层合复合材料的粘聚区模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究连接界面的损伤分析与失效评估是开展复合材料整体结构细节设计的重要内容。粘聚区模型(CZM)是目前研究复合材料结构界面失效问题最有效的手段之一。本文针对复合材料粘聚区模型存在的若干个关键问题展开研究,主要解决了复合材料粘聚区模型中强度参数的选取问题及在统一的粘聚区理论框架下缝线/Z-pin桥联问题。以此为基础,本文还全面系统地研究了复合材料整体结构的后屈曲失效问题。本文的主要内容包括:
     (1)提出了两种确定复合材料粘聚区模型中粘聚强度参数的细观模型,即基于周期代表性单元(RVE)技术的有限元模型和基于等效夹杂理论(EIM)的数值模型。采用所预测的粘聚强度值对混合模式弯曲(MMB)试验进行了仿真,仿真结果与试验值具有较好的一致性。
     (2)根据缝线/Z-pin拉脱过程的细观模型确定其桥联律,建立缝线/Z-pin桥联问题的粘聚区模型,进而提出了综合模拟缝线/Z-pin桥联作用与分层扩展的分区粘聚区模型,并用该分区粘聚区模型对缝合层合板的MMB试验进行了仿真。
     (3)对复合材料整体加筋板轴压后屈曲阶段的传载机理进行了分析,指出节点线与反节点线是最先可能失效的位置;采用基于Hashin准则的渐进损伤分析方法及粘聚区模型分别对无损伤复合材料整体加筋壁板(包括未缝合和局部缝合)和含穿透损伤的复合材料整体加筋壁板(包括未缝合和局部缝合)的后屈曲诱发的失效机理进行了分析。
     (4)提出了一种可用于表征后屈曲诱发的复合材料整体加筋壁板界面失效的六点弯曲试验方法,该试验能够真实的模拟加筋板在后屈曲阶段典型失效位置即节点线与反节点线处的局部变形情况;对加筋壁板在后屈曲阶段的初始失效问题进行了数值表征研究,针对不同的蒙皮/缘条厚度比提出了两种失效准则,为复合材料加筋壁板的细节设计提供了一种有效方法。
     (5)对某型复合材料盒段的设计提出了三种多墙盒段的结构方案,并对这三种方案的后屈曲承载能力进行了分析;对其中的上壁板紧固件连接且下壁板加缝合的方案进行了试验研究,研究表明结构的破坏载荷及破坏模式的有限元结果与试验结果吻合良好,从而验证了后屈曲设计分析方法。
It is important for detail design to research on damage analysis and failure evaluation of the jointinterfaces in integrated composite structures. At present, cohesive zone model (CZM) is one of themost effective methods for failure analysis of the joint interfaces. Several foundation problems existedin CZM have been studied in this paper. On this basis, the failure process of integrated compositestructures at the post-buckling stage is systematically discussed. The main features for this paper arestated as follows:
     (1) Two meso-mechanical models are presented to predict the strength parameter of CZM: onebased on the periodic RVE technique and the other based on Eshelbey’s equivalent inclusion method.The FEM simulations on mixed-mode-bending (MMB) test are presented by applying CZM with thepredicted cohesive strength. The numerical results are in fair agreement with experimentalobservation.
     (2) CZM of the stitch (or pin) is developed based the bridging law which can be derived from ameso-mechanical model of the stitch (or pin). Further more, zone dependent CZM is presented tosimulation both the delamination and the stitch (or Z-pin) failure in stitched composite structures. Thesimulations on MMB test of stitched laminates are done by the zone dependent CZM.
     (3) The mechanisms of the load transfer are analyzed on the stiffened composite panels subjectedto axial compressive load at the post-buckling stage. It is implied the initial failure is mostly to takeplace at nodal lines or anti-nodal lines. The failure mechanisms of the stiffened panels (includingstitched and unstitched panels) with or without initial damage induced by post-buckling are studiedvia CZM and progressive damage analysis based on Hashin failure criterion.
     (4) A six-point bending test is developed to characterize the failure process of the joint interfacein integrated composite structures induced by post-buckling. The deformation features at the nodaland anti-nodal lines at the post-buckling stage can be obtained from this test. Two failure criterions forthe interface de-bonding are proposed by the numerical research on the post-bucking induced failureprocess of the stiffened composite panels.
     (5) Three kinds of design schemes for the composite box are proposed according to the designrequirements. The analyses on the carrying capacity of these schemes at the post-buckling stage aredone by FEM. The experimental study is also carried out on one of these schemes (the top panel withmetal joints and the bottom panel with stitching). The simulation results of the breaking load and thefailure modes are in good agreement with the experimental ones. It validates the design and analysis methods proposed in this paper.
引文
[1]陈绍杰.浅谈复合材料的整体成型技术.航空制造技术,2005,9:58~62.
    [2]沈真主编.复合材料结构设计手册.北京:航空工业出版社,2001.
    [3]益小苏.先进复合材料技术研究与发展.北京:国防工业出版社,2006.
    [4]陈普会,柴亚南.整体复合材料结构失效分析的粘聚区模型.南京航空航天大学学报.南京航空航天大学学报,2008,40(4):442~446.
    [5] Chang FK, Kutlu Z, Delamination effects on composite shells. Journal of EngineeringMaterials,1990,112:336~340.
    [6] Nilsson KF, Asp LE, Alpman JE, Nystedt L. Delamination buckling and growth fordelaminations at different depths in a slender composite panel. International Journal of Solidsand Structures.2001,38(17):3039~3071.
    [7] Greenhalgh ES, Meeks C, Clarke A, Thatcher J. The effect of defects on the performance ofpost-buckled CFRP stringer-stiffened panels. Composites: Part A,2003,34:623~633.
    [8] Gaudenzi P, Perugini P, Riccio A. Post-buckling behavior of composite panels in the presenceof unstable delaminations. Composite Structures,2001,51:301~309.
    [9] Tafreshi A. Efficient modelling of delamination buckling in composite cylindrical shells underaxial compression. Composite Structures,2004,64:511~520.
    [10] Wang, JT, Qiao P. On the energy release rate and mode mix of delaminated sheardeformablecomposite plates. International Journal of Solids and Structures,2004,41:2757~2779.
    [11] Starnes JH, Knight NF, Rouse M. Postbuckling behaviour of selected flat stiffenedgraphite-epoxy panels loaded in compression, AIAA Journal,1985,23(8):1236~1246
    [12] Knight NF, Starnes JH. Postbuckling behaviour of selected curved stiffened graphite-epoxypanels loaded in axial compression. AIAA Journal,1988,26(3):344~352.
    [13] Hachenberg D, Kossira H. Stringer peeling effects at stiffened composite panels in thepostbuckling range. Journal of Aircraft,1993,30(5):769~776.
    [14] Stevens KA, Ricci R, Davies GAO. Buckling and postbuckling of composite structures.Composites,1995,26:189~199.
    [15] Frostig Y, Siton G, Segal A, Sheinman I, Weller T, Postbuckling behavior of laminatedcomposite stiffeners and stiffened panels under cyclic loading, Journal of Aircraft,1991,28(7):471~480.
    [16] Caputo F, Esposito R, Perugini P, Santoro D, Numerical-experimental investigation onpost-buckled stiffened composite panels. Composite Structures,2002,55:347~357.
    [17] Orifici AC, Thomson RS, Degenhardt R, et al.Degradation investigation in a postbucklingcomposite stiffened panel, Composite Structures,2008,86(9):919~929
    [18]矫桂琼,贾普荣.复合材料力学.西安:西北工业大学出版社,2008
    [19] Engelstad SP, Reddy JN, Knight NF. Postbuckling response and failure prediction ofgraphite-epoxy plates loaded in compression, AIAA Journal,1992,30(8):2106~2113.
    [20] Cuntze RG, Freund A. The predictive capability of failure mode concept-based strength criteriafor multidirectional laminates, Composites Science and Technology,2004,64:344~377.
    [21] Feih S, Shercliff HR. Adhesive and composite failure prediction of single-L joint structuresunder tensile loading. International Journal of Adhesion and Adhesives,2005,25(1):47~59.
    [22] Williams JG. On the calculation of energy release rates for cracked laminates, InternationalJournal of Fracture.1988,36:101~119.
    [23] Davidson BD, Hu H, Hongwei Y. An efficient procedure for determining mixedmode energyrelease rates in practical problems of delamination. Finite Elements in Analysis and Design,1996,23:193~210.
    [24] Allix O, Ladevèze P. Interlaminar interface modelling for the prediction of delamination.Composite Structures,1992,22:235~242.
    [25] Yap JWH, Scott ML, Thomson RS, et al. The analysis of skin-tostiffener debonding incomposite aerospace structures, Composite Structures,2002,57:425~435.
    [26] Borg R, Nilsson L, Simonsson K. Modeling of delamination using a discretizedcohesive zoneand damage formulation. Composites Science and Technology,2002,62:1299~1314.
    [27] Bruno D, Greco F. Mixed mode delamination in plates: a refined approach. InternationalJournal of Solids and Structures.2001,38:9149~77.
    [28] Wang JT, Qiao P. On the energy release rate and mode mix of delaminated shear deformablecomposite plates. International Journal of Solids and Structures,2004,41:2757~79
    [29] Rybicki EF, Kanninen MF. A finite element calculation of stress intensity factors by a modifiedcrack closure integral. Engineering Fracture Mechanics,1977,9:931~938.
    [30] Krueger R, K nig M, Schneider T. Computation of local energy release rates along straight andcurved delamination fronts of unidirectionally laminated DCB-and ENF specimens.Proceedings of the34th AIAA/ASME/ASCE/AHS/ASC SSDM Conference, La Jolla, CA,AIAA Washington,1993:1332~1342.
    [31] Li J, Lee SM, Lee EW, O’Brien TK. Evaluation of the edge crack torsion ECT Test for mode IIIinterlaminar fracture toughness of laminated composites. Journal of Composites Technologyand Research,1997,19:174~183.
    [32] Wahab MMA. On the use of fracture mechanics in designing a single lap adhesive joint,Journal of Adhesive Science and Technology,2000,19:851~865.
    [33] Wang JT, Raju IS. Strain energy release rate formulae for skin-stiffener debond modeled withplate elements. Engineering Fracture Mechanics,1996,54:211~228.
    [34] Li J, O’Brien TK, Rousseau CQ. Test and analysis of composite hat stringer pulloff testspecimens, Journal of the American Helicopter Society,1997:350-357.
    [35] Johnson WS, Butkus LM, Valentin RV. Applications of Fracture Mechanics to the Durability ofBonded Composite Joints. U.S. Department of Transportation, Federal Aviation AdministrationDOT/FAA/AR-97/56,1998.
    [36] Krueger R, Paris IL, O’Brien TK, Minguet PJ. Comparison of2D finite element modelingassumptions with results from3D analysis for composite skin-stiffener debonding, CompositeStructures,2002,57:161~168.
    [37] Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics ofSolids,1960,8:100~104.
    [38] Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture. Advances inApplied Mechanics.1962,7:55~129.
    [39] Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth inconcrete by means of fracture mechanics and finite elements. Cement and Concrete Research,1976,6:773~782.
    [40] Needleman A. A continuum model for void nucleation by inclusion debonding, Journal ofApplied Mechanics,1987,54:525~531.
    [41] Needleman A. An analysis of decohesion along an imperfect interface. International Journal ofFracture,1990,42:21~40.
    [42] Tvergaard V. Material failure by void growth to coalescence. Advances in Applied Mechanics,1990,27:83~151.
    [43] Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fractureprocess parameters in elastic-plastic solids.J. Mech. Phys. Solids,1992,40:1377~1397.
    [44] Turon A, Davila CG, Camanho PP, et a1. An engineering solution for mesh size effects in thesimulation of delamination using cohesive zone models. Eng. Fract. Mech.,2007,74(10):1665~1682.
    [45] Yang QD, Cox B. Cohesive models for damage evolution in laminated composites.International Journal of Fracture,2005,133:107~137.
    [46] Turon A, Camanho PP, J Costa, et a1. A damage model for the simulation of delamination inadvanced composites under variable-mode loading. Mechanics of Materials,2006,38:1072~1089.
    [47] Davila CG, Camanho PP, Turon A. Cohesive elements for shells. NASA/TP-2007-214869,2007.
    [48]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析.力学学报,1999,31:372~377.
    [49] Bhate D. Cohesive zone models: a review. Purdue University,2006
    [50] Aymerich F, Dore F, Priolo P. Prediction of impact induced delamination in cross-ply compositelaminates using cohesive interface elements. Composites Science and Technology,2008,68(12):2383~2390.
    [51] Aoki Y, Suemasu H, Ishikawa T. Damage propagation in CFRP laminates subjected to lowvelocity impact and static indentation. Adv. Composite Materials,2007,16(1):45~61.
    [52] Johnson HE, Louca LA, Mouring SE, et a1. Damage modeling of large and small scalecomposite panels subjected to a low velocity impact. Health and Safety Executive,2006.
    [53] Turon A. Simulation of delamination in composites under quasi-static and fatigue loading usingcohesive zone models. Ph.D Thesis, Girona, Spain: University of Girona,2006.
    [54] Camanho PP, Davila CG, Moura MF. Numerical simulation of mixed-mode progressivedelamination in composite materials. Journal of Composite Materials,2003,37(16):1415~1438.
    [55] Camanho PP. Advances in the simulation of damage and fracture of composite struetures. XReunión de Usuarios de ABAQUS,2005.
    [56] Faggiani A, Falzon BG. Numerical Analysis of Stiffener Runout Sections. Applied CompositeMaterials,2007,14:145~158.
    [57]孙启星.复合材料整体加筋壁板的元件连接界面的失效机理与数值模拟.硕士学位论文,南京:南京航空航天大学,2008.
    [58] Greenhalgh E, Lewis A, Bowen R, Grassi M. Evaluation of toughening concepts atstructural features in CFRP-Part I: Stiffener pull-off. Composites: Part A,2006,37(10):1521~1535.
    [59] Meeks C, Greenhalgh E, Falzon BG. Stiffener debonding mechanisms in post-buckled CFRPaerospace panels. Composites: Part A,2005,36A (7):934~946.
    [60] Greenhalgh E, Garcia MH. Fracture mechanisms and failure processes at stiffener run-outs inpolymer matrix composite stiffened elements. Composites: Part A,2004,35A (12):1447~1458.
    [61] Krueger R, Cvitkovich M, O’Brien K. Testing and analysis of composite skin/stringerdebonding under multi-axial loading. Journal of Composite Materials,2000,34(15):1263~1300.
    [62] Harper PW, Hallett SR. Cohesive zone length in numerical simulations of compositedelamination. Engineering Fracture Mechanics,2008;75(16):4774~92
    [63] Liljedahl CDM, Crocombe AD, Wahab MA, et a1. Damage modeling of adhesively bondedjoints. International Journal of Fracture,2006,141:147~161.
    [64] Parmigiani JP, Thouless MD. The effects of cohesive strength and toughness on mixed·-modedelamination of beam-like geometries. Engineering Fracture Mechanics,2007,74(17):2675~2699.
    [65] Li S, Thouless MD, Waas AM, et a1. Mode-I cohesive-zone models for fracture of anadhesively bonded polymer-matrix composite. Composites Science and Technology,2005,65(2):281~293.
    [66] Li S, Thouless MD, Waas AM, et a1. Use of cohesive-zone models to analyze fracture of afiber-reinforced polymer-matrix composite. Composites Science and Technology,2005,65(3/4):537~549.
    [67] Que NS. Identification of cohesive crack fracture parameters using mathematical programming.PhD Thesis. Sydney, Australia: University of New South Wales,2003.
    [68] Zou Z, Reid SR, Li S, et a1. Modelling interlaminar and intralaminar damage in filamentwound pipes under quasi-static indentation. Journal of Composite Materials,2002,36:477~499.
    [69] Sun CT, Jin ZH. Modeling of composite fracture using cohesive zone and bridging models.Composites Science and Technology,2006,66:1297~1302.
    [70] Spearing SM, Evans AG. The role of fiber bridging in the delamination resistance offiber-reinforced composites. Acta Metallurgicaet Materialia,1992,40:2191~2199.
    [71] Marshall DB, Cox BN, Evans AG. The mechanics of matrix cracking in brittle-matrix fibercomposites. Acta Metallurgica Sinica,1985,33:2013~2021.
    [72] Mc Cartney LN. Mechanics of matrix cracking in brittle-matrix fiber reinforced composites.Proc Royal Soc London A,1987,409:329~350.
    [73] S rensen BF, Jacobsen TK. Large scale bridging in composites: R-curves and bridging laws.Composites: Part A,1998,29A:1443~1451.
    [74] Feih S. Development of a user element in ABAQUS for modelling of cohesive laws incomposite structures. Technical Report Ris-R-1501(EN),Ris Nationa1Laboratory, Roskilde,Denmark, January,2005.
    [75] Feih S. Modelling cohesive laws in finite element simulations via an adapted contact procedurein ABAQUS. Technical Report Ris-R-1463(EN),Ris Nationa1Laboratory, Roskilde,Denmark, July,2004.
    [76] Grassi M, Zhang X. Finite element analyses of mode I interlaminar delamination in z-fibrereinforced composite laminates. Composites Science and Technology,2003,63:1815~1832.
    [77]沈真主编.复合材料结构设计手册.北京:航空工业出版社,2001.
    [78] Zimmermann R, Rolfes R. POSICOSS-improved postbuckling simulation for design of fibrecomposite stiffened fuselage structures. Composite Structures,2006,73:171~174.
    [79] Degenhardt R, Rolfes R, Zimmermann R, et al. COCOMAT-improved material exploitation ofcomposite airframe structures by accurate simulation of postbuckling and collapse. CompositeStructures,2006,73:175~178.
    [80] Degenhardt R, A Kling, H Klein, et al. Experiments on buckling and postbuckling ofthin-walled CFRP structures using advanced measurement systems. International Journal ofStructural Stability and Dynamics,2007,7(2):337~358.
    [81] Orifici AC, Thomson RS, Degenhardt R, et al. Degradation investigation in a postbucklingcomposite stiffened fuselage panel. Composite Structures,2008,82:217~224.
    [82] Degenhardt R, Kling A, Rohwer K, et al. Design and analysis of stiffened composite panelsincluding post-buckling and collapse. Computers and Structures,2008,86:919~929.
    [83]杨胜春,管德新,李新祥.缝合复合材料整体加筋壁板的轴压稳定性试验研究.中国飞机强度研究所技术报告,西安,2008.
    [84] Hahn HT, Yang JM, Suh SS, et al. Design, manufacturing, and performance of stiffenedcomposite panels with and without impact damage. FAA Report, DOT/FAA/AR-02/111,2002.
    [85] Hahn HT, Yang JM, Suh SS, et al. Damage tolerance and durability of selectively stitched,stiffened panels. FAA Report, DOT/FAA/AR-03/46,2003.
    [86] Suh SS. Effect of stitching on resin film infusion and damage tolerance of stiffened compositestructure, PhD Thesis, Los Angeles: University of California,2003.
    [87] Hassan M, Prasun M, Mrinal S, et al. Integral manufacturing of composite skin-stringerassembly and their stability analyses. Applied Composite Materials,2004,11:155~171.
    [88] Jegley DC. Improving strength of postbuckled panels through stitching. Composite Structures,2007,80:298~306.
    [89] Tan Y, Wu G, Suh SS, et al. Damage tolerance and durability of selectively stitched stiffenedcomposite structures. International Journal of Fatigue,2008,30:483~492.
    [90] Kumari S, PK Sinha. Effects of transverse stitching and hydrothermal environment oncomposite wing T-Joints. Journal of Reinforced Plastics and Composites,2003,22(18):1705~1728.
    [91] Greenhalgh E, A Lewis, R Bowen, M Grassi. Evaluation of toughening concepts at structuralfeatures in CFRP-Part I: Stiffener pull-off. Composites: Part A,2006,37(10):1521~1535.
    [92]朱菊芬,汪海,徐胜利.非线性有限元及其在飞机结构设计中的应用.上海:上海交通大学出版社,2011.
    [93] Bisagni C. Numerical analysis and experimental correlation of composite shell buckling andpost-buckling. Composites: Part B,2000,31:655~667.
    [94] Spagnoli A, Elghazouli AY, Chryssanthopoulos MK. Numerical simulation of glass-reinforcedplastic cylinders under axial compression. Marine Structures,2001,14:353~374.
    [95] Tsouvalis NG, Zafeiratou AA, Papazoglou VJ, et al. Numerical modelling of compositelaminated cylinders in compression using a novel imperfection modeling method. Composites:Part B,2001,32:387~399.
    [96] Engelstad SP, Reddy JN, Knight NF.Postbuckling response and failure prediction ofgraphite-epoxy plates loaded in compression.AIAA Journal,1992,30(8):2106~2113.
    [97] Goldmanis M, Riekstinsh A.Post-buckling finite element analysis of composite cylindricalpanels in axial compression. Composite Structures,1994,29:457~462.
    [98] Yap JWH, Thomson RS, Scott ML, et al. Influence of post-buckling behaviour of compositestiffened panels on the damage criticality. Composite Structures,2004,66:197~206.
    [99] Koundouros M. In-plane compressive behaviour of stiffened thin-skinned composite panelswith a stress concentrator. PhD Thesis, London: Imperial College London,2005.
    [100] Hyer MW, Loup DC, Starnes JH. Stiffener/skin interactions in pressure-loaded compositepanels. AIAA Journal,1990,28(3):532~537.
    [101] Short GJ, Guild FJ, Pavier MJ. Delaminations in flat and curved composite laminates subjectedto compressive load. Composite Structures,2002,58:249~258.
    [102] Zimmermann R, Klein H, Kling A.Buckling and postbuckling of stringer stiffened fibercomposite curved panels tests and computations. Composite Structures,2006,73:150~161.
    [103] Skrna-Jakl IC, Rammerstorfer FG. Numerical investigations of free edge effects in integrallystiffened layered composite panels. Composite Structures,1993,25(1-4):129~137.
    [104] Whitcomb JD. Three-dimensional analysis of a postbuckled embedded delamination. Journal ofComposite Materials,1989,23:862~889.
    [105] Stiftinger MA, Skrna-Jakl IC, Rammerstorfer FG.Buckling and postbuckling investigations ofimperfect curved stringer-stiffened composite shells. Part B: Computational investigations.Thin-Walled Structures,1995,23:339~350.
    [106] Wiggenraad J, Greenhalgh ES, Olsson R. Design and analysis of stiffened composite panels fordamage resistance and tolerance. In: Zelezny M, editor. WCCM V, Fifth World Congress onComputational Mechanics, Vienna, Austria, July7–123-9501554-0-6
    [107] Li J, Sen J. Analysis of frame to skin joint pull-off tests and prediction of the delaminationfailure.42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materialsconference, Seattle, Washington,16–19April, AIAA-2001-14842001.
    [108] Krueger R, Minguet P, O’Brien K. In: Martin M, Hahn H, editors. Implementation ofinterlaminar fracture mechanics in design; an overview.14th International conference oncomposite materials, San Diego, July14–8. Society of Manufacturing Engineers;2003.
    [109] Rijn J, Wiggenraad J. A seven-point bending test to determine the strength of the skin-stringerinterface in composite aircraft panels. Amsterdam, Netherlands: National Aerospace Lab,2000,NLR-TP-2000-044.
    [110] Falzon BG. An investigation into the buckling and postbuckling behaviour of hat-stiffenedcomposite panels. PhD Thesis, Sydney: University of Sydney,1995.
    [111] Krueger R, Cvitkovich M, O’Brien K, Minguet P. Testing and analysis of compositeskin/stringer debonding under multi-axial loading. Journal of Composite Materials,2000,34(15):1263~300.
    [112] Hachenberg D, KossiraH. Theoretical and experimental investigation of stringer peeling effectsat stiffened shear loaded composite panels in the postbuckling range.17th Congress of theinternational council of the aeronautical sciences-ICAS proceedings, Stockholm, Sweden,American Institute of Aeronautics and Astronautics,1990,511~519.
    [113] Krueger R, Paris I, O’Brien K, Minguet P. Fatigue life methodology for bonded compositeskin/stringer configurations. Journal of Composite Technology and Research,2002,24(2):308~31.
    [114] Rijn J. Failure criterion for the skin-stiffener interface in composite aircraft panels,NLR-TP-98264. Netherlands: NLR,1998.
    [115] Rijn J. Design guidelines for the prevention of skin-stiffener debonding in composite aircraftpanels, NLR-TP-2000-355. USA: NLR,2001.
    [116] Turon A, Camanho PP, Costa J, Davila CG. A damage model for the simulation of delaminationunder variable-mode loading. Mechanics of Materials,2006,38:1072~89.
    [117] Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughnessof Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus [J].Composites Science and Technology,1996,56(4):439~449.
    [118] Liu K, Piggott M R. Fracture failure processes in polymers. II: Fractographic evidence.Polymer Engineering and Science,1998,38(1):69~78.
    [119] Hojo Masaki, Ando Tadashi, Tanaka Mototsugu, et al. Modes I and II interlaminar fracturetoughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf.International Journal of Fatigue,2006,28:1154~1165
    [120] Li S. Wongsto A. Unit cells for micromechanical analyses of particle-reinforced composites.Mechanics of Materials,2004,36:543~72.
    [121] Mura T. Micromechanics of defects in solids.Second, revised edition.Martinus Nijhoff,Dordrecht,1987.
    [122] Ersoy Nuri, Garstka Tomasz, Potter Kevin, et al. Development of the properties of a carbonfibre reinforced thermosetting composite through cure. Composites: Part A,2010,41:401~409.
    [123] Ana M. Díez-Pascual, Mohammed Naffakh, et al. High performance PEEK/carbon nanotubecomposites compatibilized with polysulfones-II. Mechanical and electrical properties throughcure. Carbon,2010,48(12):3485~3499.
    [124] Donadon MV, Falzon BG, Iannucci L, et al. A3-D micromechanical model for predicting theelastic behaviour of woven laminates. Composite Science Technology,2007,67:2467~2477.
    [125] Huang Jiancheng, Wang Xinwei. Numerical and experimental investigations on the axialcrushing response of composite tubes. Composite Structures,2009,91:222~228.
    [126] Benedikt B, Lewis M, Rangaswamy P. On elastic interactions between spherical inclusions bythe equivalent inclusion method. Computational Materials Science,2006,37:380~392
    [127] Naghipoura P, Bartscha M, Chernovaa L, et al. Effect of fiber angle orientation and stackingsequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical andexperimental investigations. Materials Science and Engineering A,2010,527:509~517.
    [128] Cox BN, Shidhar N. A traction law for inclined fibre tows bridging mixed-mode cracks.Mechanics of Advanced Materials and Structures,2002,9(4):299~331
    [129] Cox BN. Snubbing effects in the pullout of a fibrous rod from a laminate. Mechanics ofAdvanced Materials and Structures,2005,12(2):85~98.
    [130] Plain KP, Tong L. Traction law for inclined through-thickness reinforcement using ageometrical approach. Composite Structures,2009,88(4):558~69.
    [131] Plain KP, Tong L. Experimental validation of theoretical traction law for inclinedthrough-thickness reinforcement. Composite Structures,2009,2(91):148~157.
    [132] Cartie DDR, Cox BN, Fleck NA. Mechanisms of crack bridging by composite and metallicrods. Composite Part A,2004,35:1325~1336.
    [133] Lalit K. Jain, Kimberley A, ansfieldb, Yiu-Wing Ma.On the effects of stitching inCFRPs-II.Mode II delamination toughness. Composites Science and Technology,1998,58:829~837.
    [134] TRABELSI Walid, MICHEL Laurent, OTHOMENE Renaud.Effects of stitching ondelamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-modeI/II loadings. Applied Composite Materials,2010,17(6):575~595.
    [135] Stevens KA, Ricci R, Davies GAO. Buckling and postbuckling of composite structures.Composites,1995,26(3):189~199.
    [136]庄茁,张帆,岑松,等. ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [137] Oh SH, Kim KS, Kim CG. An efficient postbuckling analysis technique for composite stiffenedcurved panels. Composite Structures,2006,74(3):361~369.
    [138] Koundouros M. In-plane compressive behaviour of stiffened thin-skinned composite panelswith a stress concentrator. London: Imperial College London,2005.
    [139] Meeks C, Greenhalgh E, Falzon BG. Stiffener debonding mechanisms in post-buckled CFRPaerospace panels. Composites: Part A,2005,36(7):934~946.
    [140] Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics,1980,47:329~335.
    [141] Tan Yi, Wu Guocai, Sung S Suh, et al. Damage tolerance and durability of selectively stitchedstiffened composite structures. International Journal of Fatigue,2008,30(3):483~492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700