology,1995,29(8):2031-2037.
    [145] Muller TA, Kohler HPE. Chirality of pollutants—effects on metabolism and fate [J]. AppliedMicrobiology and Biotechnology,2004,64(3):300-316.
    [146] Ohkawa H, Mikami N, Kasamatsu K, et al. Stereoselectivity in toxicity and acetyl cholinesterase inhibition by the optical isomers of papthion and papoxon [J]. Agricultural andBiological Chemistry,1976,40:1857-1861.
    [147] i N, Kitahara H, Kira R. Elution orders in the separation of enantiomers by high-performanceliquid chromatography with some chiral stationary phases [J]. Journal of Chromatography A,1990,535:213-227.
    [148] Pan CX, Shen BC, Xu BJ, et al. Comparative enantioseparation of seven triazole fungicides on(S,S)-Whelk O1and four different cellulose derivative columns [J]. Journal of SeparationScience,2006,29(13):2004-2011.
    [149] Peng W, Shuren J, Donghui L, et al. Direct enantiomeric resolutions of chiral triazole pesticidesby high-performance liquid chromatography [J]. Journal of Biochemical and BiophysicalMethods,2005,62(3):219-230.
    [150] Perez S, Barcelo D. Applications of LC-MS to quantitation and evaluation of the environmentalfate of chiral drugs and their metabolites [J]. Trac-Trends in Analytical Chemistry,2008,27(10):836-846.
    [151] Perez-Fernandez V, Angeles Garcia M, Luisa Marina M. Chiral separation of agriculturalfungicides [J]. Journal of Chromatography A,2011,1218(38):6561-6582.
    [152] Pfaffenberger B, Hühnerfuss H, Kallenborn R, et al. Chromatographic separation of theenantiomers of marine pollutants. Part6: Comparison of the enantioselective degradation ofα-hexachlorocyclohexane in marine biota and water [J]. Chemosphere,1992,25(5):719-725.
    [153] Polec I, Cieslak L, Sledzinski B, et al. Simple syntheses of malathion and malaoxonenantiomers, and isomalathion diastereoisomers: Toxicity-configuration relationship [J].Pesticide Science,1998,53(2):165-171.
    [154] Qin S, Gan J. Enantiomeric differences in permethrin degradation pathways in soil andsediment [J]. Journal of Agricultural and Food Chemistry,2006a,54(24):9145-9151.
    [155] Qin SJ, Budd R, Bondarenko S, et al. Enantioselective degradation and chiral stability ofpyrethroids in soil and sediment [J]. Journal of Agricultural and Food Chemistry,2006b,54(14):5040-5045.
    [156] Qiu J, Dai SH, Zheng CM, et al. Enantiomeric separation of triazole fungicides with3-um and5-um particle chiral columns by reverse-Phase high-performance liquid chromatography [J].Chirality,2011,23(6):479-486.
    [157] Qiu J, Wang QX, Wang P, et al. Enantioselective degradation kinetics of metalaxyl in rabbits [J].Pesticide Biochemistry and Physiology,2005,83(1):1-8.
    [158] Ramos Tombo GM, Bellus D. Chirality and Crop Protection [J]. Angewandte ChemieInternational Edition in English,1991,30(10):1193-1215.
    [159] Rial-Otero R, Arias-Estevez M, Lopez-Periago E, et al. Variation in concentrations of thefungicides tebuconazole and dichlofluanid following successive applications to greenhouse-grown lettuces [J]. Journal of Agricultural and Food Chemistry,2005,53(11):4471-4475.
    [160] Romero E, Matallo MB, Pena A, et al. Dissipation of racemic mecoprop and dichlorprop andtheir pure R-enantiomers in three calcareous soils with and without peat addition [J].Environmental Pollution,2001,111(2):209-215.
    [161] Roussel C, Suteu C, Shaimi L, et al. Chiral separation of some4a-methyl-1,2,3,4,4a,9a-hexahydro-fluoren-9-one derivatives as a probe for difference insolvation by2-propanol of carbamate moiety in Chiralcel OD-H, Chiralpak AD, and ChiralpakAS chiral stationary phases [J]. Chirality,1998,10(8):770-777.
    [162] Sancho E, Villarroel MJ, Fernández C, et al. Short-term exposure to sublethal tebuconazoleinduces physiological impairment in male zebrafish (Danio rerio)[J]. Ecotoxicology andEnvironmental Safety,2010,73(3):370-376.
    [163] Schneiderheinze J, Armstrong D, Berthod A. Plant and soil enantioselective biodegradation ofracemic phenoxyalkanoic herbicides [J]. Chirality,1999,11(4):330-337.
    [164] Sekhon BS. Chiral pesticides [J]. Journal of Pesticide Science,2009,34(1):1-12.
    [165] Shapovalova E, Shpigun O, Nesterova L, et al. Determination of the optical purity of fungicidesof the triazole series [J]. Journal of Analytical Chemistry,2004,59(3):255-259.
    [166] Siegel JS. Homochiral imperative of molecular evolution [J]. Chirality,1998,10(1-2):24-27.
    [167] Smejkal CW, Vallaeys T, Seymour FA, et al. Characterization of (R/S)-mecoprop
    [2-(2-methyl-4-chlorophenoxy) propionic acid]-degrading Alcaligenes sp. CS1and Ralstoniasp. CS2isolated from agricultural soils [J]. Environmental Microbiology,2001,3(4):288-293.
    [168] Stamatis N, Hela D, Konstantinou I. Occurrence and removal of fungicides in municipalsewage treatment plant [J]. Journal of Hazardous Materials,2010,175(1-3):829-835.
    [169] Stehmann C, De Waard MA. Relationship between chemical structure and biological activity oftriazole fungicides against Botrytis cinerea [J]. Pesticide Science,1995,44(2):183-195.
    [170] Sun D, Qiu J, Wu Y, et al. Enantioselective Degradation of indoxacarb in cabbage and soilunder field conditions [J]. Chirality,2012,24(8):628-633.
    [171] Takamatsu Y, Kaneko H, Abiko J, et al. In vivo and in vitro stereoselective hydrolysis of fourchiral isomers of fenvalerate [J]. Journal of Pesticide Science,1987,12(3):397-404.
    [172] Tanabe S, Kumaran P, Iwata H, et al. Enantiomeric ratios of alpha-hexachlorocyclohexane inblubber of small cetaceans [J]. Marine Pollution Bulletin,1996,32(1):27-31.
    [173] Ulrich EM, Willett KL, Caperell-Grant A, et al. Understanding enantioselective processes: Alaboratory rat model for alpha-hexachlorocyclohexane accumulation [J]. EnvironmentalScience&Technology,2001,35(8):1604-1609.
    [174] Van Lenteren JC. A greenhouse without pesticides: fact or fantasy?[J]. Crop Protection,2000,19(6):375-384.
    [175] Wakabayashi K, Hizue M, Nozaki H, et al. Enantiotopic selectivity in monodemethylation offenitrothion by rat liver glutathione S-transferase isoenzymes and mouse liver cytosol [J].Journal of Pesticide Science,1994,19(4):277-284.
    [176] Wang LM, Liu W, Yang CX, et al. Enantioselectivity in estrogenic potential and uptake ofbifenthrin [J]. Environmental Science&Technology,2007a,41(17):6124-6128.
    [177] Wang P, Jiang SR, Qiu J, et al. Stereoselective degradation of ethofumesate in turfgrass and soil[J]. Pesticide Biochemistry and Physiology,2005a,82(3):197-204.
    [178] Wang P, Liu DH, Jiang SR, et al. The chiral separation of triazole pesticides enantiomers byamylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase [J]. Journal ofChromatographic Science,2008,46(9):787-792.
    [179] Wang QX, Qiu J, Wang P, et al. Stereoselective kinetic study of hexaconazole enantiomers inthe rabbit [J]. Chirality,2005b,17(4):186-192.
    [180] Wang QX, Qiu J, Zhou ZQ, et al. Stereoselective Pharmacokinetics of DiniconazoleEnantiomers in Rabbits [J]. Chirality,2009,21(7):699-703.
    [181] Wang QX, Qiu J, Zhu WT, et al. Stereoselective degradation kinetics of theta-cypermethrin inrats [J]. Environmental Science&Technology,2006,40(3):721-726.
    [182] Wang XQ, Wang X, Zhang H, et al. Enantioselective degradation of tebuconazole in cabbage,cucumber, and soils [J]. Chirality,2012,24(2):104-111.
    [183] Wang XQ, Ja GF, Qiu J, et al. Stereoselective degradation of fungicide benalaxyl in soils andcucumber plants [J]. Chirality,2007b,19(4):300-306.
    [184] Wang YS, Tal KT, Yen JH. Separation, bioactivity, and dissipation of enantiomers of theorganophosphorus insecticide fenamiphos [J]. Ecotoxicology and Environmental Safety,2004,57(3):346-353.
    [185] White JC, Mattina MI, Eitzer BD, et al. Tracking chlordane compositional and chiral profiles insoil and vegetation [J]. Chemosphere,2002,47(6):639-646.
    [186] Wiberg K, Harner T, Wideman JL, et al. Chiral analysis of organochlorine pesticides inAlabama soils [J]. Chemosphere,2001,45(6-7):843-848.
    [187] Wiberg K, Letcher R, Sandau C, et al. Enantioselective analysis of organochlorines in the arcticmarine food chain: Chiral biomagnification factors and relationships of enantiomeric ratios,chemical residues and biological data [J]. Organohalogen Compounds,1998,35:371-374.
    [188] Wiberg K, Letcher RJ, Sandau CD, et al. The enantioselective bioaccumulation of chiralchlordane and alpha-HCH contaminants in the polar bear food chain [J]. EnvironmentalScience&Technology,2000,34(13):2668-2674.
    [189] Wiberg K, Oehme M, Haglund P, et al. Enantioselective analysis of organochlorine pesticidesin herring and seal from the Swedish marine environment [J]. Marine Pollution Bulletin,1998,36(5):345-353.
    [190] Williams A. Opportunities for chiral agrochemicals [J]. Pesticide Science,1996,46(1):3-9.
    [191] Williams G, Harrison I, Carlick C, et al. Changes in enantiomeric fraction as evidence of naturalattenuation of mecoprop in a limestone aquifer [J]. Journal of Contaminant Hydrology,2003,64(3):253-267.
    [192] Wink O, Luley U. Enantioselective transformation of the herbicides diclofop-methyl andfenoxaprop-ethyl in soil [J]. Pesticide Science,1988,22(1):31-40.
    [193] Wong CS. Environmental fate processes and biochemical transformations of chiral emergingorganic pollutants [J]. Analytical and Bioanalytical Chemistry,2006,386(3):544-558.
    [194] Wu C, Sun J, Zhang A, et al. Dissipation and enantioselective degradation of plant growthretardants paclobutrazol and uniconazole in open field, greenhouse and laboratory soils [J].Environmental Science&Technology,2013,47(2):843-849.
    [195] Xu C, Wangj JJ, Liu WP, et al. Separation and aquatic toxicity of enantiomers of the pyrethroidinsecticide lambda-cyhalothrin [J]. Environmental Toxicology and Chemistry,2008,27(1):174-181.
    [196] Ye J, Wu J, Liu W. Enantioselective separation and analysis of chiral pesticides byhigh-performance liquid chromatography [J]. TrAC Trends in Analytical Chemistry,2009,28(10):1148-1163.
    [197] Ye J, Zhao M, Liu J, et al. Enantioselectivity in environmental risk assessment of modern chiralpesticides [J]. Environmental Pollution,2010,158(7):2371-2383.
    [198] Yen JH, Tsai CC, Wang YS. Separation and toxicity of enantiomers of organophosphorusinsecticide leptophos [J]. Ecotoxicology and Environmental Safety,2003,55(2):236-242.
    [199] Zadra C, Marucchini C, Zazzerini A. Behavior of metalaxyl and its pure R-enantiomer insunflower plants (Helianthus annus)[J]. Journal of Agricultural and Food Chemistry,2002,50(19):5373-5377.
    [200] Zhang A, Xie X, Liu W. Enantioselective Separation and Phytotoxicity on Rice Seedlings ofPaclobutrazol [J]. Journal of Agricultural and Food Chemistry,2011a,59(8):4300-4305.
    [201] Zhang H, Wang X, Qian M, et al. Residue Analysis and Degradation Studies of Fenbuconazoleand Myclobutanil in Strawberry by Chiral High-Performance Liquid Chromatography-TandemMass Spectrometry [J]. Journal of Agricultural and Food Chemistry,2011b,59(22):12012-12017.
    [202] Zhang Q, Wang C, Zhang X, et al. Enantioselective aquatic toxicity of current chiral pesticides[J]. Journal of Environmental Monitoring,2012,14(2):465-472.
    [203] Zhang ZY, Zhang CZ, Liu XJ, et al. Dynamics of pesticide residues in the autumn Chinesecabbage (Brassica chinensis L.) grown in open fields [J]. Pest Management Science,2006,62(4):350-355.
    [204] Zhou Q, Xu C, Zhang Y, et al. Enantioselectivity in the phytotoxicity of herbicide imazethapyr[J]. Journal of Agricultural and Food Chemistry,2009a,57(4):1624-1631.
    [205] Zhou Y, Li L, Lin K, et al. Enantiomer separation of triazole fungicides by high-performanceliquid chromatography [J]. Chirality,2009b,21(4):421-427.
    [206] Zhou ZQ, Wang P, Jiang SR, et al. Preparation of polysaccharide-based chiral stationary phasesand the direct separation of six chiral pesticides and related intermediates [J]. Journal of LiquidChromatography&Related Technologies,2003,26(17):2873-2880.
    [207] Zhu WT, Qiu J, Dang ZH, et al. Stereoselective degradation kinetics of tebuconazole in rabbits[J]. Chirality,2007,19(2):141-147.
    [208] Zipper C, Suter MJF, Haderlein SB, et al. Changes in the enantiomeric ratio of (R)-to(S)-mecoprop indicate in situ biodegradation of this chiral herbicide in a polluted aquifer [J].Environmental Science&Technology,1998,32(14):2070-2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700