嗜热菌NG80-2中LadA的体外定向进化及Facl的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一嗜热脱氮土壤芽胞杆菌NG80-2长链烷烃羟化酶LadA的体外定向进化
     嗜热脱氮土壤芽胞杆菌(Geobacillus thermodenitrificans)NG80-2,分离于我国大港油田,是一株能降解长链(C15-C36)烷烃的嗜热菌(最适生长温度为65℃)。在深层油藏的高温缺氧条件下,它能够利用原油为唯一碳源和能量来源,很好的生长。可用于改善原油流动性及降低重/轻质烷烃的比例。
     NG80-2长链烷烃代谢途径中最关键酶是第一步的长链烷烃羟化酶基因(ladA)。通过末端单加氧的方式,该酶能够催化长链烷烃(C15-C36)生成相对应的伯醇。该酶是目前能催化最长碳链的高温氧化酶,也是目前能催化长链烷烃最有用的酶之一。因此,LadA在石油污染治理中具有巨大的应用前景。本实验室前期对LadA蛋白进行了基因的克隆和表达鉴定,进行了酶学性质研究,并对其三维结构进行了x射线衍射分析。
     为进一步提高LadA催化长链饱和烷烃生成相对应伯醇的活性,本论文采用体外随机突变的易错PCR方法与定点饱和突变相结合的定向进化策略,以LadA野生型蛋白作为亲本,进行定向进化。通过建立合适的高通量筛选方法,最终获得了9个具有较高活性的突变酶。对这些突变酶的酶学性质进行了分析,同时对突变酶活性改变的机制与分子结构之间的联系进行了较系统的研究。
     建立以E. coli DH5α收集突变文库及E. coli BL21表达LadA,基于NADPH消耗的96孔板高通量筛选方法。采用易错PCR随机突变方法对ladA进行突变。通过优化实验中模版量和循环次数,将突变率控制在2-4bp/基因。建立了5个平行的突变文库,通过筛选7500个突变体,得到了3个酶活提高的突变酶(A102D,L320V和F146C/N376I)。在得到的3个突变酶4个突变位点的基础上,对这4个位点进行拆分及组合,构建了6个新酶,通过检测酶活来评估这些位点之间的相互作用。采用定点饱和突变方法对以上4个氨基酸残基及计算机预测突变“热点”114位氨基酸残基进行饱和性分析。通过测序得到了5个位点的所有氨基酸突变酶。对这些突变酶进行活性分析,得到6个高于亲本酶活性的新酶(A102E,L320A, F146Q/N376I, F146E/N376I, F146R/N376I, F146N/N376I)。对这9个突变酶(A102D, A102E, L320V,L320A, F146Q/N376I, F146E/N376I, F146R/N376I,F146N/N376I和F146C/N376I)进行基本酶学性质分析。实验结果表明,与野生型LadA相比,突变酶活性(k_(cat))提高2-3.4倍,其中F146N/N376I具有最高活性;催化效率(k_(cat)/k_m)提高了1.9-12.7倍,其中F146E/N376I和A102E提高最多。对突变酶的最适反应温度,最适反应pH,热稳定性及底物范围等酶学性质进行了研究。表达LadA突变体的Pseudomonas fluorescens KOB2Δ1菌株比表达LadA野生型酶的KOB2Δ1菌株在以十六烷为唯一碳源和能量来源的培养基中生长快,从而在体内验证了LadA突变体的活性。对通过易错PCR技术得到的3个突变酶进行氨基酸置换。运用计算机模拟进行同源模建,进一步研究了酶活性提高与结构变化之间的关系。本研究得到的突变体在石油污染治理和原油开发等生物过程中具有很大的应用潜力。
     二长链脂肪酸辅酶A连接酶Facl的功能鉴定
     本研究对NG80-2长链烷烃降解途径中第四步的两个长链脂肪酸辅酶A连接酶(Facl1和Facl2)基因GTNG_0892和GTNG_1447进行了克隆表达和体外功能鉴定。Facl1在大肠杆菌中的表达产物分别为同二聚体,Facl2在大肠杆菌中的表达产物为非球状单体或同二聚体。Facl1和Facl2均可以催化C2到C30的脂肪酸,Facl1的最适底物是癸酸,Facl2的最适底物是棕榈酸。Facl1和Facl2最适反应温度为均为60℃,最适反应pH均为7.5,且需要ATP作为辅因子。对Facl1和Facl2的热稳定性进行了分析。同时分析了金属离子,EDTA,SDS和Triton X-100对酶活的影响。实时定量PCR显示,当NG80-2在以原油为唯一碳源的培养基中生长时,facl1和facl2的mRNA水平发生了上调。本研究对NG80-2中其余5个Facl酶也进行了克隆表达和功能鉴定。发现这5个Facl酶不能降解链长超过C14的脂肪酸,因此,可以确定Facl1和Facl2催化长链烷烃降解途径中第四步反应。这是在细菌中首次发现并鉴定的能够催化链长到至少C30的长链脂肪酸辅酶A连接酶。
In vitro directed evolution of Geobacillus thermodenitrificans NG80-2LadA
     Geobacillus thermodenitrificans NG80-2, a described thermophilic bacterium(optimum65°C), can degrade long-chain (C15to C36) alkanes. It is isolated from adeep-subsurface oil reservoir of Dagang oilfield, Northern China. It grows well in theanaerobic, deep subterranean oil-reservoir environment and can utilize crude oil asthe sole carbon source, thus it has the ability to enhance the fluidity of the crude oiland decrease heavy/light ratio of crude oils.
     LadA, a monooxygenase catalyzing the oxidation of n-alkanes to1-alkanols, isthe key enzyme for the degradation of long-chain alkanes (C15-C36) in G.thermodenitrificans NG80-2. LadA is a thermophilic monooxygenase that cancatalyze the longest chain of alkanes, to our knowledge. It is also one of the mostuseful enzymes that can utilize long chain alkanes up to now. Thus it can bepotentially used bioconvertions like pollutions and so on. During our previousresearch, the gene of LadA has been cloned, expressed and characterized. We havealso studied the enzyme characterization of LadA. What is more, the3-D structure ofLadA has also been analyzed by X-ray diffraction assays.
     In order to further improve its catalytic ability in hydroxylation of alkane andmake this enzyme more useful, the wild gene of LadA was aimed to further in vitrodirected evolution by error-prone PCR and saturation mutagenesis.9LadA mutantswith higher activity and higher catalytic efficiency had been found using a wellestablished high throughput screening method. Study of enzyme characteristics of themutant enzymes was researched. The molecular mechanism of the activity changeand the structure of LadA mutants was also analyzed. Directed evolution was done bycollecting the mutant libraries using E. coli DH5α,expressing LadA by E. coli BL21and screening the96-well plate based on spectroscopic assays of consumption ofNADPH. Ep-PCR was performed on the wild gene ladA. Optimized templateconcentration and cycle numbers were found and the mutant rate was controlledbetween2-4bp/gene.5similar libraries was established.7500mutants were screened. 3mutants (A102D, L320V and F146C/N376I) with higher activity were found.Site-directed mutagenesis was taken to recombine the four sites of the three mutantsand6more new enzymes were created. The6enzymes catalytic ability was analyzedto evaluate the interactions of the4sites. Saturation mutagenesis was used towardsthe four sites and another hotspot114revealed by the computer analysis. All the other19amino acids of the5sites were obtained by sequencing.6more new mutants(A102E, L320A, F146Q/N376I, F146E/N376I, F146R/N376I, F146N/N376I) wereobtained by analysis the activity of the all the mutants. Characterization of the9mutants (A102D, A102E, L320V, L320A, F146Q/N376I, F146E/N376I,F146R/N376I, F146N/N376I and F146C/N376I) was made. Comparing with thewildtype LadA, the hydroxylation activity(k_(cat))of the purified LadA mutants onhexadecane was2–3.4-fold higher, with the activity of F146N/N376I being thehighest; the catalytic efficiency (k_(cat)/k_m) of the purified LadA mutants on hexadecanewas1.9–12.7-fold higher, with the activity of F146E/N376I and A102E being thehighest. Effects of the mutations on optimum temperature, pH and heat stability ofLadA were also investigated. A complementary study showed that Pseudomonasfluorescens KOB2Δ1strains expressing the LadA mutants grew more rapidly withhexadecane than the strain expressing wild type LadA, confirming the enhancedactivity of LadA mutants in vivo. Structural changes resulting from the mutationswere analyzed and the correlation between structural changes and enzyme activitywas discussed. The mutants generated in this study are potentially useful for thetreatment of environmental oil pollution and in other bioconversion processes.
     ⅡCharacterization of G. thermodenitrificans NG80-2Facls
     The functions of two long-chain fatty acid CoA ligase genes (facl) in crudeoil-degrading G. thermodenitrificans NG80-2were characterized. Facl1and Facl2encoded by GTNG_0892and GTNG_1447were expressed in Escherichia coli andpurified as His-tagged fusion proteins. Facl1was found to be a homology dimer in itsnative status while Facl2may act as a non-sphere monomer or a dimer. Both enzymesutilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid(C30). The most preferred substrates were capric acid (C10) for Facl1and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of60°C,an optimal pH of7.5, and required ATP as a cofactor. Thermostability of the enzymesand effects of metal ions, EDTA, SDS and Triton X-100on the enzyme activity werealso investigated. When NG80-2was cultured with crude oil rather than sucrose asthe sole carbon source, upregulation of facl1and facl2mRNA was observed by realtime RT-PCR. This is the first time that the activity of fatty acid CoA ligases towardslong-chain fatty acids up to at least C30has been demonstrated in bacteria.
引文
[1] Atlas R, Bragg J. Bioremediation of marine oil spills: when and when not--the Exxon Valdezexperience. Microb Biotechnol.2009.2(2):213-21.
    [2] Van Hamme J D, Singh A, Ward O P. Recent advances in petroleum microbiolog. MicrobiolMol Biol Rev.2003.67(4):503-49.
    [3] Voordouw G. Production-related petroleum microbiology: progress and prospects. Curr OpinBiotechnol.2011.
    [4] Brown L R. Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol.2010.13(3):316-20.
    [5] Khire J M. Bacterial biosurfactants, and their role in microbial enhanced oil recovery(MEOR). Adv Exp Med Biol.2010.672:146-57.
    [6] Perfumo A, Rancich I, Banat I M. Possibilities and challenges for biosurfactants use inpetroleum industry. Adv Exp Med Biol.2010.672:135-45.
    [7] Singh A, Van Hamme J D, Ward O P. Surfactants in microbiology and biotechnology: Part2.Application aspects. Biotechnol Adv.2007.25(1):99-121.
    [8] Parales R E, Haddock J D. Biocatalytic degradation of pollutants. Curr Opin Biotechnol.2004.15:374-349.
    [9] Bastin E S, Greer F E, Merritt C A, et al. The Presence of Sulphate Reducing Bacteria in OilField Waters. Science.1926.63(1618):21-4.
    [10] Chow J Y, Xue B, Lee K H, et al. Directed evolution of a thermostable quorum-quenchinglactonase from the amidohydrolase superfamily. J Biol Chem.2010.285(52):40911-20.
    [11] Alteri C, Svicher V, Gori C, et al. Characterization of the patterns of drug-resistancemutations in newly diagnosed HIV-1infected patients naive to the antiretroviral drugs. BMCInfect Dis.2009.9:111.
    [12] Kanaly R A, Harayama S. Advances in the field of high-molecular-weight polycyclicaromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol.2010.3(2):136-64.
    [13] Eguchi K, Yonezawa M, Mitsui Y, et al. Developmental changes of glutamate dehydrogenaseactivity in rat liver mitochondria and its enhancement by branched-chain amino acids. BiolNeonate.1992.62(2-3):83-8.
    [14] Prince R C. Petroleum spill bioremediation in marine environments. Crit Rev Microbiol.1993.19(4):217-42.
    [15] Liu S, Suflita J M. Ecology and evolution of microbial populations for bioremediation.Trends Biotechnol.1993.11(8):344-52.
    [16] Blackburn J W, Hafker W R. The impact of biochemistry, bioavailability and bioactivity onthe selection of bioremediation techniques. Trends Biotechnol.1993.11(8):328-33.
    [17] Atlas R M, Bartha R. Biodegradation of petroleum in seawater at low temperatures. Can JMicrobiol.1972.18(12):1851-5.
    [18] Atlas S A, Sealey J E, Dharmgrongartama B, et al. Detection and isolation of inactive, largemolecular weight renin in human kidney and plasma. Hypertension.1981.3(3Pt2): I30-40.
    [19] Shekhar C. Nature cure: bioremediation as a sustainable solution for polluted sites. ChemBiol.2012.19(3):307-8.
    [20] Lors C, Damidot D, Ponge J F, et al. Comparison of a bioremediation process of PAHs in aPAH-contaminated soil at field and laboratory scales. Environ Pollut.2012.165:11-17.
    [21] Wang L, Tang Y, Wang S, et al. Isolation and characterization of a novel thermophilicBacillus strain degrading long-chain n-alkanes. Extremophiles.2006.10(4):347-56.
    [22] Beliaev S S, Borzenkov I A, Nazina T N, et al.[Use of microorganisms in the biotechnologyfor the enhancement of oil recovery]. Mikrobiologiia.2004.73(5):687-97.
    [23] Brakstad O G, Lodeng A G. Microbial diversity during biodegradation of crude oil inseawater from the North Sea. Microb Ecol.2005.49(1):94-103.
    [24] Atlas R M. Microbial degradation of petroleum hydrocarbons: an environmental perspective.Microbiol Rev.1981.45(1):180-209.
    [25] Eimhjellen K, Nilssen O, Sommer T, et al. Biodegradation of oil-1982study results, in BaffinIsland Oil spill Project Working Report82-6.1983, Environmental Protection Service,Environment Canada, Ottawa Canada: Microbiology.
    [26] Eimhjellen E, Josefsen K. Biodegradation of stranded oil-1982results, in Baffin Island Oilspill Project Working Report83-6.1984. Environmental Protection Service, Environment Canada,Ottawa Canada: Microbiology.
    [27] Khasin A, Alchanati I, Shoham Y. Purification and characterization of a thermostablexylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol..1993.59:1725-1730.
    [28] Kato T, Haruki M, Imanaka T, et al. Isolation and characterization of long-chain-alkanedegrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J BiosciBioeng.2001.91(1):64-70.
    [29] Feitkenhauer H, Muller R, Markl H. Degradation of polycyclic aromatic hydrocarbons andlong chain alkanes at60-70degrees C by Thermus and Bacillus spp. Biodegradation.2003.14:367-372.
    [30] Nazina T N, Sokolova D S, Grigoryan A A, et al. Geobacillus jurassicus sp. nov., a newthermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validationof the Geobacillus species. Syst. Appl. Microbiol..2005.28(1):43-53.
    [31] Wentzel A, Ellingsen T E, Kotlar H K, et al. Bacterial metabolism of long-chain n-alkanes.Appl Microbiol Biotechnol.2007.76(6):1209-21.
    [32] Stroud J L, Paton G I, Semple K T. Microbe-aliphatic hydrocarbon interactions in soil:implications for biodegradation and bioremediation. J Appl Microbiol.2007.102(5):1239-53.
    [33] Smits T H, Rothlisberger M, Witholt B, et al. Molecular screening for alkane hydroxylasegenes in Gram-negative and Gram-positive strains. Environ Microbiol.1999.1(4):307-17.
    [34] Wei D, Zhang X. Proteomic analysis of interactions between a deep-sea thermophilicbacteriophage and its host at high temperature. J Virol.2010.84(5):2365-73.
    [35] Liu B, Zhou F, Wu S, et al. Genomic and proteomic characterization of a thermophilicGeobacillus bacteriophage GBSV1. Res Microbiol.2009.160(2):166-71.
    [36] Liu B, Zhang X. Deep-sea thermophilic Geobacillus bacteriophage GVE2transcriptionalprofile and proteomic characterization of virions. Appl Microbiol Biotechnol.2008.80(4):697-707.
    [37] Sung M H, Kim H, Bae J W, et al. Geobacillus toebii sp. nov., a novel thermophilicbacterium isolated from hay compost. Int J Syst Evol Microbiol.2002.52(Pt6):2251-2255.
    [38] Miquel P. Monographie d'un bacilli vivant au-dela de70degree C. Ann Micrographic.1888.1:3.
    [39] Gordon R E, Smith N R. Aerobic spore forming bacteria capable of growth at hightemperature. J Bacteriol.1949.58:327-341.
    [40] Sharp R J, Riley P W, White D. Heterotrophic thermophilic bacilli, in Thermophilic bacteria,J.K. Kristjasson, Editor.1992, Boca Raton, CRC Press. p.19-50.
    [41] White D, Sharp R J, Priest F G, A polyphasic taxonomic study of thermophilic bacilli from awide geographical area. Antonie Van Leeuwenhoek.1993.64:657-386.
    [42] Fritze D, Flossdorf J,Claus D. Taxonomy of alkaliphilic Bacillus strains. Int J Syst Bacteriol.1990.40(1):92-7.
    [43] Ash C, Farrow J A, Dorsch M, et al. Comparative analysis of Bacillus anthracis, Bacilluscereus, and related species on the basis of reverse transcriptase sequencing of16S rRNA. Int JSyst Bacteriol.1991.41(3):343-6.
    [44] Rainey F A, Fritze D, Stackebrandt E. The phylogenetic diversity of thermophilic membersof the genus Bacillus as revealed by16S rDNA analysis. FEMS Microbiol Lett.1994.115(2-3):205-11.
    [45] Ash C, Farrow J A F, Wallbanks S, et al. Phylogentic heterogeneity of the genus Bacillusrevealed by comparative analysis of small-subunit ribosomal RNA. Lett. Appl. Microbiol..1991.13:202-206.
    [46] Wisotzkey J D, Jurtshuk P J, Fox G E, et al. Comparative sequence analyses on the16SrRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicusand proposal for creation of a new genus, Alicyclobacillus gen.nov. Int. J. Syst. Bacteriol..1992.42:263-269.
    [47] Ash C, Priest F G, Collins M D. Molecular identification of rRNA group3bacilli (Ash,Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genusPaenibacillus. Antonie Van Leeuwenhoek.1993-94.64(3-4):253-260.
    [48] Heyndrickx M, Vandemeulebroecke K, Scheldeman P, et al. A polyphasic reassessment of thegenus Paenibacillus, reclassi-fication of Bacillus lautus (Nakamura1984) as Paenibacillus lautuscomb.nov. and of Bacillus peoriae (Montefusco et al.1993) as Paenibacillus peoriae comb.nov.,and emended description of P. lautus and of P. peoriae. Int J Syst Bacteriol.1996.46:988-1003.
    [49] Shida O, Takagi H, Kadowaki K, et al. Proposal for two new genera, Brevibacillus gen. nov.and Aneurinibacillus gen. nov. Int J Syst Bacteriol.1996.46:939-946.
    [50] Heyndrickx M, Lebbe L, Vancanneyt M, et al. A polyphasic reassessment of the genusAneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al.1996) asAneurinibacillus thermoaerophilus comb.nov.,and emended descriptions of A.aneurinilyticuscorrig., A.migulans, and A.thermoaerophilus. Int J Syst Bacteriol.1997.47:808-817.
    [51] Heyndrickx M, Lebbe L, Kersters K, et al. Virgibacillus: a new genus to accommodateBacillus pantothenticus (Proom and Knight1950). Emended description of Virgibacilluspantothenticus. Int J Syst Bacteriol.1998.48:99-106.
    [52] Waino M, Tindall B J, Schumann P, et al. Gracilibacillus gen. nov., with description ofGracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillusdipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillussalexigens comb. nov. Int J Syst Bacteriol.1999.49:821-831.
    [53] Nazina T N, Ivanova A E, Blagov A V. Microbiological characteristics of oil fields ofMangyshlak peninsula. Microbiology.1992.61:216-221.
    [54] Nazina T N, Ivanova A E, Borzenkov I A, et al. Occurrence and geochemical activity ofmicroorganisms in high-temperature water-flooded oil fields of Kazakhstan and Western Siberia.Geomicrobiol. J..1995.13:181-192.
    [55] Nazina T N, Tourova T P, Poltaraus A B, et al. Physiological and phylogenetic diversity ofthermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields. Microbiology.2000.69:96-102.
    [56] Nazina T N, Ivanova A E, Mityushina L L, et al. Thermophilic hydrocarbon-oxidizingbacteria from oil strata. Microbiology.1993.62:359-365.
    [57] Nazina T N, Tourova T P, Poltaraus A B, et al. Taxonomic study of aerobic thermophilicbacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp.nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillusthermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificansto Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol.2001.51(Pt2):433-46.
    [58] Ahmad S, Scopes R K, Rees G N, et al. Saccharococcus caldoxylosilyticus sp. nov., anobligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol..2000.50:517-523.
    [59] Fortina M G, Mora D, Schumann P, et al. Reclassification of Saccharococcuscaldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al.2000) comb. nov. Int J SystEvol Microbiol.2001.51(Pt6):2063-2071.
    [60] Banat I M, Marchant R, Rahman T J. Geobacillus debilis sp. nov., a novel obligatelythermophilic bacterium isolated from a cool soil environment, and reassignment of Bacilluspallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol.2004.54(Pt6):2197-201.
    [61] Schaffer C, Franck W L, Scheberl A, et al. Classification of isolates from locations in Austriaand Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol.2004.54:2361-2368.
    [62] Maugeri T L, Gugliandolo C, Caccamo D, et al. A polyphasic taxonomic study ofthermophilic bacilli from shallow, marine vents. Syst. Appl Microbiol.2001.24:572-587.
    [63] Nazina T N, Sokolova D, Shestakova N M, et al.[The phylogenetic diversity of aerobicorganotrophic bacteria from the Dagan high-temperature oil field]. Mikrobiologiia.2005.74(3):401-9.
    [64] Obojska A, Ternan N G, Lejczak B, et al. Organophosphonate utilization by the thermophileGeobacillus caldoxylosilyticus T20. Appl Environ Microbiol.2002.68:2081-2084.
    [65] Bonch-Osmolovskaya E A, Miroshnichenko M L, Lebedinsky A V, et al. Radioisotopic,culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in acontinental high-temperature petroleum reservoir. Appl Environ Microbiol.2003.69:6143-6151.
    [66] Euzeby J P, Tindall B J, International Committee on Systematics of Prokaryotes. Status ofstrains that contravene Rules27(3) and30of the Bacteriological Code. Request for an opinion. IntJ Syst Evol Microbiol.2004.54:293-301.
    [67] Nazina T N, Lebedeva E V, Poltaraus A B, et al. Geobacillus gargensis sp. nov., a novelthermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcanicomb. nov. Int J Syst Evol Microbiol.2004.54:2019-2024.
    [68] Maugeri T L, Gugliandolo C, Caccamo D, et al. A polyphasic taxonomic study ofthermophilic bacilli from shallow, marine vents. Syst Appl Microbiol.2001.24(4):572-87.
    [69] Bonch-Osmolovskaya E A, Miroshnichenko M L, Lebedinsky A V, et al. Radioisotopic,culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in acontinental high-temperature petroleum reservoir. Appl Environ Microbiol.2003.69(10):6143-51.
    [70] Kimura H, Naganuma T. Deep subsurface biosphere of a hydrothermal vent field in themanus basin of the western pacific. Chigaku Zasshi.2003.112:250-261.
    [71] Marchant R, Banat I M, Rahman T J. The frequency and characteristics of highlythermophilic bacteria in cool soil environments. Environ Microbiol.2002.4:595-602.
    [72] Rahman T J, Marchant R, Banat I M. Distribution and molecular investigation of highlythermophilic bacteria associated with cool soil environments. Biochem Soc Trans.2004.32(Pt2):209-13.
    [73] Feng L, Wang W, Cheng J, et al. Genome and proteome of long-chain alkane degradingGeobacillus thermodenitrificans NG80-2isolated from a deep-subsurface oil reservoir. Proc NatlAcad Sci U S A.2007.104(13):5602-7.
    [74] Colwell R R. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibriocholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol.1970.104:410-433.
    [75] Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterialsystematics. Microbiol Rev.1996.60:407-438.
    [76] Manachini P L, Mora D, Nicastro G, et al. Bacillus thermodenitrificans sp. nov., nom. rev. IntJ Syst Evol Microbiol.2000.50Pt3:1331-7.
    [77] Studholme D J, Jackson R A, Leak D J. Phylogenetic analysis of transformable strains ofthermophilic Bacillus species. FEMS Microbiol Lett.1999.172(1):85-90.
    [78] Wang J, Ma T, Liu J, et al. Isolation of functional bacteria guided by PCR-DGGE technologyfrom high temperature petroleum reservoirs. Huan Jing Ke Xue.2008.29(2):462-8.
    [79] Wayne L G, Brenner D J, Colwell R R, et al. Report of the ad hoc commtittee onreconciliation of approaches to bacterial systematics. Int J Syst Bacteriol,1987.37:463-464.
    [80] Chen Z F, Kong H M. Isolation and characterization of restriction endonuclease BstYI fromBacillus stearothermophilus Y406. FEBS Lett.1988.234(1):169-71.
    [81] Watkinson R J, Morgan P. Physiology of aliphatic hydrocarbon-degrading microorganisms.Biodegradation.1990.1:79-92.
    [82] van Beilen J B, Li Z, Duetz W A, et al. Diversity of alkane hydroxylase systems in theenvironment. Oil Gas Science and Technology.2003.58(4):427-440.
    [83] Sorkhoh N A, Ibrahim A S, Ghannoum M A, et al. High-temperature hydrocarbondegradation by Bacillus stearothermophilus from oil-polluted Kuwaiti desert. Appl MicrobiolBiotechnol.1993.39:123-126.
    [84] Kato T, Miyanaga A, Haruki M, et al. Gene Cloning of an alcohol dehydrogenase fromthermophilic alkane-degrading Bacillus thermoleovorans B23. J Biosci Bioeng.2001.91:100-102.
    [85] Jia W, Yang H, Zeng L, et al. Isolation and identification of extrem thermophilic bacteriafrom hot springs of Sichuan and Tibet. Hua Xi Yi Ke Da Xue Xue Bao.1995.26(3):319-21.
    [86] Dojka M A, Hugenholtz P, Haack S K, et al. Microbial diversity in a hydrocarbon-andchlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl EnvironMicrobiol.1998.64(10):3869-3877.
    [87] Leahy J G, Colwell R R. Microbial degradation of hydrocarbons in the environment.Microbiol Rev.1990.54:305-315.
    [88] Rooney-Varga J N, Anderson R T, Fraga J L, et al. Microbial communities associated withanaerobic benzene, degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol.1999.65(7):3056-3063.
    [89] Magot M, Ollivier B, Patel B K. Microbiology of petroleum reservoirs. Antonie VanLeeuwenhoek.2000.77:103-116.
    [90] Kodama Y, Watanabe K. Isolation and characterization of a sulfur-oxidizing chemolithotrophgrowing on crude oil under anaerobic conditions. Appl Environ Microbiol.2003.69:107-112.
    [91] Golyshin P N, Martins Dos Santos V A, Kaiser O, et al. Genome sequence completed ofAlcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oilremoval from marine systems. J Biotechnol.2003.106(2-3):215-220.
    [92] van Beilen J B, Smits T H, Roos F F, et al. Identification of an amino acid position thatdetermines the substrate range of integral membrane alkane hydroxylases. J Bacteriol.2005.187(1):85-91.
    [93] Hao J, Berry A. A thermostable variant of fructose bisphosphate aldolase constructed bydirected evolution also shows increased stability in organic solvents. Protein Eng Des Sel.2004.17(9):689-97.
    [94] Fennewald M, Shapiro J. Regulatory mutations of the Pseudomonas plasmid alk regulon. JBacteriol.1977.132:622-627.
    [95] Fennewald M, Benson S, Oppici M, et al. Insertion element analysis and mapping of thePseudomonas plasmid alk regulon. J Bacteriol.1979.139(3):940-952.
    [96] Lee N R, Hwang M O, Jung G H, et al. Physical structure and expression of alkBA encodingalkane hydroxylase and rubredoxin reductase from Pseudomonas maltophilia. Biochem BiophysRes Commun.1996.218(1):17-21.
    [97] May S W, Katoposis A G. Hydrocarbon monoxyenase system of Pseudomonas oleovorans.Meth Enzymol.1990.188:3-9.
    [98] Markovetz A T. Subterminal oxidation of aliphatic hydrocarbon in microorganism. Crit RevMicrobiol.1971.1:225-238.
    [99] Rehm H, Reiff I. Mechanism and occurrence of microbial oxidation of long-chain alkanes.Adv Biochem Eng Biotechnol.1981.19:175-215.
    [100] Finnerty W R. Lipids of AcinetoBacter. in Proceedings of the World Coference onBiotechnology for the Fats and Oil Indurstry.1988. Champaign III, USA: America Oil Chemicals'Socienty,.
    [101] Maeng J H, Sakai Y, Tani Y, et al. Isolation and characterization of a novel oxygenase thatcatalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J Bacteriol.1996.178(13):3695-700.
    [102] Liu X, Dong Y, Zhang J, et al. Two novel metal-independent long-chain alkyl alcoholdehydrogenases from Geobacillus thermodenitrificans NG80-2. Microbiology.2009.155(Pt6):2078-85.
    [103] Li X, Li Y, Wei D, et al. Characterization of a broad-range aldehyde dehydrogenaseinvolved in alkane degradation in Geobacillus thermodenitrificans NG80-2. Microbiol Res.2010.165(8):706-12.
    [104] McDonald I R, Miguez C B, Rogge G, et al. Diversity of soluble methanemonooxygenase-containing methanotrophs isolated from polluted environments. FEMS MicrobiolLett.2006.255(2):225-32.
    [105] van Beilen J B, Wubbolts M G, Witholt B. Genetics of alkane oxidation by Pseudomonasoleovorans. Biodegradation.1994.5(3-4):161-74.
    [106] van Beilen J B, Funhoff E G, van Loon A, et al. Cytochrome P450alkane hydroxylases ofthe CYP153family are common in alkane-degrading eubacteria lacking integral membrane alkanehydroxylases. Appl Environ Microbiol.2006.72(1):59-65.
    [107] Kotani T, Yamamoto T, Yurimoto H, et al. Propane monooxygenase and NAD+-dependentsecondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol.2003.185(24):7120-7128.
    [108] Smits T H, Balada S B, Witholt B, et al. Functional analysis of alkane hydroxylases fromgram-negative and gram-positive bacteria. J Bacteriol.2002.184(6):1733-42.
    [109] van Beilen J B, Panke S, Lucchini S, et al. Analysis of Pseudomonas putidaalkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of thealk genes. Microbiology.2001.147(Pt6):1621-30.
    [110] Tani A, Ishige T, Sakai Y, et al. Gene structures and regulation of the alkane hydroxylasecomplex in Acinetobacter sp. strain M-1. J Bacteriol.2001.183(5):1819-23.
    [111] Iida T, Sumita T, Ohta A, et al. The cytochrome P450ALK multigene family of ann-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding fornew CYP52family members. Yeast.2000.16(12):1077-87.
    [112] Schmitz C, Goebel I, Wagner S, et al. Competition between n-alkane-assimilating yeastsand bacteria during colonization of sandy soil microcosms. Appl Microbiol Biotechnol.2000.54(1):126-32.
    [113] Cardini G, Jurtshuk P. The enzymatic hydroxylation of n-octane by Corynebacterium sp.strain7E1C. J Biol Chem.1970.245(11):2789-96.
    [114] Scheps D, Malca S H, Hoffmann H, et al. Regioselective omega-hydroxylation ofmedium-chain n-alkanes and primary alcohols by CYP153enzymes from Mycobacteriummarinum and Polaromonas sp. strain JS666. Org Biomol Chem.2011.9(19):6727-33.
    [115] Fujita N, Sumisa F, Shindo K, et al. Comparison of two vectors for functional expression ofa bacterial cytochrome P450gene in Escherichia coli using CYP153genes. Biosci BiotechnolBiochem.2009.73(8):1825-30.
    [116] Maier T, Forster H H, Asperger O, et al. Molecular characterization of the56-kDa CYP153from Acinetobacter sp. EB104. Biochem Biophys Res Commun,2001.286(3):652-8.
    [117] Chakrabarty A M, Chou G, Gunsalus I C. Genetic regulation of octane dissimilation plasmidin Pseudomonas. Proc Natl Acad Sci U S A.1973.70(4):1137-40.
    [118] Smits T H, Seeger M A, Witholt B, et al. New alkane-responsive expression vectors forEscherichia coli and Pseudomonas. Plasmid.2001.46(1):16-24.
    [119] Yuste L, Canosa I, Rojo F. Carbon-source-dependent expression of the PalkB promoter fromthe Pseudomonas oleovorans alkane degradation pathway. J Bacteriol.1998.180(19):5218-26.
    [120] van Beilen J B, Eggink G, Enequist H, et al. DNA sequence determination and functionalcharacterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. MolMicrobiol.1992.6(21):3121-36.
    [121] van Beilen J B, Smits T H, Whyte L G, et al. Alkane hydroxylase homologues inGram-positive strains. Environ Microbiol.2002.4(11):676-82.
    [122] Xu M, Xiao X, Wang F. Isolation and characterization of alkane hydroxylases from ametagenomic library of Pacific deep-sea sediment. Extremophiles.2008.12(2):255-62.
    [123] Li L, Liu X, Yang W, et al. Crystal structure of long-chain alkane monooxygenase (LadA) incomplex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol.2008.376(2):453-465.
    [124] Cherry J R, Fidantsef A L. Directed evolution of industrial enzymes: an update. Curr OpinBiotechnol.2003.14(4):438-43.
    [125] Channon K, Bromley E H, Woolfson D N. Synthetic biology through biomolecular designand engineering. Curr Opin Struct Biol.2008.18(4):491-8.
    [126] Anwar A, Coghlan J P, Jeyaseelan K. Structure of an ovine CYP11B1gene. DNA Seq.1998.8(6):357-74.
    [127] Bornscheuer U T, Pohl M. Improved biocatalysts by directed evolution and rational proteindesign. Curr Opin Chem Biol.2001.5(2):137-43.
    [128] Mills D R, Peterson R L, Spiegelman S. An extracellular Darwinian experiment with aself-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A.1967.58(1):217-24.
    [129] Tao H, Cornish V W. Milestones in directed enzyme evolution. Curr Opin Chem Biol.2002.6(6):858-64.
    [130] Schmidt-Dannert C, Arnold F H. Directed evolution of industrial enzymes. TrendsBiotechnol.1999.17(4):135-6.
    [131] Roodveldt C, Aharoni A, Tawfik D S. Directed evolution of proteins for heterologousexpression and stability. Curr Opin Struct Biol.2005.15(1):50-6.
    [132] Williams G J, Nelson A S, Berry A. Directed evolution of enzymes for biocatalysis and thelife sciences. Cell Mol Life Sci.2004.61(24):3034-46.
    [133] Campbell J H, Lengyel J A, Langridge J. Evolution of a second gene for beta-galactosidasein Escherichia coli. Proc Natl Acad Sci U S A.1973.70(6):1841-5.
    [134] Jensen R A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol.1976.30:409-25.
    [135] Wong T S, Arnold F H, Schwaneberg U. Laboratory evolution of cytochrome p450BM-3monooxygenase for organic cosolvents. Biotechnol Bioeng.2004.85(3):351-8.
    [136] Chen-Goodspeed M, Sogorb M A, Wu F, et al. Enhancement, relaxation, and reversal of thestereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochemistry.2001.40(5):1332-9.
    [137] Reetz M T, Wilensek S, Zha D, et al. Directed Evolution of an Enantioselective Enzymethrough Combinatorial Multiple-Cassette Mutagenesis. Angew Chem Int Ed Engl.2001.40(19):3589-3591.
    [138] Chen R S, Rosenheck R. Using a computerized patient database to evaluate guidelineadherence and measure patterns of care for major depression. J Behav Health Serv Res.2001.28(4):466-74.
    [139] DeSantis G, Jones J B. Chemical modification of enzymes for enhanced functionality. CurrOpin Biotechnol.1999.10(4):324-30.
    [140] Davis B G. Chemical modification of biocatalysts. Curr Opin Biotechnol.2003.14(4):379-86.
    [141] You L, Arnold F H. Directed evolution of subtilisin E in Bacillus subtilis to enhance totalactivity in aqueous dimethylformamide. Protein Eng.1996.9(1):77-83.
    [142] Hibbert E G, Baganz F, Hailes H C, et al. Directed evolution of biocatalytic processes.Biomol Eng.2005.22(1-3):11-9.
    [143] Pritchard L, Corne D, Kell D, et al. A general model of error-prone PCR. J Theor Biol.2005.234(4):497-509.
    [144] Fujii R, Kitaoka M, Hayashi K. One-step random mutagenesis by error-prone rolling circleamplification. Nucleic Acids Res.2004.32(19): e145.
    [145] Otten L G, Sio C F, Vrielink J, et al. Altering the substrate specificity of cephalosporinacylase by directed evolution of the Beta-subunit. J Biol Chem.2002.277(44):42121-7.
    [146] Reetz M T. Changing the enantioselectivity of enzymes by directed evolution. MethodsEnzymol.2004.388:238-56.
    [147] Stemmer W P. DNA shuffling by random fragmentation and reassembly: in vitrorecombination for molecular evolution. Proc Natl Acad Sci U S A.1994.91(22):10747-51.
    [148] Zhao H, Arnold F H. Optimization of DNA shuffling for high fidelity recombination.Nucleic Acids Res.1997.25(6):1307-8.
    [149] Miyazaki K. Random DNA fragmentation with endonuclease V: application to DNAshuffling. Nucleic Acids Res.2002.30(24): e139.
    [150] Binkowski B F, Richmond K E, Kaysen J, et al. Correcting errors in synthetic DNA throughconsensus shuffling. Nucleic Acids Res.2005.33(6): e55.
    [151] Vanhercke T, Ampe C, Tirry L, et al. Reducing mutational bias in random protein libraries.Anal Biochem.2005.339(1):9-14.
    [152] Shao Z, Zhao H, Giver L, et al. Random-priming in vitro recombination: an effective toolfor directed evolution. Nucleic Acids Res.1998.26(2):681-3.
    [153] Volkov A A, Shao Z, Arnold F H. Recombination and chimeragenesis by in vitroheteroduplex formation and in vivo repair. Nucleic Acids Res.1999.27(18): e18.
    [154] Pelletier J N. A RACHITT for our toolbox. Nat Biotechnol.2001.19(4):314-5.
    [155] Coco W M, Levinson W E, Crist M J, et al. DNA shuffling method for generating highlyrecombined genes and evolved enzymes. Nat Biotechnol.2001.19(4):354-9.
    [156] Lutz S, Ostermeier M, Benkovic S J. Rapid generation of incremental truncation librariesfor protein engineering using alpha-phosphothioate nucleotides. Nucleic Acids Res.2001.29(4):E16.
    [157] Lutz S, Ostermeier M, Moore G L, et al. Creating multiple-crossover DNA librariesindependent of sequence identity. Proc Natl Acad Sci U S A.2001.98(20):11248-53.
    [158] Gibbs M D, Nevalainen K M, Bergquist P L. Degenerate oligonucleotide gene shuffling(DOGS): a method for enhancing the frequency of recombination with family shuffling. Gene.2001.271(1):13-20.
    [159] Bergquist P L, Reeves R A, Gibbs M D. Degenerate oligonucleotide gene shuffling (DOGS)and random drift mutagenesis (RNDM): two complementary techniques for enzyme evolution.Biomol Eng.2005.22(1-3):63-72.
    [160] Wong T S, Roccatano D, Zacharias M, et al. A statistical analysis of random mutagenesismethods used for directed protein evolution. J Mol Biol.2006.355(4):858-71.
    [161] Muller K M, Stebel S C, Knall S, et al. Nucleotide exchange and excision technology(NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. NucleicAcids Res.2005.33(13): e117.
    [162] Miyazaki K, Arnold F H. Exploring nonnatural evolutionary pathways by saturationmutagenesis: rapid improvement of protein function. J Mol Evol.1999.49(6):716-20.
    [163] Neylon C. Chemical and biochemical strategies for the randomization of protein encodingDNA sequences: library construction methods for directed evolution. Nucleic Acids Res.2004.32(4):1448-59.
    [164] Hecky J, Muller K M. Structural perturbation and compensation by directed evolution atphysiological temperature leads to thermostabilization of beta-lactamase. Biochemistry.2005.44(38):12640-54.
    [165] Sen S, Venkata Dasu V, Mandal B. Developments in directed evolution for improvingenzyme functions. Appl Biochem Biotechnol.2007.143(3):212-23.
    [166] Patel P H, Loeb L A. Multiple amino acid substitutions allow DNA polymerases tosynthesize RNA. J Biol Chem.2000.275(51):40266-72.
    [167] Encell L P, Loeb L A. Redesigning the substrate specificity of humanO(6)-alkylguanine-DNA alkyltransferase. Mutants with enhanced repair of O(4)-methylthymine.Biochemistry.1999.38(37):12097-103.
    [168] Encell L P, Landis D M, Loeb L A. Improving enzymes for cancer gene therapy. NatBiotechnol.1999.17(2):143-7.
    [169] Landis D M, Heindel C C, Loeb L A. Creation and characterization of5-fluorodeoxyuridine-resistant Arg50loop mutants of human thymidylate synthase. Cancer Res.2001.61(2):666-72.
    [170] Glick E, Vigna K L, Loeb L A. Mutations in human DNA polymerase eta motif II alterbypass of DNA lesions. EMBO J.2001.20(24):7303-12.
    [171] Aarsaether N, Berge R K, Aarsland A, et al. Effect of methotrexate on long-chain fatty acidmetabolism in liver of rats fed a standard or a defined, choline-deficient diet. Biochim BiophysActa.1988.958(1):70-80.
    [172] Cohen W, Fencl M M, Tulchinsky D. Amniotic fluid cortisol after premature rupture ofmembranes. J Pediatr.1976.88(6):1007-9.
    [173] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem.1976.72:248-54.
    [174] Domanski T L, Halpert J R. Analysis of mammalian cytochrome P450structure andfunction by site-directed mutagenesis. Curr Drug Metab.2001.2(2):117-37.
    [175] Kumar S, Scott E E, Liu H, et al. A rational approach to Re-engineer cytochrome P4502B1regioselectivity based on the crystal structure of cytochrome P4502C5. J Biol Chem.2003.278(19):17178-84.
    [176] Scott E E, Liu H, Qun He Y, et al. Mutagenesis and molecular dynamics suggest structuraland functional roles for residues in the N-terminal portion of the cytochrome P4502B1I helix.Arch Biochem Biophys.2004.423(2):266-76.
    [177] Szklarz G D, Halpert J R. Use of homology modeling in conjunction with site-directedmutagenesis for analysis of structure-function relationships of mammalian cytochromes P450.Life Sci.1997.61(26):2507-20.
    [178] Scott E E, He Y Q, Halpert J R. Substrate routes to the buried active site may vary amongcytochromes P450: mutagenesis of the F-G region in P4502B1. Chem Res Toxicol.2002.15(11):1407-13.
    [179] Honma W, Li W, Liu H, et al. Functional role of residues in the helix B' region ofcytochrome P4502B1. Arch Biochem Biophys.2005.435(1):157-65.
    [180] Li Y, Moysey R, Molloy P E, et al. Directed evolution of human T-cell receptors withpicomolar affinities by phage display. Nat Biotechnol.2005.23(3):349-54.
    [181] Arnold F H, Moore J C. Optimizing industrial enzymes by directed evolution. Adv BiochemEng Biotechnol.1997.58:1-14.
    [182] Demirjian D C, Moris-Varas F, Cassidy C S. Enzymes from extremophiles. Curr Opin ChemBiol.2001.5:144-151.
    [183] Soupene E, Kuypers F A. Mammalian long-chain acyl-CoA synthetases. Exp Biol Med(Maywood).2008.233(5):507-21.
    [184] DiRusso C C, Black P N, Weimar J D. Molecular inroads into the regulation andmetabolism of fatty acids, lessons from bacteria. Prog Lipid Res.1999.38(2):129-97.
    [185] Morgan-Kiss R M, Cronan J E. The Escherichia coli fadK (ydiD) gene encodes ananerobically regulated short chain acyl-CoA synthetase. J Biol Chem.2004.279(36):37324-33.
    [186] Meganathan R, Bentley R, Taber H. Identification of Bacillus subtilis men mutants whichlack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase. J Bacteriol.1981.145(1):328-32.
    [187] Wofford N Q, Beaty P S, McInerney M J. Preparation of cell-free extracts and the enzymesinvolved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol.1986.167(1):179-85.
    [188] Banchio C, Gramajo H C. Medium-and long-chain fatty acid uptake and utilization byStreptomyces coelicolor A3(2): first characterization of a gram-positive bacterial system.Microbiology.1997.143(7):2439-47.
    [189] Hii V, Courtright J B. Induction of acyl coenzyme A synthetase and hydroxyacyl coenzymeA dehydrogenase during fatty acid degradation in Neurospora crassa. J Bacteriol.1982.150(2):981-3.
    [190] Rindi L, Bonanni D, Lari N, et al. Requirement of gene fadD33for the growth ofMycobacterium tuberculosis in a hepatocyte cell line. New Microbiol.2004.27(2):125-31.
    [191] Chen C H, Cheng J C, Cho Y C, et al. A gene cluster for the fatty acid catabolism fromPseudonocardia autotrophica BCRC12444. Biochem Biophys Res Commun.2005.329(3):863-8.
    [192] Iram S H, Cronan J E.The beta-oxidation systems of Escherichia coli and Salmonellaenterica are not functionally equivalent. J Bacteriol.2006.188(2):599-608.
    [193] Knoll L J, Johnson D R, Gordon J I. Complementation of Saccharomyces cerevisiae strainscontaining fatty acid activation gene (FAA) deletions with a mammalian acyl-CoA synthetase. JBiol Chem.1995.270(18):10861-7.
    [194] Kohlwein S D, Paltauf F. Uptake of fatty acids by the yeasts, Saccharomyces uvarum andSaccharomycopsis lipolytica. Biochim Biophys Acta.1984.792(3):310-7.
    [195] Zhang H, Wang P, Qi Q. Molecular effect of FadD on the regulation and metabolism of fattyacid in Escherichia coli. FEMS Microbiol Lett.2006.259(2):249-53.
    [196] Hisanaga Y, Ago H, Nakagawa N, et al. Structural basis of the substrate-specific two-stepcatalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem.2004.279(30):31717-26.
    [197] Upson R H, Haugland R P, Malekzadeh M N. A spectrophotometric method to measureenzymatic activity in reactions that generate inorganic pyrophosphate. Anal Biochem.1996.243(1):41-5.
    [198] Kameda K, Nunn W D. Purification and characterization of acyl coenzyme A synthetasefrom Escherichia coli. J Biol Chem.1981.256(11):5702-7.
    [199] Soupene E, Kuypers F A. Multiple erythroid isoforms of human long-chain acyl-CoAsynthetases are produced by switch of the fatty acid gate domains. BMC Mol Biol.2006.7:21.
    [200] Li H, Melton E M, Quackenbush S, et al. Mechanistic studies of the long chain acyl-CoAsynthetase Faa1p from Saccharomyces cerevisiae. Biochim Biophys Acta.2007.1771(9):1246-53.
    [201] Beaumelle B D, Vial H J. Acyl-CoA synthetase activity in Plasmodium knowlesi-infectederythrocytes displays peculiar substrate specificities. Biochim Biophys Acta.1988.958(1):1-9.
    [202] Fujino T, Kang M J, Suzuki H, et al. Molecular characterization and expression of ratacyl-CoA synthetase3. J Biol Chem.1996.271(28):16748-52.
    [203] Philipp D P, Parsons P. Kinetic characterization of long chain fatty acyl coenzyme A ligasefrom rat liver mitochondria. J Biol Chem.1979.254(21):19785-90.
    [204] Weimar J D, DiRusso C C, Delio R, et al. Functional role of fatty acyl-coenzyme Asynthetase in the transmembrane movement and activation of exogenous long-chain fatty acids.Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are requiredfor enzyme activity and fatty acid transport. J Biol Chem.2002.277(33):29369-76.
    [205] Watkins P A, Maiguel D, Jia Z, et al. Evidence for26distinct acyl-coenzyme A synthetasegenes in the human genome. J Lipid Res.2007.48(12):2736-50.
    [206] Reddy T S, Sprecher H, Bazan N G. Long-chain acyl-coenzyme A synthetase from rat brainmicrosomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. Eur J Biochem.1984.145(1):21-9.
    [207] Fernandez-Valverde M, Reglero A, Martinez-Blanco H, et al. Purification of Pseudomonasputida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates. ApplEnviron Microbiol.1993.59(4):1149-54.
    [208] Kameda K, Imai Y. Isolation and characterization of the multiple charge isoforms ofacyl-CoA synthetase from Escherichia coli. Biochim Biophys Acta.1985.832(3):343-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700