优化核移植方案并生产转hLF基因山羊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞核移植(SCNT)已经成功应用于转基因动物生产、制作乳腺生物反应器及治疗性克隆等前沿领域。尽管这项技术已经取得了很大成果,但它的总体效率仍旧很低,所以SCNT技术体系仍需优化改进。为了提高体细胞核移植法生产转基因动物的生产效率,本研究对山羊SCNT方案进行了优化,并对利用优化后的SCNT方案生产转人乳铁蛋白(hLF)基因山羊的几个关键技术环节进行了系统地研究。
     一、山羊体细胞核移植方案的优化
     1、本实验分别在山羊卵母细胞成熟培养液(OM)及胚胎培养液(mSOFaa)中添加1 % ITS(v/v)。结果添加ITS到成熟液中,对卵母细胞成熟率没有明显提高,但显著提高了激活后孤雌胚胎的囊胚率(58.06 % vs. 48.19 %,P<0.05);添加ITS到胚胎培养液中,显著提高了山羊孤雌胚胎的囊胚率(68.30 % vs. 56.82 %,P<0.05)。结果表明,ITS对山羊卵母细胞体外成熟及胚胎早期发育均有促进作用;另外,ITS可以代替卵母细胞成熟培养液和胚胎培养液中的血清,作为无血清培养体系,用于相关研究。
     2、为优化并提高山羊SCNT的电融合效率,本实验对微电极融合法进行了改进,顶端直径分别为15μm(A)、100μm(B)、200μm(C)的3种微电极分别以A+A、A+B、B+B和C+C四种不同的组合方案与显微操作仪相连,分别对颗粒细胞(GC)、胎儿成纤维细胞(FF)和乳腺上皮细胞(MGE)构建的重组体进行电融合实验,传统槽式融合法设为对照。同时,在每种组合方案的实验中对比了增加供受体膜接触面紧密性(挤压组)和不挤压组(对照组)对融合率的影响。结果,微电极非挤压组的融合率与槽式融合法无显著差异。在挤压组的4种组合方案中,A+A(94.92 %)和A+B(92.23 %)的融合率显著高于B+B(83.01 %)和C+C(83.90 %)。与槽式融合法相比,A+A挤压融合方案显著提高了重组体的融合效率(GC:72.15 % vs. 89.04 %;FF:77.11 % vs. 94.64 %;MGE:51.23 % vs. 78.02 %)。结果表明,应用直径较细微电极并在融合时轻轻地挤压以增加供受体膜间的紧密性能够显著提高山羊SCNT的电融合效率。
     3、为了提高乳腺上皮细胞(MGE)核移植的电融合效率,本实验以PHA处理融合前的核质重组体,并用微电极挤压融合法(pMEF)来融合MGE重组体,PHA未处理组及槽式融合法作为对照。实验通过测定PHA对孤雌激活胚发育力的影响来确定PHA的最佳使用剂量及作用时间,结果,100μg/mL和20 min是合适的作用浓度和时间,用于后面的核移植实验;PHA处理重组体显著提高了槽式融合法的融合率(52.82 % vs. 74.02 %,P<0.05),对pMEF的融合率也有提高(72.68 % vs. 78.14 %,P>0.05);与未处理组相比,PHA处理对克隆胚胎卵裂率及囊胚发育率没有显著影响;PHA处理与pMEF联合把总克隆效率从6.67 %提高到12.59 %。结果表明,在融合前以适宜浓度的PHA处理MGE构建的重组体,并以pMEF进行电融合能显著提高MGE核移植的融合率,且不影响克隆胚的体外发育力,从而提高了MGE核移植的整体效率。
     二、单个转染阳性细胞快速扩大培养技术体系的建立
     在96孔板中,将转染hLF基因乳腺特异性表达载体pBLM-C1的单个FF和MGE细胞进行克隆。由于哺乳动物的单个细胞在新鲜培养基中不容易生长,本实验使用了适应性条件培养基(v/v:0 %、50 %和100 %)对单个转染细胞进行细胞单克隆的制备;进而把转染细胞单克隆与非转染细胞共培养进行扩大培养,neo基因被用于筛选基因,以PCR鉴定转染细胞基因组DNA。结果:(1)100 %适应性条件培养基能够显著提高细胞单克隆存活率(FF:21.430% vs. 3.70 %;MGE:13.64 % vs. 0.00 %);(2)转染细胞单克隆与非转染细胞共培养,显著提高了转染细胞单克隆扩大培养后的比率(FF:53.33 % vs. 10.00 %;MGE:33.33 % vs. 6.670 %),且明显缩短了扩大培养汇合时间(约20 d);(3)PCR鉴定结果表明,上述方法获得的克隆细胞整合有hLF目的基因。本实验为分离转基因细胞、理想载体的插入及诊断提供了一种可靠的方法,并能降低转基因动物生产的费用及时间。
     三、转染阳性乳腺上皮细胞的诱导表达及产物蛋白检测
     为了评价载体效率、外源蛋白表达情况及表达蛋白大小,本实验用含5 mg/L胰岛素、5 mg/L催乳素、1 mg/L氢化可的松的DMEM/F12培养液对转染阳性乳腺上皮细胞进行诱导培养,每6 h收集1次上清液。上清液浓缩后用Western blot检测,结果显示有目的蛋白表达,分子量为42 ku。
     四、用优化的核移植方案生产转hLF基因山羊
     本实验利用优化的核移植方案将转染阳性细胞(FF和MGE)移植到山羊MII期去核卵母细胞内,经电融合、激活、体外培养后,所获克隆胚胎一部分用于PCR检测外源基因,一部分(2-8细胞期和槡囊胚期)移植到同期发情受体山羊输卵管和子宫角内。结果,PCR检测表明,外源基因已整合到转基因克隆胚中;共移植401枚处于不同发育时期的转基因克隆胚胎到43只同期发情的受体山羊体内,结果共有11只妊娠,但都在妊娠前3个月流产;对移植记录进行统计分析发现,每只受体移植胚胎平均数在10枚以下的实验组,其妊娠率在20.00 %~26.67 %之间,而胚胎平均数高于20枚的实验组妊娠率高达40.00 %,由MGE细胞构建的转基因克隆的妊娠率与FF细胞无显著差异(20.00 % vs. 21.43 %),输卵管移植(2-8细胞期胚胎)与子宫角(槡囊期胚胎)的妊娠率无明显差异(26.47 % vs. 25.00 %)。结果表明,本研究优化的技术体系可以用于生产转基因克隆动物。
Somatic cell nuclear transfer (SCNT) so far has been successfully used in producing transgenic animal, making mammary gland bioreactors, and therapeutic cloning etc. To date, although some achievements were reported, the overall cloning efficiency has still remained very low. Optimal SCNT procedures still need to be improved for production of transgenic animals and other purposes. To improve the efficiency of production of transgenic animals using SCNT, this study optimized goat SCNT protocol, and systemically studied the key technical links of production of transgenic animals using SCNT technology.
     1. Optimization of goat SCNT protocol
     (1) 1 % ITS was added to oocyte maturation medium (OM) and embryo culture medium (mSOFaa). In results, addition of ITS to OM did not improve the maturation rate, but significantly increased the blastocyst rate of parthenogenesis embryos (P<0.05); addition of ITS to mSOFaa also significantly increased the cleavage rate and blastocyst rate of parthenogenesis embryos (P<0.05). In conclusion, addition of ITS to the medium of oocyte maturation and embryo culture can improve the development of oocyte maturation in vitro and embryo culture; ITS may be applied to free-serum culture of oocytes maturation and embryo in vitro.
     (2) To improve the electrofusion efficiency of goat SCNT, microelectrode fusion protocol was improved in this study, the microelectrodes whose diameter was 15μm (A), 100μm (B), 200μm (C) were respectively combined and formed A+A, A+B, B+B and C+C. Fusion efficiency from different combinations was evaluated, and pressurization and non-pressurization were compared in each combination. Chamber fusion was control. In results, no significant difference was recorded in the fusion rate of non-pressurized microelectrode fusion groups and chamber fusion group (73.1 % in AA, 75.3 % in AB, 73.30% in BB, 74.2 % in CC, and 74.8 % in CF). The fusion rates in the AA (94.9 %) and AB (92.2 %) groups were significantly higher than that in the AA (83.0 %) and CC (83.9 %) groups. The highest fusion rate and the lowest degeneration rate were obtained in the AA group. These results showed that the pressurized fusion protocol carried out by a pair of tip-end micro-electrodes is optimal to improve fusion efficiency in SCNT.
     (3) To increase the fusion efficiency of couplets reconstructed with mammary gland epithelial (MGE) cells as donor cells, the effects of phytohemagglutinin (PHA) treatment to couplets reconstructed with MGE cells before electrofusion on the fusion and subsequent development of goat NT embryos was explored in this study. The toxicity of PHA was evaluated by testing its effects on the development of parthenogenetic goat oocytes treated with different doses and durations. The effective dose and duration of PHA treatment (1000μg/mL, 20 min incubation) were selected and used to compare fusion efficiency and embryo development following SCNT. Two different electrofusion protocols, chamber fusion and pressurized microelectrode fusion, were also compared, both without and with PHA treatment (100μg/mL, 20 min). Fusion rate of nuclear donor MGE cells to oocyte recipients was increased from 52.8 % to 74.0 % for chamber fusion protocol (P<0.05) but was not significantly different for microelectrode fusion protocol (72.7 % vs. 78.1 %) after PHA treatment. Fusion rate between both fusion protocols has no significant difference after PHA treatment (74.0 % vs. 78.10 %). There were not significant differences in subsequent cleavage rates and blastocysts development among fused embryos both with and without PHA treatment. The cloning efficiency was significantly improved from 6.7 % to 12.6 % when the recombination of PHA and microelectrode fusion protocol was used. We concluded that the treatment of MGE cells with PHA within a determined range of dose and duration before electrofusion and pressurization has a positive effect on the fusion of nuclear transfer without decreasing the in vitro development of reconstructed embryos.
     2. Establishment of technical system on the multiplication culture of single transfected mammalian cell
     (4) 96-well cell culture plates were used to isolate cell lineages obtained from a single fetal fibroblast and MGE cell transfected with the pBLM-C1 plasmid. Since single mammalian cells do not grow well in fresh medium, we evaluated the use of conditioned medium. The neomycin phosphotransferase gene was detected in isolated colonies and NT embryos were produced from these cells. PCR assays were performed to detect the transfected fragment in positive cells. In results, when a single transfected cell was cultured in 0 %, 50 % and 100 % conditioned medium respectively, the transfected colony rate in 100 % group was significantly increased; the co-culture of single transgenic cell and non-transgenic cells markedly improved the colony rate after multiplication; PCR detection proved that the foreign aim gene has been integrated in transfected colonies. This approach provided a reliable method for isolating transfected mammalian cells and for diagnosing the incorporation of desirable vectors in NT embryos. This method can reduce the time and cost of transgenic livestock production.
     3. Induced expression and detection of foreign protein from transfected MGE cells
     (5) The transfected cells were induced by hormone (prolactin + insulin + hydrocortisone) to express human lactoferrin gene. The supernatant was collected 1 time every 6 hours,then was centrifuged for 10~15min (1000 r/min),which was stored in -20℃. The result of western blot analysis on cultured cells supernatant showed that transfected cells can express human lactoferrin protein which the molecular weight is 42 ku.
     4. Production of transgenic hLF gene goat using optimized SCNT protocol
     (6) To detect transgenic embryos and obtain viable transgenic goat, this experiment transferred the single transfected fetal fibroblast or mammary gland epithelial cell into the enucleated oocyte using the optimized SCNT technology in above experiments. Reconstructed karyoplast-cytoplast couplets were fused, activated, and cultured in vitro. Partial cloned embryos were used for the dectection of foreign gene, and remaining coned embryos were transferred into synchronized recipients. In results, PCR detection proved that the foreign aim gene has been integrated in cloned embryos. 401 embryos were transferred into 43 recipients, and 11 of them were confirmed pregnancy on 30-45 day by ultrasonography. Regretfully, all of gravid goats aborted within the first 3 months of gestation. In conclusion, though no transgenic goat birth, the technological system using in this study can be used for the production of transgenic goat.
引文
[1] Spemann H. Embryonic development and induction [M].New York: Hafner Publishing Co. 1938, 210-211.
    [2] Briggs R, King TJ. Transplantation of living cell nuclei from blastula cells into enucleated frogs eggs [J]. Proc Natl Acad Sci USA, 1952, 38: 455-436.
    [3] Illmensee K, Hoppe PC. Nuclear transplantation in the mouse muscullus: Development potential of nuclei from preimplantation embryos [J]. Cell, 1981, 23: 9-18.
    [4] McGreath J, Solter D. Nuclear transplantation in the mouse embryos by microsurgery and cell fusion [J]. Science, 1983, 220: 1300-1302.
    [5] Willadsen SM. Nuclear transplantation in sheep embryo [J]. Nature, 1986, 320: 63-65.
    [6] Prather RS, Barnes FL, Sims MM, et al .Nuclear transplantation in the bovine embryos: Assessment of donor nuclei and recipient oocyte [J]. Biol Reprod, 1987, 37: 859-866.
    [7] Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbit embryo [J]. Biol Repod, 1988, 39: 657-664.
    [8] Prather RS, Sims MM, First NL. Nuclear transplantation in early pig embryos [J]. Biol Repod, 1989, 44: 414-418.
    [9] 张涌, 王建辰, 钱菊汾, 等. 山羊卵核移植的研究[J].中国农业科学, 1991, 24(5): 1-6.
    [10] Li M, John J, Richard L, et al. Rhesus monkey produced by nuclear transfer [J]. Biol Reprod, 1997, 57: 454-459.
    [11] Campbell KHS, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line [J]. Nature, 1996, 380: 64-66.
    [12] Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells [J]. Nature, 1997, 385: 810-813.
    [13] McCrath J, Solter D. Inability of mouse blastomere transferred to enucleated zygotes to support development in vitro [J]. Science, 1984, 226: 1317-1319.
    [14] Tsunoda Y, Yasui T, Shioda Y, et al. Full-term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos [J]. J Exp Zool, 1987, 242(2): 147-151.
    [15] Echelard Y, Destrempes MM, Koster JA. Production of recombinant human serum albumin in the milk of transgenic cows [J]. Theriogenology, 2002, 57: 779.
    [16] Chen SH, Vaught TD, Monahan JA, et al. Efficient production of transgenic cloned calves using preimplantation screening [J]. Biol Reprod, 2002 (67): 1488-1492.
    [17] Cheong H, Takahashi Y, Kanagawa H. Relationship between nuclear remodelling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes [J]. Mol Reprod Dev, 1994, 37: 138-145.
    [18] Booth PJ, Tan SJ, Reipurth R, et al. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique [J]. Cloning and Stem Cells, 2001, 3(3): 139-150.
    [19] Yang X. Embryo cloning by nuclear transfer in cattle and rabbits [J]. Embyto Trans, Newletter, 1991, 9: 10-22.
    [20] Fulka JJr, Notarianni E, Passoni L, Moor RM. Early changes in embryonic nuclei fused to chemically enucleated mouse oocytes [J]. Int J Dev Biol, 1993, 37(3): 433-439.
    [21] Baguisi A, Overstrom. Induced enucleation in nuclear transfer procedures to produce cloned animal [J]. Theriogenology, 2000, 53: 209.
    [22] 杨东山. 转基因克隆法制作人胰岛素原牛乳腺生物反应器的研究[D]. 呼和浩特: 内蒙古大学博士学位论文, 2005.
    [23] Wang MK, Liu JL, Li GP, et al. Sucrose pretreatment for enucleation: an efficient and non-damage method for removing the spindle of the mouse MII oocyte [J]. Mol Reprod Dev, 2001, 58(4): 432-436.
    [24] Liu L, Oldenbourg R, Trimarchi JR, et al. A reliable, noninvasive technique for spindle imaging and enucleation of mammalion oocytes [J]. Nat Biotechnol, 2000, 18: 223-224.
    [25] Yang CH, Yanagimachi R, Yanagimachi H, et al. Morphology and fertilizability of zona-free hamster eggs separated into halves and quarters by centrifugation [J]. Biol Reprod, 1989, 41: 741-752.
    [26] Brendan G, Tatham, Kim J, et al. Electrofusion parameters for Nuclear Transfer predicated using Isofufsion Contours Produced with Bovine Embtyonic Cells [J]. Mol Repro Dev, 1996, 443: 306-312.
    [27] Bordignon V, Smith LC. Telophase enucleation:an improved method to prepare recipient cytoplasts for use in bovine nuclear transfer [J]. Mol Reprod Dev, 1998, 49: 29-36.
    [28] Smith LC. Membrane and intracellular effects of ultraviolet irradiation with Hoechst33342 on bovine aecondary oocytes matured in vitro [J]. J Reprod Fertil, 1993, 99: 39-44.
    [29] Morgan A, Jacob R. Ionomycin enhances Ca2+ influx by stimulating store regulated cation entry and not by a direct action at the plasma membrane [J]. Biochem J, 1994, 300: 665-672.
    [30] Chen DY, Jiang MX, Zhao ZJ, et al. Cloning of Asian yellow goat (C. hircus) by somatic cell nuclear transfer: telophase enucleation combined with whole cell intracytoplasmic injection [J]. Mol Reprod Dew, 2007, 74(1): 28-34.
    [31] Yang XY, Li H, Ma QW, et al. Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer [J]. Reproduction, 2006, 132: 733-739.
    [32] Greising T, Tonal L. The influence of enucleation on the ultrastructure of in vitro matured and enucleated cattle oocytes [J]. Theriogenology, 1999, 52: 303-312.
    [33] Cheong H, Takahashi Y, Kanagawa H. Birth of mice after transplantation of early cell cycle stage embryonic nuclei into enucleated oocytes [J]. Biol Reprod, 1993, 48: 958-963.
    [34] Zakhartchenko V, Wolf E, Palma GA, et al. Effect of donor embyo cell size on the efficiency of bivine embryo cloning [J]. Mol Reprod Dev, 1996, 44(4): 493-498.
    [35] Smith LC, Wilmut I. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryo after nulcear transplantation [J]. Biol Reprod, 1989, 40: 1027-1035.
    [36] Campbell KHS, Ritchic W, Wilmut I. Disappearance of maturation promoting factor activity and the formation of pronuclei in electrically activated in vitro matured bovine oocytes [J]. Theriogenology, 1993, 39: 199.
    [37] Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long-term culture [J]. Proc Natl Acad Sci USA, 2000, 97: 990-995.
    [38] Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei [J]. Science, 2000, 289: 1188-1190.
    [39] Lavoir MC, Rumph N, Moens A, et al. Development of bovine nuclear transfer embryos made withoogonia [J]. Biol Reprod, 1997, 56: 194-199.
    [40] Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cells [J]. Proc Natl Acad Sci USA, 1994, 91(13): 6143-6147.
    [41] 邵华, 鲍国强, 王凤武. 核移植克隆哺乳动物的研究进展[J].内蒙古畜牧科学, 1999, 3: 28-31.
    [42] Wakayama T, Perry AC, Yanagimachi R, et al. Full-term development of mice from enucleated oocytesin jected with cumulus cell nuclei [J]. Nature, 1998, 394: 369-374.
    [43] Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of a single adult [J]. Science, 1998, 282: 2095-2098.
    [44] Baguis A, Behboodi E, Melican DT, et al. Production of goats by somatic cell nuclear transfer [J]. Nat Biotech, 1999, 17: 456-461.
    [45] Irina A, Shu-Hung Chen, Todd D, et al. Cloned pigs produced by nuclear transfer from adult somaticcells [J]. Nature, 2000, 407: 86-90.
    [46] Li Z, Sun X, Chen J, et al. Cloned ferrets produced by somatic cell nuclear transfer [J]. Dev Biol, 2006, 293(2): 439-448.
    [47] Kim MK, Jang G, Oh HJ, et al. Endangered wolves cloned from adult somatic cells [J]. Cloning Stem Cells, 2007, 9(1): 130-137.
    [48] Jang G, Kim MK, Oh HJ, et al. Birth of viable female dogs produced by somatic cell nuclear transfer [J]. Theriogenology, 2007, 67(5): 941-947.
    [49] Faast R, Harrison SJ, Beebe LF, et al. Use of adult mesenchymal stem cells isolated from bone marrow and blood for somatic cell nuclear transfer in pigs [J]. Cloning Stem Cells, 2006, 8(3): 166-173.
    [50] Wilson JM, Williams JD, Bondioli KR, et al. Comparison of birth weight and growth characteristics of bovine calves produced by nuclear transfer (cloning), embryo transfer and natural mating [J]. Anim Reprod Sci, 1995, 38: 73-83.
    [51] Kruip TAM, den Dass JHG. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring [J]. Theriogenology, 1997, 47: 43-52.
    [52] Thompson JG, Allen NW, McGowan LT, et al. Effect of delayed supplementation of fetal calf serum to culture medium on bovine embryo development in vitro and following transfer [J]. Theriogenology, 1998, 49: 1239-1249.
    [53] Zhou Q, Jouneau A, Borcbard V, et al. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei [J]. Biol Reprod, 2001, 65: 412-419.
    [54] McGrath JD, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion [J]. Science, 1983, 220: 1300-1302.
    [55] Rohl JM, Prater R, Barnes F, et al. Nuclear transplantation in bovine embryos [J]. J Anim Sci, 1987, 64: 642-647.
    [56] GoTo K, Tanaka M, Ookutsu S, et al. Production of a nuclear transfer calf by the intracytoplasmic injection of donor cells [J]. J Reprod Dev, 1997, 43(3): 257-260.
    [57] Zakhartchenko V, Schernthaner W, Prelle K, Stojkovic P, Brem G, Wolf E. Nuclear transfer in the bovine embryo: Developmental potential of cultured adult cells [J]. Theriogenology, 1999, 51: 218.
    [58] Fissore RA, Dobrinsky JR, Balise JJ, et al. Patterns of intracellular Ca2+ concentrations in fertilized bovine eggs [J]. Biol Reprod, 1992, 47: 960-969.
    [59] Kuhholzer B, Tao T, Machaty Z, et al. Production of transgenic porcine blastocysts by nuclear transfer [J]. Mol Reprod Dev, 2000, 56: 145-148.
    [60] Mitalipov SM, White KL, Farrar VR, et at. Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphosphate [J]. Biol Repord, 1999, 60: 821-827.
    [61] Kato Y, Tani T, Sotomam Y, et al. Eight calves cloned from somatic cells of single adult [J]. Science, 1998, 282: 2095-2098.
    [62] Liu L, Yang X. Interplay of maturation-promoting factor and nitrogen-activated kinase inactivation during metaphase to interphase transition of activated bovine oocytes [J]. Biol Reprod, 1998, 59: 537-545.
    [63] Loi P, Ledda S, Falka JJ, et al. Development of parthenogenetic and cloned ovine embyros: effect of activation portocols [J]. Bio Reprod, 1998, 58: 1177-1187.
    [64] 陈大元.受精生物学[M]. 第一版, 北京, 科学出版社, 2000, 426-427.
    [65] Im GS, Seo JS, Hwang IS, et al. Development and apoptosis of pre-implantation porcine nuclear transfer embryos activated with different combination of chemicals [J]. Mol Reprod Dev, 2006, 73(9): 1094-1101.
    [66] Choi YH, Love CC, Chung YG, et al. Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract [J]. Biol Reprod, 2002, 67(2): 561-567.
    [67] 石德顺. 动物克隆技术研究的现状与展望[C]. 广西畜牧兽医学会第八届代表大会暨学术研究会论文, 1998, 10.
    [68] Tian XC, Xu J, Yang X. Normal telomere lengths found in cloned cattle [J]. Nature Genet, 2000, 26: 272-273.
    [69] Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke A E. et al. Analysis of telomere lengths in cloned sheep [J]. Nature, 1999, 399: 316-317.
    [70] Miyashita N, Shiga K, Yonai M, et al. Remarkable differences in telomere lengths among cattle derived from different cell types [J]. Biol Reprod, 2002, 66: 1649-1655.
    [71] Hill UR, Winger QA, Long CR, et al. Development rates of male bovine nuclear transfer embryos derived from adult and fetal cells [J]. Biol Reprod, 2000, 62: 1135-1140.
    [72] Polejaeva IA, Chen S, Vaught T, et al. Cloned pigs produced by nuclear transfer from adult somatic cells [J]. Nature, 2000, 407: 86-90.
    [73] Sung LY, Shen PC, Jeong BS, et al. Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer [J]. Biol Reprod, 2007, 76: 232-240.
    [74] Aston KI, Li GP, Hicks BA, et al. The developmental competence of bovine nuclear transfer embryos derived from cow versus heifer cytoplasts [J]. Anim Reprod Sci, 2006, 95(3-4): 234-243.
    [75] Fulka J, First NL, Moor RM. Nuclear transplantation in mammals: remodeling of transplanted nuclei under the influence of maturation promoting factor [J]. BioEssays, 1996, 18: 835-840.
    [76] Vajta G, Holm P, Kuwayama M, et al. Open Pulled Straw (OPS) vitrification: a way to reduce cryoinjuries of ova and embryos [J]. Mol Reprod Dev, 1998, 51: 53-58.
    [77] Akagi S, Takahashi S, Noguchi T, et al. Development of embryos using Bovine cumulus cells for nuclear transfer [J]. Theirogenolgy, 2000, 53(1): 208.
    [78] Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from nonquiescent fetalfibroblasts [J]. Science, 1998, 280: 1256-1258.
    [79] Shiga K, Fujita T, Hirose K, et al. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls [J]. Theriogenology, 1999, 52: 527–535.
    [80] Wells DN, Laible G, Tucker FC, et al. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle [J]. Theriogenology, 2003, 1, 59(1): 45-59.
    [81] Hashe MA, Bhandari DP, Kang AK, et al. Cell cycle analysis and interspecies nuclear transfer of in citro cultured skin fibroblasts of the Siberian tiger (Panthera tigris Altaica) [J]. Mol Reprod Dev, 2007, 74(4): 403-411.
    [82] Blelloch R, Wang Z, Meissner A, et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus [J]. Stem Cells, 2006, 24: 2007-2013.
    [83] Zhu ZY, Jiang MX, Yan LY, et al. Cytoskeletal and nuclear organization in mouse embryos derived from nuclear transfer and ICSI: a comparison of agamogony and syngamy before and during the first cell cycle [J]. Mol Reprod Dev, 2007, 74(5): 655-663.
    [84] Young LE, Fairburn HR. Improving the safety of imprinting [J]. Theriogenology, 2000, 53: 627-648.
    [85] Eggan K, Akutsu H, Rideout III WM, et al. Hybrid vigor fetal overgrowth and viability of mice derived by nuclear cloning and tetraploid embryo complementation [J]. Proc Natl Acad Sci USA, 2001, 98: 6209-6214.
    [86] Boiani M, Eckardt S, Scholer HR, et al. Oct4 distribution and level in mouse clones: consequences for pluripotency [J]. Genes Dev, 2002, 16: 1209-1212.
    [87] Kang YK, Koo DB, Park JS, et al. Typical dmethylation events in cloned pig embryos. Clues on species-specific difference in epigenetic reprogramming of a cloned genome [J]. J Biol Chem, 2001, 276: 39980-39984.
    [88] Fatemi M, Hermann A, Pradhan S, et al. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leadingtoan allosteric activation of the enzyme after binding to methylated DNA [J]. J Mol Biol, 2001, 309(5): 1189-1199.
    [89] Wolffe AP, Jones PL, Wade PA. DNA demethylation [J]. Proc Natl Acod Sci USA, 1999, 96: 5894-5896.
    [90] Lie, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality [J]. Cell, 1992, 69: 915-926.
    [91] Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for denovo methylation and mammalian development [J]. Cell, 1999, 99: 247-257.
    [92] Herman JG, Baylin SB. Gene silencing in cancer in assortatton with promoter hypermethylatian. N Engl J Med, 2003, 349: 2042-2054.
    [93] Farrell WE, Simpson DJ, Frost SJ, et al. Methylation mechnisims in pituitary tumorigenesis [J]. Endocr Relat Cancer, 1999, 6 (4): 437-447.
    [94] Feng YQ, Desprat R, Fu H, et al. DNA methylation supports intrinsic epigenetic memory in mammalian cells [J]. PLOS Genet, 2006, 2: 0461-0470.
    [95] Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer [J]. Biol Reprod, 2004, 71(1): 185-193.
    [96] Enright BP, Jeong BS, Yang X, et al. Epigenetic characteristics of bovine donor cells for nuclear transfer: levels of histone acetylation [J]. Biol Reprod, 2003, 69: 1525-1530.
    [97] Rybouchkin A, Kato Y, Tsunoda Y. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer [J]. Biol Reprod, 2006, 74: 1083-1089.
    [98] Eilertsen KJ, Power RA, Harkins LL, et al. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer [J]. Anim Reprod Sci, 2007, 98(1-2): 129-146.
    [99] Rand E, Cedar H. Regulation of imprinting: A multi-tiered process [J]. J Cell Biochem, 2003, 88(2): 400-407.
    [100] Surani MA, Barton SC, Norris ML Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis [J]. Nature, 1984, 308(5959): 548-555.
    [101] Barlow DP. Genomic imprinting in mammalian [J]. Science, 1995, 270:1610-1613.
    [102] Moor T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war [J]. Trends Genet, 1991, 7: 45-49.
    [103] Davis TL, Yang GJ, McCarrey JR, et al. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development [J]. Hum Mol Genet, 2000, 9: 2885-2894.
    [104] Chung YG, Ratnam S, Chaillet JR, et al. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos [J]. Biol Reprod, 2003, 69(1): 146-153.
    [105] Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice[J]. Science, 2001, 293: 95-97.
    [106] Kono T, Obata Y, Wu Q, et al. Birth ofparthenogeneticmice that can develop to adulthood [J]. Nature, 2004, 428: 860-864.
    [107] Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity [J]. EMBO J, 1992, 11: 1921-1929.
    [108] Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability [J]. Cell, 2001, 106: 275-286.
    [109] Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer [see comments] [J]. Science, 1994, 266: 2011-2015.
    [110] Betts DH, Bordignon V, Hill JR, et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle [J]. Proc Natl Acad Sci USA, 2001, 98: 1077-1082.
    [111] Lanza RP, Cibelli JB, Blackwell C, et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells [J]. Science, 2000, 288: 665-669.
    [112] Jeon HY, Hyun SH, Lee GS, et al. The analysis of telomere length and telomerase activity in cloned pigs and cows [J]. Mol Reprod Dev, 2005, 71(3): 315-320.
    [113] Wakayama T, Shinkai Y, Tamashiro KL, et a1. Cloning of mice to six generations [J]. Nature, 2000, 407(6802): 318-319.
    [114] Eggan K, Akutsu H, Hochedlinger K, et al. X-Chromosome inactivation in cloned mouse embryos [J]. Science, 2000, 290: 1578-1581.
    [115] Wrenzycki C, Lucas-Hahn A, Herrmann D, et al. In vitro roduction and nuclear transfer affectdosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos [J]. Biol Reprod, 2002, 66: 127-134.
    [116] Xue F, Tian XC, Du F, et al. Aberrant patterns of X chromosome inactivation in bovine clones [J]. Nat Genet, 2002, 31: 216-219.
    [117] Brackett PG, Baranska W, et al. Uptake of heterotopous genome by mammalian spermatozoa and its transfer to voa through fertilization [J]. Proc Natl Acad Sci USA, 1974, 68(2): 353-357.
    [118] Jaenich R. Infection of mouse blastocws with SV 40 DNA, Normal development of infected embryos and persistence SV 40-specific DNA sequences in the adult animal [J]. Cold Spring Harbor Symposium, 1974, 39: 375-380.
    [119] Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA [J]. Pros Natl Acad Sci USA, 1980, 77: 7380-7384.
    [120] Palmiter RD, Brinster RE, Hammer ME, et al. Dramatic growth of mice that developed from eggs microinjected with metallothionein-growth hormone fusion genes [J]. Nature, 1982, 300: 611-615.
    [121] Ramsoondar JJ, Machaty Z, Costa C, et al. Production of alpha 1,3-galactosyltransferase- knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase [J]. Biol Reprod, 2003, 69(2): 437-445.
    [122] Perry AC, Wakayama T, Kishikawa H, et al. Mammalian transgenesis by intracytoplasmic sperm injection [J]. Science, 1999, 284: 1180-1183.
    [123] Salter DW, Smith EJ, Hughes SH, et al. Transgenic chickens: insertion of retroviral genes into the chicken germ line [J]. Virology, 1987, 157(1): 236-240.
    [124] Bosselman RA, Hsu RY, Boggs T, et al. Replication-defective vectors of reticuloendotheliosis virus transduces exogenous genes into somatic stem cells of the unincubated chicken embryo [J]. J Virol, 1989, 63(6): 2680-2689.
    [125] Haskell RE. Efficient production of transgenic cattle by retroviral infection of early embryos [J]. Mo1 Reprod Dev, 1995, 40: 386-390.
    [126] Lavitrano M, Camaioni A, Fazio VM, et al. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice [J]. Cell, 1989, 57(5): 717-723.
    [127] Ganodolfi F, Lavitrono M, Camaioni A, et al. The use of sperm mediated gene transfer for the generation of transgenic pig [J]. J Reprod Fetil, 1989, 4: 10.
    [128] Squires EJ, Drake D. Liposome-mediated DNA transfer to chicken sperm cell [J]. Anim Biotech, 1993, 4: 71-78.
    [129] Lavitrano M, Bacci ML , Forni M, et al. Efficient production by sperm mediated gene transfer of hDAF transgenic pigs for xenotrans plantation [J]. Proc Natl Acad Sci USA, 2002, 99: 14230-14235.
    [130] Bradley A, Evans M, Kaufman MH, et al. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines [J]. Nature, 1984, 309(5965): 255-256.
    [131] Magin TM, McWhir J, Melton DW. A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency [J]. Nucleic Acids Res, 1992, 20: 3795-3796.
    [132] Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts [J]. Science, 1997, 278: 2130-2133.
    [133] Brem G, Besenfelder U, Aigner B, et al. YAC transgenesis in farm animals: rescue of albinism in rabbits [J]. Mol Reprod Dev, 1996, 44(1): 56-62.
    [134] Fujiwara Y, Miwa M, Takahashi R, et al. Position-independent and high-level expression of human alpha-lactalbumin in the milk of transgenic rats carrying a 210-kb YAC DNA [J]. Mol Reprod Dev, 1997, 47(2): 157-163.
    [135] Bondioli K, Ramsoondar J, Williams B, et al. Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar [J]. Mol Reprod Dev, 2001, 60(2): 189-195.
    [136] Swanson ME. Production of functional human hemoglobin in transgenic swine [J] .Biotechnology, 1992, 10: 557-559.
    [137] Kerr DE, Liang F, Bondioli KR, et al. The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine [J]. Nat Biotech, 1998, 16: 75-79.
    [138] Harvey AJ, Gorden S, Baugh LR, et al. Expression of exogenous protein in the egg white of transgenic chickens [J]. Nat Biotech, 2002, 20: 396-399.
    [139] Gorden K, Lee E, Vitale JA, et al. Production of human tissue plasminogen activator in transgenic mouse milk [J]. Biotechnology, 1987, 5: 1183-1186.
    [140] Kuroiwa Y, Kasinathan P, Choi YJ, et al. Cloned transchromosomic calves producing human immunoglobulin [J]. Nat Biotech, 2002, 20: 889-894.
    [141] Wadih A, Renata P, Erkki R, et al. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J]. Science, 1998, 279: 377-380.
    [142] Michael H. Cancer research: new model for hereditary breast cancer [J]. Science, 1999, 284: 723-725.
    [143] Jiang XC, Qin SC, Qiao CP, et al. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency [J]. Nature Medicine, 2001, 7: 847-852.
    [144] Ryan TM, Ciavatta DJ, Townes TM. Knockout-transgenic mousemodel of sickle cell disease [J]. Science, 1997, 278: 873-876.
    [145] Marie JB, Hugues B, Adrian W, et al. Genetic correction of sickle cell disease: insights using transgenic mouse models [J]. Nature Med, 2000, 6: 177-182.
    [146] Semenza GL. Polycythemia in transgenic mice expressing the human erythropoietin gene [J]. Proc Natl Acad Sci USA, 1989, 86 (7): 2301-2305.
    [147] Jonathan L, Marcy C, Bill S, et al. Hepatitis B virus transgenic mouse model of chronic liver disease [J]. Nature Med, 1999, 5: 907-912.
    [148] Taija M. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3 [J]. Nature Med, 2001, 7: 199-205.
    [149] Murphy AM, Kogler H, Georgakopoulos D, et al. Transgenic mouse model of stunned myocardium [J]. Science, 2000, 287: 488-491.
    [150] Dave MD, David MD, Paul EG, et al. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease [J]. Nature, 2000, 408: 982-985.
    [151] Price DL, Sisodia SS, Borchelt DR. Genetic neurodegenerative diseases: the human illness and transgenic models [J]. Science, 1998, 282: 1079-1083.
    [152] Snyder BW, Vitale J, Milos P, et al. Development and tissue-specific expression of human CD4 in transgenic rabbits [J]. Mol Reprod Dev, 1995, 40: 419-428.
    [153] Komori M. Transgenic drosophila carrying mammalian cytochrome P-4501 A1: an application to toxicology testing [J]. Carcinogenesis, 1993, 14 (8): 1683-1688.
    [154] Mehtali M. A novel transgenic mouse model for the in vivo evaluation of anti-human immunodeficiency virus typeⅠdrugs [J]. AIDS Res Hum Retroviruses, 1992, 8(12): 1959-1965.
    [155] Adams DJ, Biggs PJ, Cox J, et al. Mutagenic insertion and chromosome engineering resource (MICER) [J]. Nature Genet, 2004, 36: 867-871.
    [156] Rosengard AM. Tissue expression of human complement inhibitor, decay-accelerating factor, in transgenic pigs a potential approach for preventing xenograft rejection [J]. Transplantation, 1995, 59 (9): 1325-1333.
    [157] Lai LX, Simonds DK, Park KW, et al. Production of alpha-1, 3-galactosyl transferase knockout pigs by nuclear transfer cloning [J]. Science, 2002, 295: 1089-1092.
    [158] Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha-1, 3-galactosyl transferase gene in cloned pigs [J]. Nat Biotech, 2002, 20: 251-255.
    [159] Pursel VG, Pinkert CA, Miller KF, et al. Genetic engineering of livestock [J]. Science, 1989, 244: 1281-1288.
    [160] Berm G. Production of transgenic and possible application to pig breeding [J]. Soc Anim Prod, 1992, 12: 15-31.
    [161] Damak S, Su H, Jay NP, et al. Improved wool production in transgenic sheep expressing insulin-like growth factor 1 [J]. Biotechnology, 1996, 14: 185-188.
    [162] Kerr DE, Plaut K, Bramley AJ, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice [J]. Nat Biotech, 2001, 19: 66-70.
    [163] Kang JX, Wang JD, Wu L, et al. Fat-1 mice convert n-6 to n-3 fatty acid [J]. Nature, 2004, 427: 504-505.
    [164] Chasteen ND. Transferrin: a perspective [J]. Adv Inorg Biochem, 1983, 5: 201-233.
    [165] Sanchez LM, Calvo, Brock JH. Biological role of lactoferrin [J]. Arch Dis Child, 1992, 67: 657-661.
    [166] Bennett RM, Kokocinski T. Lactoferrin content of peripheral blood cells [J]. Br J Haematol, 1978, 39(4): 509-521.
    [167] Tyer S, Lonnerdal B. Lactoferrin, Lactoferrin receptors and Torn metabolism [J]. Eur J Clin Nutr, 1993, 47(4): 232-241.
    [168] Kei-ichi SZ. Lactoferrin:A Marvelous Protein in Milk & Anim.sci. [J]. 2000, 71(4): 329-347.
    [169] Kawakami H, Hiratsuka M, Dosakoy S. Effects of iron-saturated lactoferrin on iron absorption [J]. Agric Biol Chem, 1998, 52(4): 903-908.
    [170] Nibbering PH, Ravensbergen E, Welling MM, et al. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria [J]. Infect Immun, 2001, 69: 1469-1476.
    [171] Ellison RT, III. The effects of lactoferrin on gram-negative bacteria, In T.W. Hutchens and et al. (eds.), Lactoferrin: Structure and Function [M]. Plenum Press, New York, 1994, 71-90.
    [172] Tomita M. Potent antibacterial peptide generated bypepsin digstion of bovine lactoferrin [J]. J Dairy Sci, 1991, 74(12): 4137-4142.
    [173] Asanuma H, Numazaki K, Nagata N, et al. Role of milk whey in the transmission of human cytomegalovirus infection by breast milk [J]. Microbiol Immunol, 1996, 40: 201-204.
    [174] Hasegawa K, Motsuchi W, Tanaka S, et al. Inhibition with lactoferrin of in vitro infection with human herpes virus [J]. Jpn J Med Sci Biol, 1994, 47: 73-85.
    [175] Hanson LA, Lonnroth I, Lange S, et al. Nutrition resistance to viral propagation. Nutr Rev, 2000, (2): S31-S37.
    [176] Baveye S, Elass E, Mazurier J, et al. Legrand. Lactoferrin inhibits the binding of lipopolysaccharides to L-selectin and subsequent production of reactive oxygen species by neutrophils [J]. FEBS Lett, 2000, 469: 5-8.
    [177] 马俊江, 林志彬. 铁代谢蛋白的免疫调节和抗感染机制[J].中国药理学通报, 1998, 14(2): 103-106.
    [178] Shimizu K, Matsuzawa H, Okada K, et al. Lactoferrin-mediated protection of the host from murine cytomegalovirus infection by a T-cell-dependent augmentation of natural killer cell activity [J]. Arch Virol, 1996, 141: 1875-1889.
    [179] Matra A, Zhang ZY. Expression of human lactoferrin cDNA in a bacco cells produces antibacterial proteins [J]. Plant Physiol, 1994, 106: 977-981.
    [180] 王崇道, 强亦忠, 金坚. 乳铁蛋白(LF)的提纯及其放射免疫分析在肺癌诊断中的应用[J]. 同位素, 1999, 12(1): 5-9.
    [181] Huang SW. Effect of lactoferrin on oxidative stability of corn oil emulsion and lipocomes [J]. J Agric Food Chem, 1999, 47(4): 1356-1361.
    [182] 应革, 吴淑华, 王静, 等. 重组巴氏毕赤酵母高密度发酵表达人乳铁蛋白的研究[J]. 中华实验和临床病毒学杂志, 2004, 18( 2) : 181-185.
    [183] 张丹凤, 陆东林. 乳铁蛋白及其生理功能[J].草食家畜, 2002, 115(2): 3-6.
    [184] 曹阳, 李庆伟, 袁晓东, 等. 人乳铁蛋白基因克隆及表达载体构建.大连理工大学学报[J]. 2000, 40(6): 696-700.
    [185] Bowman P, Mclaren A. Cleavage rate of mouse embryos in vivo and in vitro [J].J Embryol Exp, 1970, 24: 203.
    [186] Streffer C, van Beuningen D, Molls M, et al. Kineics of cell proliferation in the preimplantation mouse embryo in vivo and in vitro [J]. Cell Tissue Kinet, 1980, 13: 135.
    [187] Biggers JD. In vitro fertilization and embryo transfer in human beings [J]. New Engl J Med 1981, 304: 336.
    [188] Harlow GM, Quinn P. Development of preimplantation mouse embryos in vivo and in vitro [J]. Aust J Biol Sci, 1982, 35: 187.
    [189] Gardner DK, Lane M. Amino acids and ammonium regulate the development of preimplantation mouse embryos in culture [J]. Biol Reprod, 1993, 48: 377.
    [190] Shamsuddin M. A serum-free, cell-free culture system for development of bovine one-cell embryos up to blastocyst stage with improved viability [J]. Theriogenology, 1994, 41: 1033-1044.
    [191] Amsterdam A, May JV, Schomberg DW. Synergistic effect of insulin and follicle-stimulating hormone on biochemical and morphological differentiation of porcine granulosa cells in vitro [J]. Biol Reprod, 1988, 39: 379-390.
    [192] May JV, Schomberg DW. Granulosa cell differentiation in vitro: effect of insulin on growth and functional integrity [J]. Biol Reprod 1981, 25: 421-431.
    [193] Gutierrez CG, Campbell BK, Webb R. Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics [J]. Biol Reprod, 1997, 56: 608-616.
    [194] Zhang X, Armstrong DT. Presence of amino acids and insulin in a chemically defined medium improves development of 8-cell rat embryos in vitro and subsequent implantation in vivo [J]. Biol Reprod, 1990, 42: 662-668.
    [195] Rota A, Cabianca G. In vitro maturation rates of canine oocytes from anoestrous bitches in simple media [J]. Reprod Nutr Dev, 2004, 44(2): 105-109.
    [196] 王洪锋, 王晓磊, 于海生, 等. 尿嘧啶、三价因子和ATP 对牛卵母细胞体外成熟的影响[J]. 西北农林科技大学学报(自然科学版), 2006, 34, 6: 21-24.
    [197] 高建明, 吴学清, 王占贺, 等. 牛腔前卵泡的体外培养[J]. 中国兽医学报, 2002, 22(4): 341-343.
    [198] 周欢敏, 张涌. 山羊卵巢无腔卵泡卵母细胞的体外生长[J]. 中国兽医学报, 1999,19 (3): 301-304.
    [199] Palasz AT, Thundathil J, Verrall RE, et al. The effect of macromolecular supplementation on the surface tension of TCM-199 and the utilization of growth factors by bovine oocytes and embryos in culture [J]. Anim Reprod Sci, 2000, 58: 229-240.
    [200] Daniaux C, Verhaeghe B, Donnay I. Insulin, transferrin and selenium with or without BSA in a serum-free culture system for bovine embryo, and its suitability for embryos cultured in small groups [J]. Reprod Fertil Dev, 2005, 17, 2: 217-218.
    [201] Raghu HM, Nandi S, Reddy SM. Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, emidefined media [J]. Vet Rec, 2002, 151(9): 260-265.
    [202] Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova [J]. J Reprod Fertil, 1972, 30: 493-497.
    [203] Alberio R, Kubelka M, Zakhartchenko V, et al. Activation of bovine oocytes by specific inhibition of cyclin-dependent kinases [J]. Mol Reprod Dev, 2000, 55(4): 422-432.
    [204] Eppig JJ, Wigglesworth K, O’Brien MJ. Comparison of embryonic developmental competence of mouse oocytes grown with and without serum [J]. Mol Reprod Dev, 1992, 32: 33-40.
    [205] Harvey MB, Kaye PL. Insulin stimulates protein synthesis in compacted mouse embryos [J]. Endocrinology, 1988, 122(3): 1182-1184.
    [206] Kahn CR. The molecular mechanism of insulin action [J]. A Rev Med, 1985, 36: 429-451.
    [207] Farese RV. Phospholipid signaling systems in insulin action [J]. Am J Med, 1988, 28, 85(5A): 36-43.
    [208] Eppig JJ, O'Brien MJ, Pendola FL, et al. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin [J]. Biol Reprod, 1998, 59: 1445-1453.
    [209] Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long-term culture [J]. Proc Natl Acad Sci USA, 2000, 97: 990-995.
    [210] Wells DN, Misica PM, Tervit HR, et al. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed [J]. Reprod Fertil Dev, 1998, 10: 369-378.
    [211] Wakayama T, Yanagimachi R. Cloning of male mice from adult tip tail cells [J]. Nat Genet, 1999, 22: 127-128.
    [212] Wells D, Misica P, Tervit H. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod, 1999, 60: 996-1005.
    [213] Cho JK, Lee BC, Park JI, et al. Development of bovine oocytes reconstructed with different donorsomatic cells with or without serum starvation [J]. Theriogenology, 2002, 57: 1819-1828.
    [214] Kishi M, Itagaki Y, Takakura R, et al. Nuclear transfer in cattle using colostrum-derived mammary gland epithelial cells and ear-derived fibroblast cells [J]. Theriogenology, 2000, 54: 675-684.
    [215] Du F, Shen PC, Xu J, et al. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus) [J]. Theriogenology, 2006, 6: 642-657.
    [216] Takeuchi T, Ergun B, Huang TH, et al. A reliable technique of nuclear transplantation for immature mammalian oocytes [J]. Hum Reprod, 1999, 14: 1312-1317.
    [217] Shen PC, Lee SN, Wu JS, et al. The effect of electrical field strength on activation and development of cloned caprine embryos [J]. Anim Reprod Sci, 2006, 92: 310-320.
    [218] Zimmermann U, Vienken J. Electric field-induced cell-to-cell fusion [J]. J Membr Biol, 1982, 67: 165-182.
    [219] Miyoshi K, Gibbons J, Rzucidlo SJ, et al. Effective fusion method for reconstruction of bovine embryos from granulose cells and enucleated oocytes [J]. Theriogenology, 2001, 55: 280.
    [220] Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells [J]. Nat Biotech, 2002, 20: 366-369.
    [221] Galli C, Lagutina I, Crotti G, et al. Pregnancy: a cloned horse born to its dam twin [J]. Nature, 2003, 424: 635.
    [222] Woods GL, White KL, Vanderwall DK, et al. A mule cloned from fetal cells by nuclear transfer [J]. Science, 2003, 301: 1063.
    [223] Shin T, Kraemer D, Pryor J, et al. A cat cloned by nuclear transplantation [J]. Nature, 2002, 415: 859.
    [224] McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells [J]. Nature, 2000, 405: 1066-1069.
    [225] Westhusin ME, Long CR, Shin T, et al. Cloning to reproduce desired genotypes [J]. Theriogenology, 2001, 55: 35-49.
    [226] Campbell KHS. Nuclear transfer in farm animal species [J]. Cell Dev Biol, 1999, 10: 245-252.
    [227] Zakhartchenko V, Alberio R, Stojkovic M, et al. Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures [J]. Mol Reprod Dev, 1999, 54: 264-272.
    [228] West PG, Baker WW. Phytohemagglutinin-enhanced hybrid colony formation by cells from aged mice: expression of TH 4Mod-1 mouse locus in human–mouse hybrids [J]. In Vitro Cell Dev Biol, 1987, 23: 154-158.
    [229] Matsuya Y, Yamane I. Cell fusion and cell agglutination: enhancing effect by a combined use of lectin and polycation [J]. Somat Cell Mol Genet, 1985, 11: 247-255.
    [230] Wu Y, Rosenberg JD, Sowers AE. Surface shape change during fusion of erythrocyte membranes is sensitive to membrane skeleton agents [J]. Biophys J, 1994, 67: 1896-1905.
    [231] Tesarik J, Nagy ZP, Mendoza C, et al. Chemically and mechanically induced membrane fusion: nonactivating methods for nuclear transfer in mature human oocytes [J]. Hum Reprod, 2000, 15: 1149-1154.
    [232] Begin I, Bhatia B, Rao K, et al. Pregnancies resulted from goat NT embryos produced by fusing couplets in the presence of lectin [J]. Reprod Fertil Dev, 2004, 16: 136.
    [233] Keefer CL, Stice SL, Matthews DL. Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves [J]. Biol Reprod, 1994, 50: 935-939.
    [234] Tecirlioglu RT, French AJ, Lewis IM, et al. Birth of a cloned calf derived from a vitrified hand-made cloned embryo [J]. Reprod Fertil Dev, 2004, 15: 361-366.
    [235] Knutton S. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol [J]. J Cell Sci, 1979, 36: 61-72.
    [236] Hamelryck TW, Dao-Thi MH, Poortmans F, et al. The crystallographic structure of phyto hemagglutinin-L. J Biol Chem, 1996, 271: 20479-20485.
    [237] Sharma V, Surolia A. Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity [J]. J Mol Biol, 1997, 267: 433-445.
    [238] Schwarz RE, Wojciechowicz DC, Park PY, et al. Phytohemagglutinin-L(PHA-L) lectin surface binding of N-linked beta 1-6 carbohydrate and its relationship to activated mutant ras in human pancreatic cancer cell lines [J]. Cancer Lett, 1996, 107: 285-291.
    [239] Yang BC, Im GS, Kim DH, et al. Development of vitrified–thawed bovine oocytes after in vitro fertilization and somatic cell nuclear transfer [J]. Anim Reprod Sci, 2007, doi:10.1016/j.anireprosci. 2006.12.009.
    [240] Tatham BG, Dowsing AT, Trounson AD. Enucleation by centrifugation of in vitro matured bovine oocytes for use in nuclear transfer [J]. Biol Reprod, 1995, 53: 1088-1094.
    [241] Booth PJ, Viuff D, Tan S, et al. Numerical chromosome errors in day 7 somatic nuclear transfer bovine blasto [J]. Biol Reprod, 2003, 68: 922-928.
    [242] Vajta G, Bartels P, Joubert J, et al. Production of a healthy calf by somatic cell nuclear transfer without micromanipulators and carbon dioxide incubators using the Handmade Cloning (HMC) and the Submarine Incubation System(SIS) [J]. Theriogenology, 2004, 62: 1465-1472.
    [243] Bhojwani S, Alm H, Torner H, et al. Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer [J]. Theriogenology, 2007, 67: 341-345.
    [244] Zakhartchenko V, Schemthaner W, Stojkovic M, et al. Cultured bovine mammary gland cells as donors for nuclear transfer [J]. Theriogenology, 1998, 49: 332.
    [245] Krisher RL, Gibbons JR, Canseco RS, et al. Influence of time of gene microinjection on development and DNA detection frequency in bovine embryos [J]. Transgenic Res, 1994, 3: 226-231.
    [246] Page RL, Canseco RS, Russell CG, et al. Transgene detection during early murine embryonic development after pronuclear microinjection [J]. Transgenic Res, 1995, 4: 12-17.
    [247] Polejaeva IA, Campbell KH. New advances in somatic cell nuclear transfer: application in transgenesis [J]. Theriogenology, 2000, 53(1): 117-126.
    [248] Kuroiwa Y, Kasinathan P, Matsushita H, et al. Sequential targeting of the genes encoding immunoglobulin-micro and prion protein in cattle [J]. Nat Genet, 2004, 36: 775-780.
    [249] Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle [J]. Theriogenology, 2001, 55: 151-170.
    [250] Young LE, Fernandes K, McEvoy TG, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture [J]. Nat Genet, 2001, 27: 153-154.
    [251] Bertolini M, Beam SW, Shim H, et al. Growth, development, and gene expression by in vivo- and in vitro-produced day 7 and 16 bovine embryos [J]. Mol Reprod Dev, 2002, 63: 318-328.
    [252] van Berkel PH, Welling MM, Geerts M, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows [J]. Nat Biotech, 2002, 20: 484-487.
    [253] Takehara K. Growth regulation of skin fibroblasts [J]. J Dermatol Sci, 2000, 24: S70-S77.
    [254] Rubin JS, Osada H, Finch PW, et al. Purification and characterization of a newly identified growth factor specific for epithelial cells [J]. Proc Natl Acad Sci USA, 1989, 86: 802-806.
    [255] Oback B, Wells D. Donor cells for nuclear cloning: many are called, but few are chosen [J]. Cloning Stem Cells, 2002, 4: 147-168.
    [256] 鄂征. 组织培养与分子细胞学技术[M]. 北京, 北京出版社出版, 1997.
    [257] 杨国庆, 戴蕴平, 朱宝利, 等. 牛BLG基因5'调控成分的克隆和制备乳腺生物反应器研究[J]. 中国科学C辑, 26(5): 463-469.
    [258] 邱信芳, 张克忠, 卢大儒, 等. 人凝血Ⅸ因子乳腺生物反应器的研制[J]. 复旦学报(自然科学版), 1998, 37(4): 365-371.
    [259] 萨姆布鲁克, 弗里奇, 曼尼阿蒂斯. 分子克隆实验指南第二版[M]. 北京: 科学出版社, 2002: 55-56.
    [260] 张克忠, 崇松, 陈立, 等. 人凝血Ⅸ因子乳腺特异性表达载体在离体细胞和小鼠乳腺组织中表达的初步研究[J]. 复旦学报(自然科学版), 1998, 37(4): 527-530.
    [261] Nuijens JH, van Berkel PH, Geerts ME, et al. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice [J]. J Biol Chem, 1997, 28, 272(13): 8802-8807.
    [262] Ward PP, Lo JY, Duke M, et al. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae [J]. Biotechnology (NY), 1992, 10(7):784-789.
    [263] Mitra A, Zhang Z. Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s) [J]. Plant Physiol, 1994, 106(3): 977-981.
    [264] Lonnardal B. Recombinant human milk protein-an opportunity and chanllenge [J]. Am J Clin Nutr, 1996, 63: 622-666.
    [265] Salmon V, Legrand D, Georges B, et al. Characterizition of human lactoferrin produced in the baculovirus expression system [J]. Protein Exp Purif, 1997, 9: 203-210.
    [266] Chong DK, Langridge WH. Expression of full-length bioactive antimocrobial human lactoferrin in potato plants [J]. Transgetic Res, 2000, 9: 71-78.
    [267] Toman PD, Pieper F, Sakai N, et al. Production of recombinant human typeⅠprcollgen homotrimer in the mammary gland of transgetic mice [J]. Transgetic Res, 1999, 8(6): 415.
    [268] Clark AJ. The mammary gland as a bioreactor:Expression, processing, and production of recombinant protein [J]. Mammary Gland Biol Neoplasia, 1998, 3(3): 337-350.
    [269] Patrick HC, Welling MM, Geerts M, et al. Large scale production of recombinant human lactoferrin in the milk of transgetic cow [J]. Nat Biotech, 2002, 20: 484-495.
    [270] Kathryn MS, Thomas AR, Walter DF, et al. Expression of cloned human lactoferrin in baby-hamster kidney cells [J]. Biochem J, 1991, 276: 349-355.
    [271] 张大兵, 张景六, 王宗阳, 等. 人乳铁蛋白基因在烟草中的表达及抗细菌与病毒的能力[J]. 植物生理学报, 1999, 25(3): 234-243.
    [272] Bullen JJ, Griffiths, YE. Iron and infection. Molecular, physiological and clinical aspects [M]. JohnWiley & Sons, Chichester, 1987.
    [273] Zagulski T, Lipinski P, Zagulska A, et al. Lactoferrin can protect mice against a lethal dose of Escherichia coli in experimental infection in vivo [J]. Br J Exp Pathol, 1989, 70(6): 697-704.
    [274] Houdebine LM. Transgenic animal bioreactors [J]. Transgenic Res, 2000, 9(4-5): 305-320.
    [275] 连正兴, 张磊, 刘兆凉, 等. 整合 mATT 基因转基因山羊的获得[J]. 遗传学报, 2001, 28(8): 716-721.
    [276] Fairweathr-Tait SJ, Balmer SE, Scott PH, et al. Lactoferrin and iron absortion in newborn infants [J]. Pediatr Res, 1987, 22: 651-654.
    [277] Skogh T, Peen E. Lactoferrin anti-lactoferrin antibodies and inflammatory disease [J]. Adv Exp Med Bio, 1993, 336: 533-538.
    [278] Keefer CL, Baldassarre H, Keyston R, et al. Generation of dwarf goat (Capra hircus)clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes [J]. Biol Reprod, 2001, 64: 849-856.
    [279] Zou XG, Cheng Y, Yang Y, et al. Generation of cloned goats (Capra hircus) from transfected foetal fibroblast cells, the effect of donor cell cycle [J]. Mot Reprod Dev, 2002, 61: 164-172.
    [280] Cheng Y, Luo JP, Shen Y, et al. Cloned goats produced from the somatic cells of an adult transgenic goat [J]. Sheng Wu Gong Cheng Xue Bao, 2002, 18: 79-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700