薄层及三相电极液/液界面电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液/液界面被认为是最简单的模拟生物膜模型,发生在该界面上的离子转移过程是目前电化学和电分析化学领域的研究热点之一。液/液界面的离子转移可以用于环境分析和环境毒理学评价中,而离子转移的动力学和热力学研究是这些应用的基础。
     傅里叶变换/逆傅里叶变换-方波伏安法(FT/IFT-SWV)是本世纪初由Bond等人提出并发展起来的研究电极过程机理的新技术,该技术具有在频域和时域同时分析电极过程的强大能力,使得同时研究离子转移的动力学和热力学成为可能。薄层及边平面热解石墨(EPPG)三相电极液/液界面装置具有简单、实用、使用常规三电极体系、宜于推广和环境污染小等诸多优点,因此被广泛应用于液/液界面的离子转移研究中。本文创造性地将FT/IFT-SWV结合薄层及EPPG三相电极液/液界面装置,研究了液/液界面的离子转移反应,得到的主要结果如下:
     1.采用FT-SWV结合薄层修饰电极在三电极体系下发展了测定液/液界面阴离子转移动力学的新方法。与只在每个脉冲末端采集电流的传统SWV不同,FT-SWV持续收集电流响应然后将其转换为频域频谱。出现在频谱里的偶次谐波频率来自于法拉第电流响应,偶次谐波频谱的轮廓呈现钟形,在某一特定频率处对应着一个最大值。这个最大值以及相应的频率分别相当于传统SWV里著名的“准可逆最大”和“临界频率”(fmax)。速率常数和离子转移系数α可以通过得到的fmax测定,同传统SWV相比,FT-SWV在离子转移动力学测定过程中更快更简单。
     2.利用循环伏安法对EPPG三相电极法的原理进行了研究,得到了比文献报道更理想的液/液界面离子转移热力学数据。本研究还首次观察到铬(Ⅵ)离子在水相/硝基苯相界面上的转移反应,并测定了铬(Ⅵ)的离子转移热力学;同时还分别利用SWV和FT-SWV结合“准可逆最大”现象对铬(Ⅵ)在水相/硝基苯相界面上的离子转移动力学进行了比较研究。
     3.使用FT/IFT-SWV结合EPPG三相电极法对液/液界面离子转移反应进行了系统地研究:一方面确认本方法具有同时研究离子转移动力学和热力学的能力,另一方面通过该方法研究不同种类离子和不同浓度的同一离子在液/液界面转移时的动力学和热力学规律,在动力学研究过程中还探讨了振幅ΔE对“准可逆最大”的影响。通过这些研究以优化该新方法在液/液界面离子转移反应机理研究中的测试条件,并希望得到该新方法有望在未来用于定量分析的潜在价值,因为在环境日益恶化的今天,不管是定量分析还是机理研究都对环境分析和环境毒理学的发展具有巨大的推动作用。
A liquid/liquid interface has been considered as a simplest model for biological membranes and studies of ion transfer across this kind of interface is one of the hot topics in electrochemistry and electroanalytical chemistry at present. The ion transfer across the liquid/liquid interface can be applied in both environmental analysis and environmental toxicology assessment, where studies on kinetics and thermodynamics of ion transfer is fundamental for these applications mentioned above.
     A novel methodology of Fourier transformed/inverse Fourier transformed square-wave voltammetry (FT/IFT-SWV), initially developed by Bond and coworkers just since the beginning of this century, can be used to study the mechanism of electrode process. As FT/IFT-SWV has the power to resolve the electrode process in both frequency domain and time domain simultaneously, making it possible for simultaneous studies of kinetics and thermodynamics of ion transfer. The thin-film modified and edge plane pyrolytic graphite (EPPG) three-phase electrodes possess numerous merits of simplicity, practicality, being used in conventional three-electrode arrangement, popularity and mild environmental impact etc., hence they have been extensively used in studies of ion transfer across the liquid/liquid interface. In this paper FT/IFT-SWV was combined with thin-film modified and EPPG three-phase electrodes to study ion transfer across the liquid/liquid interface for the first time and the main results obtained were as follows:
     1. A novel method of FT-SWV in combination with thin-film modified electrode was employed to investigate the kinetics of anion transfer across the liquid/liquid interface using a conventional three-electrode arrangement. Other than traditional SWV in which currents are sampled only at the end of each pulse, FT-SWV continuously collects the current response and then transforms it into frequency domain. Even harmonic frequencies, which are derived from the faradaic current response, will emerge in the power spectrum. The profile of the even harmonic power spectrum is parabolic and shows a maximum at a certain frequency. The maximum and the corresponding frequency are equivalent to the well-known“quasireversible maximum”and“critical frequency”(fmax) in traditional SWV, respectively. The rate constant and ion transfer coefficientαcan be estimated by the obtained fmax. Compared with traditional SWV, FT-SWV is much simpler and faster in ion transfer kinetics estimation.
     2. The principle of EPPG three-phase electrode was investigated by cyclic voltammetry, and the obtained thermodynamic data of anions transfer across the water/nitrobenzene interface are more ideal, compared with those from published literature. The transfer of chromium (Ⅵ) ion across the water/nitrobenzene interface was observed for the first time and the thermodynamics of its transfer was determined. At the same time, SWV and FT-SWV associated with“quasireversible maximum”were comparatively used to study the kinetics of chromium (Ⅵ) transfer across the water/nitrobenzene interface.
     3. A systematical study of ion transfer across liquid/liquid interface was carried out by FT/IFT-SWV combined with EPPG three-phase electrode: on the one hand, testifying this method has the power to study kinetics and thermodynamics of ion transfer simultaneously; on the other hand, studying the effects of different kinds of ions and a kind of ion at different concentrations on kinetics and thermodynamics, besides, studying the effect of amplitude (ΔE) on“quasireversible maximum”. The investigation mentioned above was aimed to optimize the conditions employed during the studies of mechanism of ion transfer across liquid/liquid interface and explore the potential of this method in quantitative analysis in the future, since investigation on mechanism as well as quantitative analysis are both beneficial for the advancement of environmental analysis and environmental toxicology assessment while the environment is deteriorating increasingly.
引文
[1] Nernst W., Riesenfield E.H.. Ueber elektrolytische Erscheinnungen an der Grenzflache zweiter Losungmittel [J]. Ann. Phys. (Leipzig), 1901, 8: 600-608
    [2] Beutner R.. Die Entstehung elektrischer Str?me in lebenden Geweben (The origin of electric currents in living tissues) [M]. Verlag F. Enke, Stuttgart, 1920
    [3] Michaelis L.. Die Wasserstoffionenkonzentration (The hydrogen ion concentration) [M] 2nd ed.. Berlin: Julius Springer, 1922: 153
    [4] Gavach C., Mlodnicka T., Guastalla J.. Overvoltage phenomena at interfaces between organic and aqueous solutions [J]. C.R. Acad. Sci. Paris, Ser. C., 1968,266 (10):1196-1199
    [5] Gavach C., Henry F.. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two nonmiscible solutions. I. Aqueous solution tetrabutyl-ammonium ion specific liquid membrane [J]. J. Electroanal. Chem., 1974, 54: 361-370
    [6] Gavach C., D'Epenoux B.. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two nonmiscible solutions. II. Potassium halide aqueous solution hexadecyltrimethylammonium picrate nitrobenzene solution [J]. J. Electroanal. Chem., 1974, 55: 59-67
    [7] Gavach C., D'Epenoux B., Henry F.. Transfer of tetraalkylammonium ions from water to nitrobenzene. Chronopotentiometric determination of kinetic parameters [J]. J. Electroanal. Chem., 1975, 64 (1): 107-115
    [8] Koryta J.,Vanysek P., B?ezina M.. Electrolysis with an electrolyte dropping electrode [J]. J. Electroanal. Chem., 1976, 67 (2): 263-266
    [9] Koryta J., Vanysek P., B?ezina M.. Electrolysis with an electrolyte dropping electrode, Part II. Basic properties of the system [J]. J. Electroanal. Chem., 1977, 75 (1): 211-228
    [10] Koryta J. Electrolysis with an electrolyte dropping electrode, Part III. Theory and application of ion-selective electrodes [J]. Anal. Chim. Acta, 1979, 111 (1): 1-56
    [11] Samec Z.. Charge transfer between two immiscible electrolyte solutions. Advance in method of electrolysis with the electrolyte dropping electrode (EDE) [J]. J. Electroanal. Chem., 1979, 99: 385-389
    [12] Samec Z., Marecek V., Weber J.. Charge between two immiscible electrolyte solutions. Part II. The Investigation of the Cs+ ion transfer across the nitrobenzene/water interface by cyclic voltammetry with IR drop compensation [J]. J. Electroanal. Chem., 1979, 100: 841-852
    [13] Koryta J.. Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions-II. Progress since 1978 [J]. Electrochim. Acta, 1984, 29: 445-452
    [14] Koryta J.. Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions-III. Progress since 1983 [J]. Electrochim. Acta, 1988, 33: 189-197
    [15] Wang E.K., Pang Z.C.. A Study of ion transfer across the interface of two immiscible electrolyte solutions by chronopotentiometry with cyclic linear current scanning. Part I. Single component system [J]. J. Electroanal. Chem., 1985, 189 (1): 1-20
    [16] Wang E.K., Pang Z.C.. A Study of ion transfer across the interface of two immiscible electrolyte solutions by chronopotentiometry with cyclic linear current scanning. Part II. Ion transfer facilitated by complex formation in the organic phase [J]. J. Electroanal. Chem., 1985, 189 (1): 21-34
    [17] Wang E.K., Pang Z.C.. A Study of ion transfer across the interface of two immiscible electrolyte solutions by chronopotentiometry with cyclic linear current scanning. Part III. Two component system [J]. J. Electroanal. Chem., 1985, 189 (1): 35-49
    [18] Shao Y.H., Mirkin M.V., Rusling J.F.. Liquid/liquid interface as a model system for studying electrochemical catalysis in microemulsions. reduction of trans-1,2-dibromocyclohexane with vitamin B12 [J]. J. Phys. Chem. B, 1997, 101: 3202-3208
    [19] Sun P., Li F., Chen Y., et al. Observation of the Marcus inverted region of electron transfer reactions at a liquid/liquid interface [J]. J. Am. Chem. Soc., 2003, 125 (32): 9600-9601
    [20]邵元华.扫描电化学显微镜及其最新进展[J].分析化学, 1999, 27 (11): 1348-355
    [21] Shao Y.H., Mirkin M.V.. Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM) [J]. J. Phys. Chem. B, 1998, 102: 9915-9921
    [22] Shao Y.H., Mirkin M.V.. Fast kinetic measurements with nanometer-sized pipets. transfer of potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6 [J]. J. Am. Chem. Soc., 1997, 119: 8103-8104
    [23]陈勇,袁艺,张美芹,等.氨基酸在亚微米级液/液界面上的转移反应[J].中国科学, B辑, 2003, 33 (5): 416-425
    [24]袁艺,高曌,张美芹,等.用三电极系统研究水/硝基苯界面上的电荷转移反应[J].中国科学, B辑, 2002, 32 (3): 271-277
    [25]张美芹,孙鹏,陈勇,等.利用三电极系统研究相比为1时可质子化的药物在水/1,2-二氯乙烷界面上的转移反应[J].科学通报, 2003, 48 (8) : 787-792
    [26] Girault H.H., Schiffrin D.J.. Electroanalytical Chemistry [M]. Bard A. J., Ed.. New York: Marcel Dekker, 1989: Vol. 15, 1-141
    [27] Zang J., Unwin P.R.. Kinetics of IrCl62- ion transfer across the water/1,2-dichloroethaneinterface and the effect of a phospholipid monolayer [J]. Langmuir, 2002, 18: 2313-2318
    [28] Li F., Chen Y., Sun P., et al. Investigation of facilitated ion-transfer reactions at high driving force by scanning electrochemical microscopy [J]. J. Phys. Chem. B, 2004, 108: 3295-3302
    [29] Barker A.L., Gonsalves M., Macpherson J.V., et al. Scanning electrochemical microscopy: beyond the solid/liquid interface [J]. Anal. Chim. Acta, 1999, 385: 223-240
    [30] Sun P., Zhang Z.Q., Gao Z., et al. Probing fast facilitated ion transfer across an externally polarized liquid-liquid interface by scanning electrochemical microscopy [J]. Angew. Chem., Int. Ed., 2002, 1: 3445-3448
    [31] Shi C., Anson F.C.. A simple method for examining the electrochemistry of metalloporphyrins and other hydrophobic reactants in thin layers of organic solvents interposed between graphite electrodes and aqueous solutions [J]. Anal. Chem., 1998, 70: 3114-3118
    [32] Scholz F.. Recent advances in the electrochemistry of ion transfer processes at liquid-liquid interfaces [J]. Annu. Rep. Prog. Chem., Sect. C, 2006, 102: 43-70
    [33] Frank S., Schmickler W.. A lattice-gas model for ion pairing at liquid/liquid interfaces [J]. J. Electroanal. Chem., 2000, 483: 18-21
    [34] Verwey E.J., Niessen K.F.. The electrical double layer at the interface between two liquids [J]. Philos. Mag., 1939, 28: 435
    [35] Gavach C., Seta P., D'Epenoux B.. The double layer and ion adsorption at the interface between two non-miscible solutions Part I: interfacial tension measurements for the water-nitrobenzene tetraalkyammonium bromide systems [J]. J.Electroanal. Chem., 1977, 83: 225-235
    [36] Girault H.H., Schiffrin D.J.. Theory of the kinetics of ion transfer across liquid/liquid interfaces [J]. J. Electroanal. Chem., 1983, 195: 213-227
    [37] Girault H.H., Schiffrin D.J.. Thermodynamic surface excess of water and ionic solvation at the interface between immiscible liquids [J]. J. Electroanal. Chem., 1983, 150: 43-49
    [38] Girault H.H.. Electrochemistry at the interface between two immiscible electrolyte solutions [J]. Electrochim.Acta, 1987, 32: 383-385
    [39] Cheng Y., Cunnane V.J., Schiffrin D.J., et al. Interfacial capacitance and ionic association at electrified liquid/liquid interface [J]. J. Chem. Soc. Faraday Trans., 1991, 87: 107-114
    [40] Reymond F., Fermin D., Lee H.J., et al. Electrochemistry at liquid/liquid interfaces: methodology and potential application [J]. Electrochim. Acta, 2000, 45: 2647-2662
    [41] Benjamin I.. Mechanism and dynamics of ion transfer across a liquid/liquid interface [J]. Science, 1993, 361: 1558-1560
    [42] Schweighofer K.J., Benjamin I.. Electric-field effects on the structure and dynamics at a liquid/liquid interface [J]. J. Electroanal. Chem., 1995, 391: 1-10
    [43] Benjamin I.. Theory and computer simulations of solvation and chemical reactions at liquid interfaces [J]. Acc. Chem. Res., 1995, 28: 233-239
    [44] Benjamin I.. Molecular-structure and dynamics at liquid-liquid interfaces [J]. Ann. Rev. Phys. Chem., 1997, 48: 407-451
    [45] Shao Y.. Ph. D. Thesis [D]. Edinburgh (United Kingdom): Edinburgh University, 1991
    [46] Marcus R.A.. On the theory of ion transfer rates across the interface of two immiscible liquids [J]. J. Chem. Phys., 2000, 113: 1618-1629
    [47] Koryta J.. Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions [J]. Electrochim.Acta, 1979, 24: 293-300
    [48] Senda M., Kakiuchi T., Osakai T.. Electrochemistry at the interface between two immiscible electrolyte solutions [J]. Electrochim. Acta, 1991, 36 (2): 253-262
    [49] Lagger G., Tomaszewski L., Osborne M.D., et al. Electrochemical extraction of heavy metal ions assisted by cyclic thioether ligands [J]. J. Electroanal. Chem., 1998,451 (1-2): 29-37
    [50] Liu B., Mirkin M.V.. Charge transfer reactions at the liquid/liquid interface [J]. Anal. Chem., 2001, 73 (23): 670A-677A
    [51] Shao Y., Linton B., Hamilton A.D., et al. Electrochemical studies on molecular recognition of anions: complex formation between xylylenyl bis-iminoimidazolinium and dicarboxylates in nitrobenzene and water [J]. J. Electroanal. Chem., 1998, 441: 33-37
    [52] Shioya T., Nishizawa S., Teramae N.. Anion recognition at the liquid-liquid interface. sulfate transfer across the 1,2-dichloroethane-water interface facilitated by hydrogen-bonding ionophores [J]. J. Am. Chem. Soc., 1998, 120 (44): 11534-11535
    [53] Qian Q.S., Wilson G.S., James K.B., et al. MicroITIES detection of nitrate by facilitated ion transfer [J]. Anal.Chem., 2001, 73 (3): 497-503
    [54] Shao Y., Osborne M.D., Girault H.H.. Assisted ion transfer at micro-ITIES supported at the tip of micropipettes [J]. J. Electroanal. Chem., 1991, 318 (1-2): 101-109
    [55] Wang E., Sun Z.. Ion transfer of bromophenol blue across liquid-liquid interfaces [J]. J. Electroanal. Chem., 1987, 220 (2): 235-246
    [56] Kontturi K., Murtomaki L.. Electrochemical determination of partition coefficients of drugs [J]. J. Pharm. Sci., 1992, 81 (10): 970-975
    [57] Guainazzi M., Silversti G., Serravalle G.. Electrochemical metallization at the liquid-liquid interfaces of nonmiscible electrolytic solutions [J]. J. Chem. Soc. Chem. Commun., 1975, 6: 200-201
    [58] Samec Z., Marecek V., Weber J.. Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system [J]. J. Electroanal. Chem., 1977, 96: 245-247
    [59] Samec Z., Marecek V., Weber J.. Charge transfer between two immiscible electrolyte solutions: Part IV. Electron transfer between hexacyanoferrate (III) in water and ferrocene in nitrobenzene investigated by cyclic voltammetry with four-electrode system [J]. J. Electroanal. Chem., 1979, 103: 11-18
    [60] Samec Z., Marecek V., Hovorka J.. Transfer of ferricenium cation across water/organic solvent interfaces [J]. J. Electroanal. Chem., 1987, 216 (1-2): 303-308
    [61] G. Geblewicz, D. J. Schiffrin, Electron transfer between immiscible solutions: The hexacyanoferrate-lutetium biphthalocyanine system [J]. J. Electroanal. Chem., 1988, 244 (1-2): 27-37
    [62] Cunnane V.J., Schiffrin D.J., Beltran C., et al. The role of phase transfer catalysts in two phase redox reactions [J]. J. Electroanal. Chem., 1988, 247 (1-2): 203-214
    [63] Amemiya S., Ding Z., Zhou J., et al. Studies of charge transfer at liquid/liquid interfaces and bilayer lipid membranes by scanning electrochemical microscopy [J]. J. Electroanal. Chem., 2000, 483 (1-2): 7-17
    [64] Bard A.J., Mirkin M.V.. Scanning electrochemical microscopy [M]. New York: Marcel Dekker, 2001: 299-339
    [65] Zhang Z., Yuan Y., Sun P., et al. Study of electron-transfer reactions across an externally polarized water/1,2-dichloroethane interface by scanning electrochemical microscopy [J]. J. Phys. Chem. B, 2002, 106: 6713-6717
    [66] Lu X.Q., Hu L.N., Wang X.Q.. Thin-layer cyclic voltammetric and scanning electrochemical microscopic study of antioxidant activity of ascorbic acid at liquid/liquid interface [J]. Electroanalysis, 2005, 17 (11): 953-958
    [67] Marcus R.A.. Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces [J]. J. Phys. Chem., 1990, 94: 1050-1055
    [68] Marcus R.A.. Theory of electron-transfer rates across liquid-liquid interfaces [J]. J. Phys. Chem., 1990, 94: 4152-4155
    [69] Marcus R.A.. Additions and corrections (Theory of electron-transfer rates across liquid-liquid interfaces) [J]. J. Phys. Chem., 1990, 94: 7742
    [70] Marcus R.A.. Theory of electron-transfer rates across liquid-liquid interfaces. 2. relationships and application [J]. J. Phys. Chem., 1991, 95: 2010-2013
    [71] Zhang J., Harris A.R., Cattrall R.W., et al. Voltammetric ion-selective electrodes for the selective determination of cations and anions [J]. Anal. Chem., 2010, 82: 1624-1633
    [72] Ruan C., Yang L., Li Y.. Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy [J]. Anal. Chem., 2002, 74: 4814-4820
    [73] Mare?ek V., and Samec Z.. Determination of calcium, barium and strontium ions by differential pulse stripping voltammetry at a hanging electrolyte drop electrode [J]. Anal. Chim. Acta, 1983, 151: 265-269
    [74] ?Mahony A.M., Scanlon M.D., Berduque A., et al. Voltammetry of chromium (VI) at the liquid/liquid interface [J]. Electrochem. Commun., 2005, 7: 976-982
    [75] Katano H., Senda M.. Stripping voltammetry of mercury (Ⅱ) and lead (Ⅱ) ions at liquid/liquid interface [J]. Anal. Sci., 1998, 14: 63-65
    [76] Samec Z., Papoff P.. Electrolyte dropping electrode polarographic studies. Solvent effect on stability of crown ether complexes of alkali-metal cations [J]. Anal. Chem., 1990, 62: 1010-1015
    [77] Shirai O., Kihara S., Yoshida Y., et al. Ion transfer through a liquid membrane or a bilayer lipid membrane in the presence of sufficient electrolytes [J]. J. Electroanal. Chem., 1995, 389 (1-2): 61-70
    [78] Yamada M., Perera J.M., Grieser F., et al. A kinetic study of copper ion extraction by P50 at the oil-water interface [J]. Anal. Sci., 1998, 14: 225-229
    [79] Reymond F., Steyaert G., Carrupt P.A., et al. Ionic partition diagrams: A potential-pH representation [J]. J. Am. Chem. Soc., 1996, 118: 11951-11957
    [80] M. Guinazzi, G. Silvestri, G. Serravalle. Electrochemical metallization at the liquid-liquid interfaces of non-miscible electrolytic solutions [J]. J. Chem. Soc., Chem. Commun., 1975, 200-201
    [81] Abid J.P., Abid M., Bauer C., et al. Controlled reversible adsorption of core-shell metallic nanoparticles at the polarized water/1,2-dichloroethane interface investigated by optical second-harmonic generation [J]. J. Phys. Chem. C, 2007, 111 (25): 8849-8855
    [82] Gautam U.K., Ghosh M., Rao C.N.R.. A strategy for the synthesis of nanocrystal films of metal chalcogenides and oxides by employing the liquid–liquid interface [J]. Chem. Phys. Lett., 2003, 381: 1-6
    [83] Gautam U.K., Ghosh M., Rao C.N.R.. Template-free chemical route to ultrathinsingle-crystalline films of CuS and CuO employing the liquid-liquid interface [J]. Langmuir, 2004, 20: 10775-10778
    [84] Sathish M., Miyazawa K.. Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface [J]. J. Am. Chem. Soc., 2007, 129: 13816-13817
    [85] Asuri P., Karajanagi S.S., Dordick J.S., et al. Directed assembly of carbon nanotubes at liquid-liquid interfaces: Nanoscale conveyors for interfacial biocatalysis [J]. J. Am. Chem. Soc., 2006, 128: 1046-1047
    [86] Fermín D.J., Duong H.D., Ding Z., et al. Solar energy conversion using dye-sensitised liquid/liquid interfaces [J]. Electrochem. Commun., 1999, 1: 29-32
    [87] Hatay I., Su B., Li F., et al. Hydrogen evolution at liquid-liquid interfaces [J]. Angew. Chem. Int. Ed., 2009, 48 (28): 5139-5142
    [88] Hatay I., Su B., Li F., et al. Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine [J]. J. Am. Chem. Soc., 2009, 131: 13453-13459
    [89] Laforge F.O., Carpino J., Rotenberg S.A., et al. Electrochemical attosyringe [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 11895-11900
    [90] Scholz F., Komorsky-Lovri? ?., Lovri? M.. A new access to Gibbs energies of transfer of ions across liquid/liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions [J]. Electrochem. Commun., 2000, 2 (2): 112-118
    [91] Quentel F., Mir?eski V., ?Her M.. Kinetics of anion transfer across the liquid/liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry [J]. Anal. Chem., 2005, 77: 1940-1949
    [92] Shi C., Anson F.C.. Selecting experimental conditions for measurement of rates of electron-transfer at liquid/liquid interfaces by thin-layer electrochemistry [J]. J. Phys. Chem. B, 2001, 105: 1047-1049
    [93] Shi C., Anson F.C.. Simple electrochemical procedure for measuring the rates of electron transfer across liquid/liquid interfaces formed by coating graphite electrodes with thin layers of nitrobenzene [J]. J. Phys. Chem. B, 1998, 102: 9850-9854
    [94] Shi C., Anson F.C.. Electron transfer between reactants located on opposite sides of liquid/liquid interfaces [J]. J. Phys. Chem. B, 1999, 103: 6283-6289
    [95] Shi C., Anson F.C.. Rates of electron-transfer across liquid/liquid interfaces. Effects of changes in driving force and reaction reversibility [J]. J. Phys. Chem. B, 2001, 105: 8963-8969
    [96] Huang X.J., Wang L.S., Liao S.J.. Method of evaluation of electron transfer kinetics of a surface-confined redox system by means of Fourier transformed square wave voltammetry [J].Anal. Chem., 2008, 80 (14): 5666-5670
    [97] Wang L.S., Chen H.L., Huang X.J., et al. An experimental investigation of quasireversible maximum of azobenzene on mercury electrode by Fourier transformed square-wave voltammetry [J]. Electroanalysis, 2009, 21 (6): 755-761
    [98] Mir?eski V.. Charge transfer kinetics in thin-film voltammetry. Theoretical study under conditions of square-wave voltammetry [J]. J. Phys. Chem. B, 2004, 108: 13719-13725
    [99] Gavaghan D.J., Elton D., Oldham K.B., et al. Analysis of ramped square-wave voltammetry in the frequency domain [J]. J. Electroanal. Chem., 2001, 512: 1-15
    [100] Bond A.M., Duffy N.W., Guo S.X., et al. Changing the look of voltammetry, Can FT revolutionize voltammetric techniques as it did for NMR? [J]. Anal. Chem., 2005, 77: 186A-195A
    [101] Gavaghan D.J., Bond A.M.. A complete numerical simulation of the techniques of alternating current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform megthods [J]. J. Electroanal. Chem., 2000, 480: 133-149
    [102] Rosvall S.J.M., Honeychurch M.J., Elton D., et al. A practical approach to applying short time Fourier transform methods in voltammetric investigations [J]. J. Electroanal. Chem., 2001, 515: 8-16
    [103] Honeychurch M.J., Bond A.M.. Numerical simulation of Fourier transform alternating current linear sweep voltammetry of surface bound molecules [J]. J. Electroanal. Chem., 2002, 529: 3-11
    [104] Rosvall S.J.M., Sharp M., Bond A.. An experimental investigation of large amplitude reversible square wave voltammetry [J]. J. Electroanal. Chem., 2002, 536: 161-169
    [105] Zhang J., Guo S.X., Bond A.M., et al. Novel kinetic and background current selectivity in the even harmonic components of Fourier transformed square-wave voltammograms of surface-confined azurin [J]. J. Phys. Chem. B, 2005, 109: 8935-8947
    [106] Fleming B.D., Barlow N.L., Zhang J., et al. Application of power spectra patterns in Fourier transform square wave voltammetry to evaluate electrode kinetics of surface-confined proteins [J]. Anal. Chem., 2006, 78: 2948-2956
    [107] Komorsky-Lovri? ?., Lovri? M.. Kinetic measurements of a surface confined redox reaction [J]. Anal. Chim. Acta, 1995, 305: 248-255
    [108] Stryer L.. Biochemistry [M]. 4th revised edition. Heidelberg: Specktrum, 1996
    [109] Mir?eski V., Quentel F., ?Her M., et al. Studying the kinetics of the ion transfer across the liquid/liquid interface by means of thin film-modified electrodes [J]. Electrochem.Commun., 2005, 7: 1122-1128
    [110] Gulaboski R., Mir?eski V., Pereira C.M., et al. A comparative study of the anion transfer kinetics across a water/nitrobenzene interface by means of electrochemical impedance spectroscopy and square-wave voltammetry at thin organic film-modified electrodes [J]. Langmuir, 2006, 22: 3404-3412
    [111] Scholz F., Gulaboski R.. Determining the Gibbs energy of ion transfer across water-organic liquid interfaces with three-phase electrodes [J]. ChemPhysChem, 2005, 6: 16-28
    [112] Oldham K.B., Gavaghan D.J., Bond A.M.. A full analytic treatment of reversible linear-scan voltammetry with square-wave modulation [J]. J. Phys. Chem. B, 2002, 106: 152-157
    [113] Wang L.S., Huang X.J.. A versatile system for arbitrary function large-amplitude Fourier transformed voltammetry [J]. Electroanalysis, 2007, 19: 1421-1428
    [114] Quentel F., Mir?eski V., ?Her M.. Lutetium Bis(tetra-tert-butylphthalocyaninato): A superior redox probe to study the transfer of anions and cations across the water/nitrobenzene interface by means of square-wave voltammetry at the three-phase electrode [J]. J. Phys. Chem. B, 2005, 109 (3): 1262-1267
    [115] Quentel F., Mir?eski V., ?Her M., et al. Comparative study of the thermodynamics and kinetics of the ion transfer across the liquid/liquid interface by means of three-phase electrodes [J]. J. Phys. Chem. B, 2005, 109 (27): 13228-13236
    [116]刘秀辉,张立敏,胡丽娜,等.薄层液/液界面电子转移动力学的研究进展[J].分析化学, 2006, 34 (1): 135-139
    [117] Sun P., Mirkin M.V.. Electrochemistry of individual molecules in zeptoliter volumes [J]. J. Am. Chem. Soc., 2008, 130: 8241-8250
    [118] Komorsky-Lovri? ?., Lovri? M., Scholz F.. Cyclic voltammetry of decamethylferrocene at the organic liquid/aqueous solution/graphite three-phase junction [J]. J. Electroanal. Chem., 2001, 508 (1-2): 129-137
    [119] Gulaboski R., Riedl K., Scholz F.. Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkyl carboxylate anions at the water/nitrobenzene interface [J]. Phys. Chem. Chem. Phys., 2003, 5 (6): 1284-1289
    [120] Subramanian K.S.. Determination of chromium (Ⅲ) and chromium (Ⅵ) by ammonium pyrrolidinecarbodithioate-methyl isobutyl ketone furnace atomic absorption spectrometry [J]. Anal. Chem., 1988, 60 (1): 11-15
    [121] Sperling M., Xu S.K., Welz B.. Determination of chromium (Ⅲ) and chromium (Ⅵ) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection [J]. Anal. Chem., 1992, 64 (24): 3101-3108
    [122] Cespón-Romero R.M., Yebra-Biurrun M.C., Bermejo-Barrera M.P.. Preconcentration and speciation of chromium by the determination of total chromium and chromium (Ⅲ) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system [J]. Anal. Chim. Acta, 1996, 327 (1): 37-45
    [123] Deng H.Q., Huang X.J., Wang L.S., et al. Estimation of the kinetics of anion transfer across the liquid/liquid interface, by means of Fourier transformed square-wave voltammetry [J]. Electrochem. Commun., 2009, 11 (6): 1333-1336
    [124] Welch C.M., Nekrassova O., Compton R.G.. Reduction of hexavalent chromium at solid electrodes in acidic media: reaction mechanism and analytical applications [J]. Talanta, 2005, 65 (1): 74-80
    [125] Mir?eski V., Lovri? M.. Square-wave voltammetry of a cathodic stripping reaction complicated by adsorption of the reacting ligand [J]. Anal. Chim. Acta, 1999, 386 (1-2): 47-62
    [126] Guo S.X., Zhang J., Elton D.M., et al. Fourier transform large-amplitude alternating current cyclic voltammetry of surface-bound azurin [J]. Anal. Chem., 2004, 76: 166-177
    [127] Zhang J., Guo S.X., Bond A.M.. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering faradaic processes at glassy carbon and at boron-doped diamond electrodes [J]. Anal. Chem., 2004, 76: 3619-3629
    [128] Sher A.A., Bond A.M., Gavaghan D.J., et al. Resistance, capacitance, and electrode kinetic effects in Fourier-transformed large-amplitude sinusoidal voltammetry: emergence of powerful and intuitively obvious tools for recognition of patterns of behavior [J]. Anal. Chem., 2004, 76: 6214-6228
    [129] Lertanantawong B., O’Mullane A.P., Zhang J., et al. Investigation of mediated oxidation of ascorbic acid by ferrocenemethanol using large-amplitude Fourier transformed ac voltammetry under quasi-reversible electron-transfer conditions at an indium tin oxide electrode [J]. Anal. Chem., 2008, 80: 6515-6525
    [130] Lee C.Y., Bond A.M.. A comparison of the higher order harmonic components derived from large-amplitude Fourier transformed ac voltammetry of myoglobin and heme in DDAB films at a pyrolytic graphite electrode [J]. Langmuir, 2010, 26 (7): 5243-5253
    [131] Singhal P., Kawagoe K.T., Christian C.N., et al. Sinusoidal voltammetry for the analysis of carbohydrates at copper electrodes [J]. Anal. Chem., 1997, 69: 1662-1668

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700